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CHAPITRE 3

Fonctions réelles d’une variable réelle

3.1 Introduction

Au chapitre précédent, nous avons défini une suite comme étant une fonction particuliere définie sur IN.
Dans ce chapitre nous étudions les fonctions réelles définies sur IR. Les suites s’avérent un outils précieux
dans cette étude. Les fonctions réelles servent souvent a modéliser des cas concrets et cela constitue la
raison principale qui motive leur exploration.

Généralement une fonction décrit le comportement d’un objet a travers le temps ou 'espace. Le choix
d’une bonne fonction pour modéliser un tel comportement est souvent un compromis entre des fonctions
dont le comportement est chaotique et celles qui possédent quelques “bonnes” propriétés qui facilitent leur

utilisation. Une partie de ces propriétés sera explorée dans ce chapitre.

Définition 1. Soient E C R, F C R et f une relation qui a chaque élément x de E associe un unique élément
de F noté f(x). On dit que f est une fonction de E dans F.

L'ensemble E s'appelle le domaine de définition de f et est souvent noté Dy et I'ensemble de points Gy =

{(x,f(x)),x € Dy} s'appelle le graphe de f.
Remarque 1. Une fonction f de E C R dans F C IR est aussi dite fonction réelle définie sur E ou fonction
définie sur E a valeurs dans F. Onnote f : E — F.

Exemple 1.
1- La fonction f qui a un réel x associe f(x) = v/x + 1 est définie sur Dy = [—1, co[. Elle est représentée

par le graphe ci-apres

X

f(x)
/
0

2- La fonction ¢ qui a un réel x associe g(x) =

1
1 est définie sur Dy =] — 00, —1[U] — 1, co[. Elle est
représentée par le graphe ci-apres
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3- La fonction /& qui & un réel x associe h(x) = 2 cos x est définie sur D, = R. Elle est représentée par le

graphe ci-apres

Définition 2. Soit f : E — F une fonction.

- On dit que f est une injection de E dans F (ou que f est injective) si
V (x,x') €EEXE, x#x = f(x)# f(x).
- On dit que f est une surjection de E dans F (ou que f est surjective) si
VyeF,3xeEtel quey = f(x).

- On dit que f est une bijection de E dans F (ou que f est bijective) lorsqu’elle est a la fois injective et

surjective.

Exemple 2.
- La fonction 1 : R — [—2,2], définie par h(x) = 2cosx, est surjective mais elle n’est pas injective
(pourquoi?)

- La fonction g :] — 00, —1[U] — 1,00[— R, définie par g(x) = %

1 est injective mais elle n’est pas

surjective (pourquoi?)

- La fonction f : [—1, 00[— [0, 00[, définie par f(x) = /1 + x, est bijective (pourquoi?)
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3.1.1 Opérations sur les fonctions

Sur I'ensemble des fonctions réelles on définit de maniére naturelle les opérations algébriques telles que

la somme, le produit ou le quotient de deux fonctions.

Définition 3. Soient f et g deux fonctions réelles sur E C R.

- La fonction f + g est définiesur Epar: VY x€E, (f+g)(x) = f(x)+g(x).
- La fonction f x g est définiesur Epar:  Vx€E, (fxg)(x) = f(x)x g(x).
- La fonction ; est définie, pour tout x € E tel que g(x) # 0, par : (J;(x) = gi)

La composée f o g est la fonction définie par : Vx € E tel que g(x) € Dy, fog(x) = f(g(x)).

Exemple 3. Soient f et g deux fonctions réelles définies sur R par f(x) = x> + 1 et g(x) = cos x.
- Pourtoutx € R, (f+g)(x) = x>+ 1+ cosxet f x g(x) = (x*> +1) cos x.

241
- Pour tout x € R tel que cosx # 0, i(x) = i
g Cos x

- Pourtoutx € R, fog(x) = f(cosx) = (cos x)2 +1.
La relation d’ordre “<” est aussi naturellement définie sur I’ensemble des fonctions réelles.

Définition 4. Soient f et ¢ deux fonctions réelles définies sur E C R. On dit que f est inférieure ou égale a
gsur E, et on note f < gsi Vx € E, f(x) < g(x). Si cette inégalité est stricte, on dit que f est strictement

inférieure & g sur E.

Exemple 4. Soient f et ¢ les fonctions réelles définies par, Vx € R, f(x) = x2 + 1 et g(x) = cos x. Il est clair

queg < f.
Gr

o
N N

3.1.2 Fonction croissante, décroissante, majorée ou minorée

Les notions de croissance, décroissance, majoration ou minoration que nous avons définies pour les

suites s’étendent naturellement aux fonctions réelles.
Définition 5. Soient f une fonction réelle définie sur E C R.
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- La fonction f est croissante pour tout x € E et tout x’ € Eona: x <x' = f(x) < f(x). Lorsque ces
inégalités sont strictes, on dit que f est strictement croissante.

- La fonction f est décroissante pour tout x € E et tout X’ € Eona: x <x' = f(x') < f(x). Lorsque
ces inégalités sont strictes, on dit que f est strictement décroissante.

- La fonction f est dite constante s'il existe un réel ¢ tel que pour tout x € Eona: f(x) =c. Sic =0, on

dit que la fonction f est nulle.

Exemple 5.
- La fonction f définie sur [—7t/2, 7w/2] par f(x) = sin x est croissante.

- La fonction g définie sur [—7, 71/2] par g(x) = sin x n’est ni croissante ni décroissante.

:Gf :Gg
- - T -
2 2 2

Définition 6. Soient f une fonction réelle définie sur E C RR.
- On dit que f est minorée s'il existe un réel m tel que pour tout x € E, f(x) > m.
- On dit que f est majorée s'il existe un réel M tel que pour tout x € E, f(x) < M.

- Lorsque f est a la fois minorée et majorée, on dit qu’elle est bornée.

Exemple 6. La fonction g définie sur R par g(x) = sin x est minorée par -1.5.

AN

\/Gg

3.1.3 Fonction paire, impaire ou périodique

Définition 7. Soient f une fonction réelle définie sur E C R. On suppose que E est symétrique, c'est a dire
x€e E= —x €L
- On dit que f est paire si pour tout x € E, f(x) = f(—x).

—f(x).

- On dit que f est impaire si pour tout x € E, f(x)

Exemple 7. La fonction h définie sur R par h(x) = |x| est paire. La fonction p définie sur R par p(x) = x°

est impaire.
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Remarque 2. Si f est une fonction paire alors le graphe de f admet 1’axe des “y” comme axe de symétrie.

Si f est une fonction impaire alors il le graphe de f admet 1’origine comme centre de symétrie.

Définition 8. Soient f : R — IR une fonction et T un nombre réel. On dit que f est périodique de période T si
T est le plus petit réel tel que Vx € R, f(x+T) = f(x).

3
Exemple 8. La fonction f : R — R définie par f(x) = 5 + sin 2x est périodique de période 7.

Gy

NP - ———mmm ===
;)0—————-_____
e
) EGREEEEh

%‘
“‘

Exercices

1- Soit f la fonction réelle définie par f(x) = % Déterminer Dy, le domaine de définition de f. Déter-
miner les sous-ensembles de D ot f est croissante ou décroissante.

2- Soit g : R — R la fonction définie par g(x) = 2x" + 1, ol n est une entier positif. Pour quels valeurs
de n la fonction g est-elle paire ? Pour quels valeurs de 7 est-elle croissante?

3- Soith : R — R la fonction définie par h(x) = x — [x] ot [x] désigne la partie entiere de x. Montrer

que h est périodique et déterminer sa période.

3.2 Limite d’une fonction

Les limites jouent un rdle central dans la description du comportement d"une fonction réelle. Intuitive-
ment la limite d’une fonction f en un point xy décrit le comportement de f(x) lorsque x s’approche de

X0-

33



A.ZOGLAT FSIR, SMIA-ANALYSE I CHAPITRE 3

3.2.1 Définitions

Soit f : I = R une fonction définie sur un intervalle I C R et soit xg € R un point de I ou une extrémité

de I.

Définition 9. On dit que £ € R est la limite de f en xy (ou que f admet £ comme limite en x() et on note
lim f(x) =4, si

X—Xq

Ve>0 36>0 [x—xo <d=|f(x)—/{|<e.

Exemple 9.

— la fonction partie entiere E n’a pas de limite aux points xg € Z.

y
O—
E(x)
_
l
—
I
—_—
1 l
I
é
0 1 X9 € Z X
O—

Définition 10.
— On dit que f a pour limite +0c0 en xg, et on note le f(x) = +oo, si
X—XQ

VA>0 30>0 Vxel |[x—xp|<d = f(x)>A.
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y |
|
|
|
|
|
|
|
|
1
Aot
! I
( | 1
[ 1
[ 1
[ 1
SR
1 X0 x
x5 !
X0
— On dit que f a pour limite —oco en x, et on note lim f(x) = —oo, si
X—XQ

VA>0 36>0 Vxel |x—x|<d = f(x)<—-A
— Soit £ € R. On dit que f a pour limite ¢ en 400, et on note XEwa(x) =/, si
Ve>0 IB>0 Vxel x>B = [f(x)—{| <e
— Soit £ € R. On dit que f a pour limite £ en —co, et on note xE@mf(x) =/, si
YVe>0 3IB>0 Vxel x<-B = |f(x)—{|<e
— On dit que f a pour limite +oc0 en +o0, et on note xgr}goof(x) = 400, si
VA>0 3IB>0 Vxel x>B = f(x) > A.
— On dit que f a pour limite —oo en +o0, et on note xgrfmf(x) = —00, si
VA>0 IB>0 Vxel x>B = f(x) < —A.
— On dit que f a pour limite 400 en —oo, et on note xgrzloof(x) = 400, si
VA>0 3IB>0 Vxel x<-B = f(x) > A.
— On dit que f a pour limite —oo en —oo, et on note xgrzloof(x) = —oo, si

VA>0 3IB>0 Vxel x<-B = f(x) < —A.

Limite a gauche et a droite
Soit f une fonction définie sur un ensemble de la forme |a, xo[U]x, b] et soit £ € R.
Définition 11.

— On dit que ¢ est la limite a droite en x( de f, et on note lim+f(x) =/, si
x~>x0

Ve>0 36>0 0<x—x9<dé=|f(x)—/{]| <e.
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— On dit que £ est la limite & gauche en x de f, et on note lim f(x) =/, si
X=Xy

Ve>0 36>0 0<xp—x<dé=|f(x)—/{| <e.

Exemple 10. Considérons la fonction partie entiere au point x = 2
— comme pour tout x €]2,3[ona E(x) =2,0na lgnE =2,
— comme pour tout x € [1,2[ona E(x) =1,0ona I%En E=1.

Ces deux limites étant différentes, on en déduit que E n’a pas de limite en 2.

y
E(x)
limite a droite  limy+ E |- - ==~~~ —_—
1
1
limite a gauche lim,- E --- -.—:
|
$
0 2 X

3.3 Propriétés
Proposition 1. Si une fonction admet une limite, alors cette limite est unique.
Démonstration. La démonstration est similaire a celle de 1'unicité de la limite pour les suites. Elle est laissée

comme exercice. O

Soient deux fonctions f et g. On suppose que x est un réel, ou que xy = £oo.

Proposition 2. Si lim f(x) = ¢ € Ret lim g(x) = ' € R, alors :
0

X—Xq

— xh_)n;o(/'\f)(x) = A-{ pourtout A € R
— lim (f+g)(x) = £+

— Jlim (f x g)(x) = £ x ¢

: . 1 1
— si £ #0, alors J}E}OW—Z

_— . 1
De plus, si xhﬁn;()f(x) = +o00 (ou —o0) alors lim —— = 0.

X— X0 f(x)

Démonstration. Ces propriétés se démontrent de la méme maniere que leurs analogues pour les suites.

. . 1 . .
Montrons par exemple que si f tend en xg vers une limite ¢ non nulle, alors — est bien définie dans un

voisinage de x( et tend vers 7
. . . 1 .
Supposons £ > 0, le cas £ < 0 se montrerait de la méme maniére. Montrons tout d’abord que — est bien

f

définie et est bornée dans un voisinage de xg contenu dans I. Par hypothese
Ve' >0 36>0 Vxel xg—d8<x<x+6 = {—¢€ < f(x)<l+¢€.
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Si on choisit €’ tel que 0 < €’ < ¢/2, alors on voit qu'il existe un intervalle ] = IN]xg — §, xg + J[ tel que

pour tout x dans ], f(x) > £/2 > 0, c’est-a-dire, en posant M = ¢ /2 :

Vxe] 0<f(1x)<M.

Fixons a présent € > 0. Pour tout x € J,ona

1 1 _[=f)] _M
‘ ’_ f(x)E <7|€_f(x)|

. - - . le ao
Dong, si dans la définition précédente de la limite de f en xo on choisit €’ = —, alors on trouve qu’il existe

un ¢ > 0 tel que

1

1 M M,
Vxe] xp—-0<x<x+0 = ‘f(x)_f‘<£|€_f(x)|<£€ =e.

Exemple 11. On a les limites classiques suivantes pour toutn > 1:

. . ~+00 si 1 est pair
— lim x"=+c0 et lim x" =

X—400 X—r—00 . . .
—oo s1 1 est impair

— lim <1> =0 et lim <1> =0
x—+oo \ x" x——oco \ x"

Exemple 12. Soient P(x) = a,x" +a, 1x"~! + ... 4+ a;x + ag, avec a, > 0, un polynome de degré n et

Q(x) = byx™ + by _1x™ 1+ ... + byx + by, avec by, > 0, un polyndme de degré m.

400 sin>m
P(x)

_ n

xore Q(x) ) b
0

N

sin=m

sin<m

Proposition 3. Si lim f(x) =/ et lirrbg(x) =/, alors lim go f(x) = /¢,
x—

X— X0 X—XQ

Exemple 13. Soit x — u(x) une fonction, xyp € R tel que u(x) — 2 lorsque x — xg. Posons f(x) =

1
\/ 1+ EIE + Inu(x). Si elle existe, quelle est la limite de f en x?

1 1
— Tout d’abord comme u(x) — 2 alors u(x)?> — 4 donc )2 ~ 1 (lorsque x — xo).

— De méme comme u(x) — 2 alors, dans un voisinage de xp, u(x) > 0 donc Inu(x) est bien définie

dans ce voisinage et de plus Inu(x) — In2 (lorsque x — xo).

1 1
— Cela entraine que 1 + w2 +Inu(x) = 1+ 1 +In2lorsque x — xo. En particulier 1 + MEIE +
Inu(x) > 0 dans un voisinage de xy donc f(x) est bien définie dans un voisinage de xj.

— Et par composition avec la racine carrée alors f(x) a bien une limite en xo et limy_,y, f(x) =

\/1-4-%—1—1112.
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Comme pour les limites des suites réelles, les opérations sur les limites ne s’appliquent qu’en "absence
des formes indéterminées. Rappelons qu’on appelle formes indéterminées les formes suivantes :

0o 0

o0 — o0 0 X oo

oo 0
Proposition 4.
- . < . . — . — / < /
Si f<getsi xlgrxlof éeRetlergclog 0 eRR, alors ¢ < V.

_c e . _ . _
Si f < getsi xhﬁrg()f +00, alors xlgngog +o0.

— S f < g et si xll)]fgclog = —09, alors xll_)l’l'xlof = —00.
—Sif<g<hetsi xh—>n)}0f:xh—>n:}0h:£ € R, alors xh_)ﬁ)}ﬂg:é.
Exercices

1. En utilisant la définition de la limite, montrer que lirra(3x +1)=7.
x—

2. Montrer que si f admet une limite finie en x( alors il existe 6 > 0 tel que f soit bornée sur |xy — &, xo +
J].

3. Dét . . iste. T 202 —x—2 t i 2x2 —x —2
. eterminer, S1 ¢a existe, 1M —————< € m —-——
¢ 032+ 2x +2 xS 3x2 + 2x + 2

4. Déterminer, si ¢a existe, la limite de sin (%) et la limite de % en oo.

Vi+x—+vV1+x2 ) x2—4
ethmi.
X X2 x2—3x+2

5. Déterminer, si ca existe, lin(l)
X—

3.4 Continuité en un point

3.4.1 Définition

Soit I un intervalle de R et f : I — R une fonction.
Définition 12.
— On dit que f est continue en un point xo € I si li_>m f(x) = f(xop).
X—X0

— On dit que f est continue sur I si f est continue en tout point de I.
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Intuitivement, une fonction est continue sur un intervalle, si son graphe est constitué d"un seul morceau.

Voici des exemples de fonctions qui ne sont pas continues en un point x :

y

\

Y

N

Exemple 14. Les fonctions suivantes sont des exemples de fonctions continues :

— une fonction constante sur un intervalle,

— la fonction racine carrée x — /x sur [0, +oo],

— les fonctions sin et cos sur R,

— la fonction valeur absolue x — |x| sur R,

— la fonction exp sur R,

— la fonction In sur ]0, +oo[.

Par contre, la fonction partie entiere E n’est pas continue aux points xy € Z, puisqu’elle n’admet pas de

limite en ces points. Pour xp € R\ Z, elle est continue en x.

Remarque 3. D’apres la définition de la continuité, une fonction f est continue en xy € I si, et seulement

si, Ve>0 d6>0 Vxel

[x— x| <6 = [f(x)

— f(xo)| <e.

Exemple 15. Soient n € IN* un entier fixé et f la fonction définie sur R par f(x) = x". La fonction f est

continue sur R.

II suffit de montrer que f est continue en tout point xp € R. Soit xg € R un point donné et € > 0.

Ona |x" —xj| = |x — xo]]| Zxox” Kl < |x — xo Z |x0[¥|x|" 7% < |x — x0|(|x0| + |x])" L. Ainsi pour tout

k=

=0

x € [xp—1,x0+1] ona|x| < |xo| + 1. D’ouxe [xo =1, x0 +1] = [x" — x| < |x — x| (2]x0| +1)""

Pour § = min(1,

(I

3.4.2 Propriétés

x0|+1)”

),onabien [x —xp| <6 = |x" — xjj| <e.

La continuité assure par exemple que si la fonction n’est pas nulle en un point (qui est une propriété

ponctuelle) alors elle n’est pas nulle autour de ce point (propriété locale). Voici 1’énoncé :

Lemme 1. Soit f : I — R une fonction définie sur un intervalle I et xo un point de I. Si f est continue en xg

etsi f(xg) # 0, alors il existe § > 0 tel que

Vx €]xg —6,x0 + [ f(x)#O.
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Démonstration. Pour e = |f(§0)| il existe § > 0 tel que pour tout x € IN]xg — 6, xp+d[ona |f(x) — f(x0)| <
€.Oronal||f(x)] — |[f(x0)|| < |f(x)— f(x0)] < € pour tout x € IN]xy — &, x9 + . On en déduit que
|f(x)] > |f(x0)| — €= m > 0, pour tout x € IN]xg — J,x0 + 4. O

La continuité se comporte bien avec les opérations élémentaires. Les propositions suivantes sont des

conséquences immédiates des propositions analogues sur les limites.

Proposition 5. Soient f,g: I — R deux fonctions continues en un point xg € I. Alors
— A - f est continue en x( (pour tout A € R),
— f+ g et f X g sont continues en xj,

. 1 .
— si f(xp) # 0, alors — est continue en x.

f
Exemple 16. La proposition précédente permet de vérifier que d’autres fonctions usuelles sont continues :
— les fonctions définie sur R par x +— a4, x" oin € N* eta, € R.
— les fonctions polyndmes définies sur R par x — P(x) = i ay x,
k=0

P(x)

— les fractions rationnelles x — ) ou P et Q sont des fonctions polynémes, sont continues sur tout

o)

intervalle ou le polyndéme Q(x) ne s’annule pas.

Proposition 6. Soient f : I — R et ¢ : | — R deux fonctions telles que f(I) C J. Si f est continue en un point

xo € I et si g est continue en f(xp), alors g o f est continue en Xx.

3.4.3 Prolongement par continuité

Définition 13. Soit I un intervalle, xo un point de I et f : I\ {xo} — R une fonction. On dit que f est

prolongeable par continuité en xq si f admet une limite finie en x(. La fonction f: I — R définie pour tout x € I

f(x)  six#xo

par f(x) = est continue en xq et on |'appelle le prolongement par continuité de f en xg.
l si x = xp.
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Dans la pratique, on continuera souvent a noter f a la place de f.

Exemple 17. Considérons la fonction f définie sur R* par f(x) = xsin (%) Voyons si f admet un prolon-
gement par continuité en 07
Comme pour tout x € R* ona |f(x)| < |x|, onen déduit que f tend vers 0 en 0. Elle est donc prolongeable

par continuité en 0 et son prolongement est la fonction f définie sur R tout entier par :

X sin (%) six #0
0 six =0.

flx) =

3.4.4 Suites et continuité
Proposition 7. Soit f : I — R une fonction et xy un point de I. Alors
f est continue en Xy <= pour toute suite (u,) qui converge vers X, la suite (f(u,)) converge vers f(xp)

Démonstration. On suppose que f est continue en xq et que (uy) est une suite qui converge vers xq et on
veut montrer que (f(uy,)) converge vers f(xo).

Soit € > 0. Comme f est continue en xo, il existe un § > 0 tel que
Vxel [x—xo| <6 = [f(x)—f(x0)| <e.
Pour ce 6, comme (u,,) converge vers Xy, il existe N € IN tel que
VneN n>N = |u, —xo| <9.

On en déduit que, pour tout n > N, comme |u, — x| < 6, ona |f(u,) — f(x0)| < € et donc (f(un))
converge vers f(xp).

On va montrer la contraposée : supposons que f n’est pas continue en x et montrons qu’il existe une
suite (1) qui converge vers x et telle que (f(u,)) ne converge pas vers f(xp).

Par hypothese, comme f n’est pas continue en x :
1
dep >0 VneN* Ix, el telque |x,—xp| < et |f(xn) — f(x0)| > eo.

Ainsi la suite (x,), converge vers xo mais la suite (1, = f(x,)), ne converge pas vers f(xp).
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Remarque. Notons que lorsqu'une suite récurrente, définie a partir d'une fonction f continue par ;.1 = f(uy),

converge alors sa limite ¢ vérifie la relation f(¢) = ¢.

Exercices

Xx+a six <1
. Déterminer les réels a et b pour que la fonction f(x) = soit continue sur R.

T+x+bx2 sil<x

—_

N

. Soit ¢ une fonction continue telle que g(xp) = 1. Montrer qu’il existe § > 0 tel que

x €]xg —9,x9 + 0= g(x) >

>

, 1
3. Etudier la continuité de & : R — R définie par h(x) = sinx cos p six #0eth(0) =0.

3
P x> 48 o
4. La fonction définie par g(x) = x+2] admet-elle un prolongement par continuité en —2?
5. Soit la suite définie par ug > 0 et u, 11 = /u,. Montrer que (u,,) est convergente et calculer sa limite.

3.5 Continuité sur un intervalle

3.5.1 Le théoréme des valeurs intermédiaires

Théoréme 1. [Théoréme des valeurs intermédiaires] Soit f une fonction réelle continue sur [, b]. Pour tout réel

y compris entre f(a) et f(b), il existe ¢ € [a,b] tel que f(c) =y.

y

Démonstration. Remarquons quesi f(a) = f(b) alorsiln’y a rien a démontrer puisque dans ce cas y = f(a).
1. Supposons que f(a) < f(b) etsoity €|f(a), f(b)[ fixé. On considere I'ensemble
A={xelab]|f(x) <y}

Puisque A est un ensemble non vide (a € A) majoré (A C [a,b]), il admet une borne supérieure. Soit

¢ = sup A. Nous allons montrer que y = f(c).
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A c=sup(A)

Comme ¢ = sup 4, il existe une suite (u,),eny C A telle que (u,) converge vers c. Pour tout
n e N, u, € Aetdonc f(u,) <y.Etpuisque f est continue sur [a, b], par passage a la limite on a
£€) = lim () <.

Montrons & présent que f(c) > y. Cela est évident si ¢ = b puisque f(b) > y. Supposons donc
que ¢ < b. Pour tout x €]c,b], comme x ¢ A, ona f(x) > y. Comme ¢ = inf]c, b], il existe donc
une suite (vy,), Clc,b] telle que pour tout n € N f(v,) > y et nlgrolo vy = c¢. On en déduit que

f(e) =limy oo f(vn) 2 .

2. Sif(a) > f(b) ety €]f(b), f(a)] est un réel fixé, on consideére 1'ensemble

B={xelab]|f(x)=y}

L'ensemble B est non vide (f(a) € B) majoré (par b) donc admet une borne supérieure que nous

notons c. Il existe donc une suite (1), C B qui converge vers c. Comme f est continue sur [a, b]
ona f(c) = lim f(us) > 1.

Montrons que f(c) < y. Cela est évident sic = b, cary > f(b) = f(c). Supposons que ¢ < b. Pour
tout x €]c, b, ona f(x) < y. Comme ¢ = inf|c, b], il existe une suite (v,), Clc, b] qui converge vers

c et telle que, pour toutn € N, f(v,,) < y. Par passage a la limite on obtient f(c) = li_r>n fluy) <y.
n—oo

O

3.5.2 Applications du théoreme des valeurs intermédiaires
Voici la version la plus utilisée du théoreme des valeurs intermédiaires.

Corollaire 1. Soit f une fonction réelle continue sur l'intervalle [a,b]. Si f(a) x f(b) < 0, alors il existe ¢ €]a, b|

tel que f(c) =0.
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Fb)y >0|--mm e

S
S
=

f(a) <0t--

Démonstration. 1l s’agit d’une application directe du théoréme des valeurs intermédiaires avec y = 0. L'hy-
pothese f(a) x f(b) < 0 signifiant que f(a) < f(b) ou f(b) < f(a). O
Exemple 18. Tout polynome de degré impair possede au moins une racine réelle.

Y
Gp

En effet, un tel polynome s’écrit P(x) = a,x" + ... + a1x + a9 avec n un entier impair. On peut supposer

que le coefficient a, est strictement positif. Alors on a limP = —oo et l+im P = +oc0. En particulier, il existe
—00 (e9)

deux réels a et b tels que f(a) < 0 et f(b) > 0 et on conclut grace au corollaire précédent.

Corollaire 2. Soit f une fonction réelle continue sur un intervalle I. Alors f(I) est un intervalle.

Attention! Le résultat ci-dessus ne signifie pas que si f est une fonction continue sur l'intervalle [a, b]

alors f ([a, b]) = [f(a), f(b)].
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f(b)

f(la,b])
fla)}

Démonstration. Soient y1,y2 € f(I), y1 < y2. Montrons que si y € [y1,2], alors y € f(I). Par hypothese,
il existe x1,xp € I tels que y; = f(x1), y2 = f(x2) et donc y est compris entre f(x1) et f(xy). D’apres le

théoreme des valeurs intermédiaires, comme f est continue, il existe donc x € I tel que y = f(x), et ainsi

y € f(I). O

3.5.3 Fonctions continues sur un segment [, b]

Nous utiliserons le mot segment pour désigner un intervalle fermé et borné de la forme [a,b] o1 a et b

sont deux réels tels que a < b.

Proposition 8. L'image d'un segment [a,b] par une fonction f continue est un ensemble borné.

Démonstration. Nous allons montrer que f([a, b]) est un ensemble majoré. La preuve que c’est une ensemble
minoré est laissée comme exercice.
Supposons que f([a, b]) ne soit pas majoré. Donc pour tout n € IN* il existerait un y, € f([a,b]) tel que

Yn > n. On en déduit que
Vn e N* 3Jx, € [a,b] telque f(x,) =y, >n etdonc %1311 f(xy) = oo.

La suite (x,), C [a,b] est bornée, elle admet donc une sous-suite (X, ), qui converge vers ¢ € [a,b].
Comme f est continue sur [a,b], on a lign f(xn,) = f(£). Cela est en contradiction avec lign f(xn) =
nE—>00 n—n

0. O

Théoreéme 2. Soit f une fonction réelle continue sur un segment [a, b]. Alors il existe deux réels m et M tels que

f([a,b]) = [m, M].

Autrement dit, I'image d'un intervalle fermé par une fonction continue est un intervalle fermé.
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Remarque 4. Comme on sait déja par le théoreme des valeurs intermédiaires que f([a, b]) est un intervalle,

le théoreme précédent signifie exactement que
Si f est continue sur [, b] alors f est bornée sur [4, b] et elle atteint ses bornes.

Donc m est le minimum de la fonction sur I'intervalle [a, b] alors que M est le maximum.

Démonstration. D’apres la proposition ci-dessus f([a, b]) est un ensemble borné, il existe donc deux réels m
et M tels que m = inf f([a,b]) et M = sup f([a, b]). Nous allons montrer que m € f([a,b]). La preuve que
M € f([a,b]) est laissée en exercice.

Puisque m = inf f([a, b]), il existe une suite (y,), C f([a,b]) telle que lim Yn) = m. Soit (x,), C [a,b]
une suite telle que, pour tout n € IN, f(x,) = y,. La suite (x;), est bornée, donc admet une sous-suite
(%n, )n, qui converge vers ¢ € [a,b]. Comme f est continue, on a n}(ignoo f(xn,) = f(I). L'unicité de la limite

implique que m = %g}r}l Yn = rlg)r}l flxn,) = f(1). O

Exercices

1. Soit P(x) = x° — 3x — 2 un polyndme sur R. Montrer qu'il existe xo €]1,2[ tel que P(xq) = 0

2. Montrer qu’il existe x > 0 tel que 2* + 3* = 5".

3. Soit f : R — R une fonction continue. Tracer son graphe si f(R) = [0,1], et si f(R) =]0,1].

4. Soient f et ¢ deux fonctions continues sur [0, 1] telles que Vx € [0,1] f(x) < g(x). Montrer qu'il existe
m > 0 tel que Vx € [0,1] f(x) +m < g(x). Ce résultat est-il vrai si on remplace [0, 1] par R?

5. Soit f une fonction continue sur [1,5]. On suppose que les seules solutions a 1'équation f(x) = 6 sont

x = 1etx = 4. Montrer que si f(2) = 8 alors f(3) > 6.

3.5.4 Fonctions monotones et bijections

Pour tout ensemble E C R on notera Idg la fonction identité sur E définie par : x — Idg(x) = x. Rap-
pelons que si f : E — F est une fonction bijective alors il existe une unique application g : F — E telle
que go f = Idg et f o ¢ = IdrLa fonction g est la bijection réciproque de f et se note f~!. Dans un repeére

orthonormé les graphes des fonctions f et f~! sont symétriques par rapport a la premiére bissectrice.
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/

Voici un résultat important qui permet d’obtenir des fonctions bijectives.
Théoreme 3. [Théoréme de la bijection] Soit f : I — R une fonction définie sur un intervalle I de IR. Si f est
continue et strictement monotone sur I, alors

1. f établit une bijection de I'intervalle I dans l'intervalle image | = f(I),

2. la fonction réciproque f_1 : ] — I est continue et strictement monotone sur | et elle a le méme sens de

variation que f.

En pratique, si on veut appliquer ce théoréme & une fonction continue f : I = IR, on découpe l'intervalle

I en sous-intervalles sur lesquels la fonction f est strictement monotone.

Exemple 19. Considérons la fonction carrée définie sur R par f(x) = x2. La fonction f n’est pas stricte-
ment monotone sur R, d’ailleurs, on voit bien qu’elle n’est pas injective. Cependant, en restreignant son
ensemble de définition a | — oo, 0] d’une part et a [0, +-o0o[ d’autre part, on définit deux fonctions strictement

monotones (les ensembles de départ sont différents) :

£ | —00,0] — [0, +o0[ ot f [0, +00[—> [0, +o0[

x»—)xz x»—>x2
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On remarque que f(] —o0,0]) = f([0, +oo[) = [0, +oo[. D’apres le théoreéme précédent, les fonctions f; et
f2 sont des bijections. Déterminons leurs fonctions réciproques f; 1270, +00[—] — 00,0] et fa L2 [0, +oo[—

[0, +o0[. Soient deux réels x et y tels que y > 0. Alors

y=f(x) &y=x

Sx=,y ou x=-—/,

C’est-a-dire y admet deux antécédents, I'un dans [0, +co[ et I'autre dans | — o, 0]. Et donc f; ! (y) = — /7 et
fa Ly) = /Y- On retrouve bien que chacune des deux fonctions f; et f, ale méme sens de variation que sa

réciproque.

h f2

N 3 N x

-1
..'fl

On remarque que la courbe totale en pointillée (a la fois la partie bleue et la verte), qui est 'image du
graphe de f par la symétrie par rapport a la premiére bissectrice, ne peut pas étre le graphe d'une fonction :

c’est une autre maniére de voir que f n’est pas bijective.
Généralisons 1’'exemple précédent.

Exemple 20. Soitn > 1.Soit f : [0, +oo[— [0, +oo[ définie par f(x) = x". Alors f est continue et strictement
croissante. Comme lim .o f = 00 alors f est une bijection. Sa bijection réciproque f~! est notée : x + xi

(ou aussi x — {/x) : ’est la fonction racine n-iéme. Elle est continue et strictement croissante.

3.5.5 Démonstration
On établit d’abord un lemme utile a la démonstration du théoréme précédent.

Lemme 2. Soit f : I — R une fonction définie sur un intervalle I de R. Si f est strictement monotone sur I,

alors f est injective sur I.

Démonstration. Soient x,x’ € I tels que f(x) = f(x'). Montrons que x = x’. Si on avait x < x’, alors on

aurait nécessairement f(x) < f(x') ou f(x) > f(x), suivant que f est strictement croissante, ou strictement
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décroissante. Comme c’est impossible, on en déduit que x > x'. En échangeant les roles de x et de x', on

montre de méme que x < x". On en conclut que x = x’ et donc que f est injective. O

Démonstration du théoreme. 1. D’apres le lemme précédent, f est injective sur I. En restreignant son en-
semble d’arrivée a son image | = f(I), on obtient que f établit une bijection de I dans J. Comme f

est continue, par le théoreme des valeurs intermédiaires, I'ensemble | est un intervalle.
2. Supposons pour fixer les idées que f est strictement croissante.

(a) Montrons que f~! est strictement croissante sur J. Soient y,’ € ] tels que y < y'. Notons x =

f i y)eletx’ = f1(y) el Alorsy = f(x),y = f(x') et donc

y<y = f(x) <f(x)

= x < (car f est strictement croissante)
-1 =10,/
= W <f)
c’est-a-dire f~! est strictement croissante sur J.

(b) Montrons que f ~1 est continue sur J. On se limite au cas ot1  est de la forme |a, b|, les autres cas se
montrent de la méme maniére. Soit yy € J. Onnote xg = f~!(yg) € I. Soit e > 0. On peut toujours

supposer que [xg — €, X9 + €] C I. On cherche un réel § > 0 tel que pour tout y € J on ait
Yo—d<y<yo+d = fl(yo)—e<fly) <f(vo)te
c’est-a-dire tel que pour tout x € I on ait
Yo—0<f(x)<yo+dé = fl(yo)—e<x<fly)+e.
Or, comme f est strictement croissante, on a pour tout x € [

flxo—e) < f(x) < f(xp+€) = xp—e<x<x9+e€

= ) —e<x<fy) +e
Comme f(xg —€) < yo < f(xo + €), on peut choisir le réel 6 > 0 tel que
flto—€) <yo—5 et flxo+e)>yo+d
et on a bien alors pour tout x € I

Yo—0 < f(x) <yo+dé = f(xo—¢€) < f(x) < f(xo+e€)
— ) —e<x< fy) +e

La fonction f~! est donc continue sur J.
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Exercices

1. Montrer que chacune des hypotheses « continue » et « strictement monotone » est nécessaire dans

I’énoncé du théoreme.
2. Soit f : R — R définie par f(x) = x> + x. Montrer que f est bijective, tracer le graphe de f et de f .

3. Soit n > 1. Montrer que f(x) = 1+ x + x> + ... + x" définit une bijection de I'intervalle [0, 1] vers un

intervalle a préciser.

4. Existe-t-il une fonction continue : f : [0, 1[—]0, 1[ qui soit bijective? f : [0, 1[—]0, 1] qui soit injective?
f:]0,1[— [0, 1] qui soit surjective?

5. Pour y € R on considere I"équation x + exp x = y. Montrer qu’il existe une unique solution y. Com-

ment varie y en fonction de x? Comme varie x en fonction de y?

3.5.6 Continuité uniforme

Définition 14. Soit f : D C R — R une fonction. On dit que f est uniformément continue sur D si

Ve>0 36>0 VxeD VX¥'eD |x—x|<éd=|f(x)—f(x)|<e

Remarque 5.
— Dans cette écriture logique, « dépend de €, mais ne dépend ni de x ni de x’. d’ou 'origine du mot
uniforme.
— Il est évident qu’une fonction uniformément continue sur D est continue sur D.

— Une fonction f : D C R — R est dite lipschitzienne s'il existe une constante k telle que
VxeD Vx'eD |f(x)—f(x)| <klx—x|
Il est clair qu'une fonction lipschitzienne est uniformément continue.

1
Exemple 21. La fonction f définie sur |0, o[ par f(x) = —= n’est pas uniformément continue. En effet,
x

supposons qu’elle 'est et soit € > 0 un réel fixé. Il existe donc un é > 0 tel que

< €.

|x—x’|<5:'i—i,
NN
V2 -1 V2 -1

< €. Or ceci est impossible car lim =0

vV2x x—=0  4/2x

En général, il n'y a pas une équivalence entre la continuité et la continuité uniforme d'une fonction. Le

Pour x' = 2x, on aurait alors, |x| < § = ‘

théoreme suivant précise les conditions pour une telle équivalence.

Théoreme 4. [Théoréeme de Heine] Soient 4,b € R tels que a < b et f une fonction réelle continue sur [a, b].

Alors f est uniformément continue sur [a, b].
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Démonstration. On suppose que f n’est pas uniformément continue, donc
1
Je>0 VneN* Fx,y, € lab] |xn—x,] < — mais |f(xn) — f(x},)] > €.

La suite (x,), C [a,b] est bornée, donc admet une sous-suite (xy, ), qui converge vers x € [a,b]. Comme f
est continue, on a nllinw flxn) = f(x).

D’autre part on a [x), — x| < [xn, — x| + [x7, — x| < [xn, — x| + nik On en déduit que la sous-suite
(x4, )n, qui converge vers x € [a, b] et par conséquent on a n{iinoo fx,) = f(x).

Nous avons ainsi deux sous-suites (X, ), et (x7, )u, telles que |f(xn,) — f(x}, )| > € pour tout nj, € N*

. 1 T / . L. . .
et nilgnoo flxy,) = n}{lgnoo f(xy, ). Ceci est évidemment impossible. O
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