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CHAPITRE 3

Fonctions réelles d’une variable réelle

3.1 Introduction

Au chapitre précédent, nous avons défini une suite comme étant une fonction particulière définie sur N.

Dans ce chapitre nous étudions les fonctions réelles définies sur R. Les suites s’avèrent un outils précieux

dans cette étude. Les fonctions réelles servent souvent à modéliser des cas concrets et cela constitue la

raison principale qui motive leur exploration.

Généralement une fonction décrit le comportement d’un objet à travers le temps ou l’espace. Le choix

d’une bonne fonction pour modéliser un tel comportement est souvent un compromis entre des fonctions

dont le comportement est chaotique et celles qui possèdent quelques “bonnes” propriétés qui facilitent leur

utilisation. Une partie de ces propriétés sera explorée dans ce chapitre.

Définition 1. Soient E ⊂ R, F ⊂ R et f une relation qui à chaque élément x de E associe un unique élément

de F noté f (x). On dit que f est une fonction de E dans F.

L’ensemble E s’appelle le domaine de définition de f et est souvent noté D f et l’ensemble de points G f =

{(x, f (x)), x ∈ D f } s’appelle le graphe de f .

Remarque 1. Une fonction f de E ⊂ R dans F ⊂ R est aussi dite fonction réelle définie sur E ou fonction

définie sur E à valeurs dans F. On note f : E→ F.

Exemple 1.

1- La fonction f qui à un réel x associe f (x) =
√

x + 1 est définie sur D f = [−1, ∞[. Elle est représentée

par le graphe ci-après

x

f (x)

0

G f

2- La fonction g qui à un réel x associe g(x) =
1

x + 1
est définie sur Dg =]−∞,−1[∪]− 1, ∞[. Elle est

représentée par le graphe ci-après
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x

g(x)

0−1

Gg

3- La fonction h qui à un réel x associe h(x) = 2 cos x est définie sur Dh = R. Elle est représentée par le

graphe ci-après

x

h(x)

0

Gh

Définition 2. Soit f : E→ F une fonction.

- On dit que f est une injection de E dans F (ou que f est injective) si

∀ (x, x′) ∈ E× E, x 6= x′ =⇒ f (x) 6= f (x′).

- On dit que f est une surjection de E dans F (ou que f est surjective) si

∀ y ∈ F, ∃ x ∈ E tel que y = f (x).

- On dit que f est une bijection de E dans F (ou que f est bijective) lorsqu’elle est à la fois injective et

surjective.

Exemple 2.

- La fonction h : R → [−2, 2], définie par h(x) = 2 cos x, est surjective mais elle n’est pas injective

(pourquoi?)

- La fonction g :] −∞,−1[∪] − 1, ∞[→ R, définie par g(x) =
1

x + 1
, est injective mais elle n’est pas

surjective (pourquoi?)

- La fonction f : [−1, ∞[→ [0, ∞[, définie par f (x) =
√

1 + x, est bijective (pourquoi?)
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3.1.1 Opérations sur les fonctions

Sur l’ensemble des fonctions réelles on définit de manière naturelle les opérations algébriques telles que

la somme, le produit ou le quotient de deux fonctions.

Définition 3. Soient f et g deux fonctions réelles sur E ⊂ R.

- La fonction f + g est définie sur E par : ∀ x ∈ E, ( f + g)(x) = f (x) + g(x).

- La fonction f × g est définie sur E par : ∀ x ∈ E, ( f × g)(x) = f (x)× g(x).

- La fonction
f
g
est définie, pour tout x ∈ E tel que g(x) 6= 0, par :

f
g
(x) =

f (x)
g(x)

.

La composée f ◦ g est la fonction définie par : ∀x ∈ E tel que g(x) ∈ D f , f ◦ g(x) = f
(

g(x)
)
.

Exemple 3. Soient f et g deux fonctions réelles définies sur R par f (x) = x2 + 1 et g(x) = cos x.

- Pour tout x ∈ R, ( f + g)(x) = x2 + 1 + cos x et f × g(x) = (x2 + 1) cos x.

- Pour tout x ∈ R tel que cos x 6= 0,
f
g
(x) =

x2 + 1
cos x

.

- Pour tout x ∈ R, f ◦ g(x) = f (cos x) =
(
cos x

)2
+ 1.

La relation d’ordre “≤” est aussi naturellement définie sur l’ensemble des fonctions réelles.

Définition 4. Soient f et g deux fonctions réelles définies sur E ⊂ R. On dit que f est inférieure ou égale à

g sur E, et on note f ≤ g si ∀x ∈ E, f (x) ≤ g(x). Si cette inégalité est stricte, on dit que f est strictement

inférieure à g sur E.

Exemple 4. Soient f et g les fonctions réelles définies par, ∀x ∈ R, f (x) = x2 + 1 et g(x) = cos x. Il est clair

que g ≤ f .

Gg

G f

3.1.2 Fonction croissante, décroissante, majorée ou minorée

Les notions de croissance, décroissance, majoration ou minoration que nous avons définies pour les

suites s’étendent naturellement aux fonctions réelles.

Définition 5. Soient f une fonction réelle définie sur E ⊂ R.
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- La fonction f est croissante pour tout x ∈ E et tout x′ ∈ E on a : x ≤ x′ =⇒ f (x) ≤ f (x′). Lorsque ces

inégalités sont strictes, on dit que f est strictement croissante.

- La fonction f est décroissante pour tout x ∈ E et tout x′ ∈ E on a : x ≤ x′ =⇒ f (x′) ≤ f (x). Lorsque

ces inégalités sont strictes, on dit que f est strictement décroissante.

- La fonction f est dite constante s’il existe un réel c tel que pour tout x ∈ E on a : f (x) = c. Si c = 0, on

dit que la fonction f est nulle.

Exemple 5.

- La fonction f définie sur [−π/2, π/2] par f (x) = sin x est croissante.

- La fonction g définie sur [−π, π/2] par g(x) = sin x n’est ni croissante ni décroissante.

−π
2 π

2

G f

π
π
2

Gg

Définition 6. Soient f une fonction réelle définie sur E ⊂ R.

- On dit que f est minorée s’il existe un réel m tel que pour tout x ∈ E, f (x) ≥ m.

- On dit que f est majorée s’il existe un réel M tel que pour tout x ∈ E, f (x) ≤ M.

- Lorsque f est à la fois minorée et majorée, on dit qu’elle est bornée.

Exemple 6. La fonction g définie sur R par g(x) = sin x est minorée par -1.5.

-1.5

Gg

3.1.3 Fonction paire, impaire ou périodique

Définition 7. Soient f une fonction réelle définie sur E ⊂ R. On suppose que E est symétrique, c’est à dire

x ∈ E =⇒ −x ∈ E.

- On dit que f est paire si pour tout x ∈ E, f (x) = f (−x).

- On dit que f est impaire si pour tout x ∈ E, f (x) = − f (x).

Exemple 7. La fonction h définie sur R par h(x) = |x| est paire. La fonction p définie sur R par p(x) = x3

est impaire.
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Gh

Gp

Remarque 2. Si f est une fonction paire alors le graphe de f admet l’axe des “y” comme axe de symétrie.

Si f est une fonction impaire alors il le graphe de f admet l’origine comme centre de symétrie.

Définition 8. Soient f : R→ R une fonction et T un nombre réel. On dit que f est périodique de période T si

T est le plus petit réel tel que ∀ x ∈ R, f (x + T) = f (x).

Exemple 8. La fonction f : R→ R définie par f (x) =
3
2
+ sin 2x est périodique de période π.

−7π
4

−3π
4

π
4

5π
4

G f

Exercices

1- Soit f la fonction réelle définie par f (x) =
1
x

. Déterminer D f , le domaine de définition de f . Déter-

miner les sous-ensembles de D f où f est croissante ou décroissante.

2- Soit g : R→ R la fonction définie par g(x) = 2xn + 1, où n est une entier positif. Pour quels valeurs

de n la fonction g est-elle paire? Pour quels valeurs de n est-elle croissante?

3- Soit h : R → R la fonction définie par h(x) = x − [x] où [x] désigne la partie entière de x. Montrer

que h est périodique et déterminer sa période.

3.2 Limite d’une fonction

Les limites jouent un rôle central dans la description du comportement d’une fonction réelle. Intuitive-

ment la limite d’une fonction f en un point x0 décrit le comportement de f (x) lorsque x s’approche de

x0.
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3.2.1 Définitions

Soit f : I → R une fonction définie sur un intervalle I ⊂ R et soit x0 ∈ R un point de I ou une extrémité

de I.

Définition 9. On dit que ` ∈ R est la limite de f en x0 (ou que f admet ` comme limite en x0) et on note

lim
x→x0

f (x) = `, si

∀ε > 0 ∃δ > 0 |x− x0| < δ =⇒ | f (x)− `| < ε.

x

y

x0

`
ε

ε

δ

Exemple 9.

— la fonction partie entière E n’a pas de limite aux points x0 ∈ Z.

x

y

1

0 1

E(x)

x0 ∈ Z

Définition 10.

— On dit que f a pour limite +∞ en x0, et on note lim
x→x0

f (x) = +∞, si

∀A > 0 ∃δ > 0 ∀x ∈ I |x− x0| < δ =⇒ f (x) > A.
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x

y

A

x0 − δ
x0 + δ

x0

— On dit que f a pour limite −∞ en x0, et on note lim
x→x0

f (x) = −∞, si

∀A > 0 ∃δ > 0 ∀x ∈ I |x− x0| < δ =⇒ f (x) < −A.

— Soit ` ∈ R. On dit que f a pour limite ` en +∞, et on note lim
x→+∞

f (x) = `, si

∀ε > 0 ∃B > 0 ∀x ∈ I x > B =⇒ | f (x)− `| < ε.

— Soit ` ∈ R. On dit que f a pour limite ` en −∞, et on note lim
x→−∞

f (x) = `, si

∀ε > 0 ∃B > 0 ∀x ∈ I x < −B =⇒ | f (x)− `| < ε.

— On dit que f a pour limite +∞ en +∞, et on note lim
x→+∞

f (x) = +∞, si

∀A > 0 ∃B > 0 ∀x ∈ I x > B =⇒ f (x) > A.

— On dit que f a pour limite −∞ en +∞, et on note lim
x→+∞

f (x) = −∞, si

∀A > 0 ∃B > 0 ∀x ∈ I x > B =⇒ f (x) < −A.

— On dit que f a pour limite +∞ en −∞, et on note lim
x→−∞

f (x) = +∞, si

∀A > 0 ∃B > 0 ∀x ∈ I x < −B =⇒ f (x) > A.

— On dit que f a pour limite −∞ en −∞, et on note lim
x→−∞

f (x) = −∞, si

∀A > 0 ∃B > 0 ∀x ∈ I x < −B =⇒ f (x) < −A.

Limite à gauche et à droite

Soit f une fonction définie sur un ensemble de la forme ]a, x0[∪]x0, b[ et soit ` ∈ R.

Définition 11.

— On dit que ` est la limite à droite en x0 de f , et on note lim
x→x+0

f (x) = `, si

∀ε > 0 ∃δ > 0 0 < x− x0 < δ =⇒ | f (x)− `| < ε.
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— On dit que ` est la limite à gauche en x0 de f , et on note lim
x→x−0

f (x) = `, si

∀ε > 0 ∃δ > 0 0 < x0 − x < δ =⇒ | f (x)− `| < ε.

Exemple 10. Considérons la fonction partie entière au point x = 2 :

— comme pour tout x ∈]2, 3[ on a E(x) = 2, on a lim
2+

E = 2 ,

— comme pour tout x ∈ [1, 2[ on a E(x) = 1, on a lim
2−

E = 1.

Ces deux limites étant différentes, on en déduit que E n’a pas de limite en 2.

x

y

0

E(x)

2

limite à gauche lim2− E

limite à droite lim2+ E

3.3 Propriétés

Proposition 1. Si une fonction admet une limite, alors cette limite est unique.

Démonstration. La démonstration est similaire à celle de l’unicité de la limite pour les suites. Elle est laissée

comme exercice.

Soient deux fonctions f et g. On suppose que x0 est un réel, ou que x0 = ±∞.

Proposition 2. Si lim
x→x0

f (x) = ` ∈ R et lim
x→x0

g(x) = `′ ∈ R, alors :

— lim
x→x0

(λ · f )(x) = λ · ` pour tout λ ∈ R

— lim
x→x0

( f + g)(x) = `+ `′

— lim
x→x0

( f × g)(x) = `× `′

— si ` 6= 0, alors lim
x→x0

1
f (x)

=
1
`

De plus, si lim
x→x0

f (x) = +∞ (ou −∞) alors lim
x→x0

1
f (x)

= 0.

Démonstration. Ces propriétés se démontrent de la même manière que leurs analogues pour les suites.

Montrons par exemple que si f tend en x0 vers une limite ` non nulle, alors
1
f

est bien définie dans un

voisinage de x0 et tend vers
1
`

.

Supposons ` > 0, le cas ` < 0 se montrerait de la même manière. Montrons tout d’abord que
1
f

est bien

définie et est bornée dans un voisinage de x0 contenu dans I. Par hypothèse

∀ε′ > 0 ∃δ > 0 ∀x ∈ I x0 − δ < x < x0 + δ =⇒ `− ε′ < f (x) < `+ ε′.

36



A. ZOGLATA. ZOGLAT FSR, SMIA-ANALYSE I CHAPITRE 3

Si on choisit ε′ tel que 0 < ε′ < `/2, alors on voit qu’il existe un intervalle J = I∩ ]x0 − δ, x0 + δ[ tel que

pour tout x dans J, f (x) > `/2 > 0, c’est-à-dire, en posant M = `/2 :

∀x ∈ J 0 <
1

f (x)
< M.

Fixons à présent ε > 0. Pour tout x ∈ J, on a∣∣∣∣ 1
f (x)

− 1
`

∣∣∣∣ = |`− f (x)|
f (x)`

<
M
`
|`− f (x)| .

Donc, si dans la définition précédente de la limite de f en x0 on choisit ε′ =
`ε

M
, alors on trouve qu’il existe

un δ > 0 tel que

∀x ∈ J x0 − δ < x < x0 + δ =⇒
∣∣∣∣ 1

f (x)
− 1

`

∣∣∣∣ < M
`
|`− f (x)| < M

`
ε′ = ε.

Exemple 11. On a les limites classiques suivantes pour tout n ≥ 1 :

— lim
x→+∞

xn = +∞ et lim
x→−∞

xn =

+∞ si n est pair

−∞ si n est impair

— lim
x→+∞

(
1
xn

)
= 0 et lim

x→−∞

(
1
xn

)
= 0.

Exemple 12. Soient P(x) = anxn + an−1xn−1 + . . . + a1x + a0, avec an > 0, un polynôme de degré n et

Q(x) = bmxm + bm−1xm−1 + . . . + b1x + b0, avec bm > 0, un polynôme de degré m.

lim
x→+∞

P(x)
Q(x)

=


+∞ si n > m
an

bm
si n = m

0 si n < m

Proposition 3. Si lim
x→x0

f (x) = ` et lim
x→`

g(x) = `′, alors lim
x→x0

g ◦ f (x) = `′.

Exemple 13. Soit x 7→ u(x) une fonction, x0 ∈ R tel que u(x) → 2 lorsque x → x0. Posons f (x) =√
1 +

1
u(x)2 + ln u(x). Si elle existe, quelle est la limite de f en x0 ?

— Tout d’abord comme u(x)→ 2 alors u(x)2 → 4 donc
1

u(x)2 →
1
4

(lorsque x → x0).

— De même comme u(x) → 2 alors, dans un voisinage de x0, u(x) > 0 donc ln u(x) est bien définie

dans ce voisinage et de plus ln u(x)→ ln 2 (lorsque x → x0).

— Cela entraîne que 1 +
1

u(x)2 + ln u(x) → 1 + 1
4 + ln 2 lorsque x → x0. En particulier 1 +

1
u(x)2 +

ln u(x) ≥ 0 dans un voisinage de x0 donc f (x) est bien définie dans un voisinage de x0.

— Et par composition avec la racine carrée alors f (x) a bien une limite en x0 et limx→x0 f (x) =√
1 +

1
4
+ ln 2.
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Comme pour les limites des suites réelles, les opérations sur les limites ne s’appliquent qu’en l’absence

des formes indéterminées. Rappelons qu’on appelle formes indéterminées les formes suivantes :

∞−∞ 0×∞
∞
∞

0
0

.

Proposition 4.

— Si f ≤ g et si lim
x→x0

f = ` ∈ R et lim
x→x0

g = `′ ∈ R, alors ` ≤ `′.

— Si f ≤ g et si lim
x→x0

f = +∞, alors lim
x→x0

g = +∞.

— Si f ≤ g et si lim
x→x0

g = −∞, alors lim
x→x0

f = −∞.

— Si f ≤ g ≤ h et si lim
x→x0

f = lim
x→x0

h = ` ∈ R, alors lim
x→x0

g = `.

Exercices

1. En utilisant la définition de la limite, montrer que lim
x→2

(3x + 1) = 7.

2. Montrer que si f admet une limite finie en x0 alors il existe δ > 0 tel que f soit bornée sur ]x0− δ, x0 +

δ[.

3. Déterminer, si ça existe, lim
x→0

2x2 − x− 2
3x2 + 2x + 2

et lim
x→∞

2x2 − x− 2
3x2 + 2x + 2

4. Déterminer, si ça existe, la limite de sin
(

1
x

)
et la limite de cos x√

x en ∞.

5. Déterminer, si ça existe, lim
x→0

√
1 + x−

√
1 + x2

x
et lim

x→2

x2 − 4
x2 − 3x + 2

.

3.4 Continuité en un point

3.4.1 Définition

Soit I un intervalle de R et f : I → R une fonction.

Définition 12.

— On dit que f est continue en un point x0 ∈ I si lim
x→x0

f (x) = f (x0).

— On dit que f est continue sur I si f est continue en tout point de I.

x

y

x0

f (x0)
ε

ε

δ
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Intuitivement, une fonction est continue sur un intervalle, si son graphe est constitué d’un seul morceau.

Voici des exemples de fonctions qui ne sont pas continues en un point x0 :

x

y

x0 x

y

x0 x

y

x0

Exemple 14. Les fonctions suivantes sont des exemples de fonctions continues :

— une fonction constante sur un intervalle,

— la fonction racine carrée x 7→
√

x sur [0,+∞[,

— les fonctions sin et cos sur R,

— la fonction valeur absolue x 7→ |x| sur R,

— la fonction exp sur R,

— la fonction ln sur ]0,+∞[.

Par contre, la fonction partie entière E n’est pas continue aux points x0 ∈ Z, puisqu’elle n’admet pas de

limite en ces points. Pour x0 ∈ R \Z, elle est continue en x0.

Remarque 3. D’après la définition de la continuité, une fonction f est continue en x0 ∈ I si, et seulement

si, ∀ε > 0 ∃δ > 0 ∀x ∈ I |x− x0| < δ =⇒ | f (x)− f (x0)| < ε.

Exemple 15. Soient n ∈ N∗ un entier fixé et f la fonction définie sur R par f (x) = xn. La fonction f est

continue sur R.

Il suffit de montrer que f est continue en tout point x0 ∈ R. Soit x0 ∈ R un point donné et ε > 0.

On a |xn − xn
0 | = |x− x0||

n−1

∑
k=0

xk
0xn−k| ≤ |x− x0|

n−1

∑
k=0
|x0|k|x|n−k ≤ |x− x0|(|x0|+ |x|)n−1. Ainsi pour tout

x ∈ [x0 − 1, x0 + 1] on a |x| ≤ |x0|+ 1. D’où x ∈ [x0 − 1, x0 + 1] =⇒ |xn − xn
0 | ≤ |x − x0|(2|x0|+ 1)n−1.

Pour δ = min(1,
ε

(|x0|+ 1)n ), on a bien |x− x0| < δ =⇒ |xn − xn
0 | < ε.

3.4.2 Propriétés

La continuité assure par exemple que si la fonction n’est pas nulle en un point (qui est une propriété

ponctuelle) alors elle n’est pas nulle autour de ce point (propriété locale). Voici l’énoncé :

Lemme 1. Soit f : I → R une fonction définie sur un intervalle I et x0 un point de I. Si f est continue en x0

et si f (x0) 6= 0, alors il existe δ > 0 tel que

∀x ∈]x0 − δ, x0 + δ[ f (x) 6= 0.
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x0

f (x0)

x0 − δ x0 + δ

Démonstration. Pour ε =
| f (x0)|

2
il existe δ > 0 tel que pour tout x ∈ I∩]x0− δ, x0 + δ[ on a | f (x)− f (x0)| <

ε. Or on a || f (x)| − | f (x0)|| < | f (x) − f (x0)| < ε, pour tout x ∈ I∩]x0 − δ, x0 + δ[. On en déduit que

| f (x)| > | f (x0)| − ε =
| f (x0)|

2
> 0, pour tout x ∈ I∩]x0 − δ, x0 + δ[.

La continuité se comporte bien avec les opérations élémentaires. Les propositions suivantes sont des

conséquences immédiates des propositions analogues sur les limites.

Proposition 5. Soient f , g : I → R deux fonctions continues en un point x0 ∈ I. Alors

— λ · f est continue en x0 (pour tout λ ∈ R),

— f + g et f × g sont continues en x0,

— si f (x0) 6= 0, alors
1
f
est continue en x0.

Exemple 16. La proposition précédente permet de vérifier que d’autres fonctions usuelles sont continues :

— les fonctions définie sur R par x 7→ an xn où n ∈N∗ et an ∈ R.

— les fonctions polynômes définies sur R par x 7→ P(x) =
n

∑
k=0

ak xk,

— les fractions rationnelles x 7→ P(x)
Q(x) , où P et Q sont des fonctions polynômes, sont continues sur tout

intervalle où le polynôme Q(x) ne s’annule pas.

Proposition 6. Soient f : I → R et g : J → R deux fonctions telles que f (I) ⊂ J. Si f est continue en un point

x0 ∈ I et si g est continue en f (x0), alors g ◦ f est continue en x0.

3.4.3 Prolongement par continuité

Définition 13. Soit I un intervalle, x0 un point de I et f : I \ {x0} → R une fonction. On dit que f est

prolongeable par continuité en x0 si f admet une limite finie en x0. La fonction f̃ : I → R définie pour tout x ∈ I

par f̃ (x) =

 f (x) si x 6= x0

` si x = x0.
est continue en x0 et on l’appelle le prolongement par continuité de f en x0.
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x

y

x0

`

Dans la pratique, on continuera souvent à noter f à la place de f̃ .

Exemple 17. Considérons la fonction f définie sur R∗ par f (x) = x sin
(

1
x

)
. Voyons si f admet un prolon-

gement par continuité en 0?

Comme pour tout x ∈ R∗ on a | f (x)| ≤ |x|, on en déduit que f tend vers 0 en 0. Elle est donc prolongeable

par continuité en 0 et son prolongement est la fonction f̃ définie sur R tout entier par :

f̃ (x) =

x sin
(

1
x

)
si x 6= 0

0 si x = 0.

3.4.4 Suites et continuité

Proposition 7. Soit f : I → R une fonction et x0 un point de I. Alors

f est continue en x0 ⇐⇒ pour toute suite (un) qui converge vers x0, la suite ( f (un)) converge vers f (x0)

Démonstration. =⇒ On suppose que f est continue en x0 et que (un) est une suite qui converge vers x0 et on

veut montrer que ( f (un)) converge vers f (x0).

Soit ε > 0. Comme f est continue en x0, il existe un δ > 0 tel que

∀x ∈ I |x− x0| < δ =⇒ | f (x)− f (x0)| < ε.

Pour ce δ, comme (un) converge vers x0, il existe N ∈N tel que

∀n ∈N n ≥ N =⇒ |un − x0| < δ.

On en déduit que, pour tout n ≥ N, comme |un − x0| < δ, on a | f (un)− f (x0)| < ε et donc ( f (un))

converge vers f (x0).

⇐= On va montrer la contraposée : supposons que f n’est pas continue en x0 et montrons qu’il existe une

suite (un) qui converge vers x0 et telle que ( f (un)) ne converge pas vers f (x0).

Par hypothèse, comme f n’est pas continue en x0 :

∃ε0 > 0 ∀n ∈N∗ ∃xn ∈ I tel que |xn − x0| <
1
n

et | f (xn)− f (x0)| > ε0.

Ainsi la suite (xn)n converge vers x0 mais la suite (un = f (xn))n ne converge pas vers f (x0).
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Remarque. Notons que lorsqu’une suite récurrente, définie à partir d’une fonction f continue par un+1 = f (un),

converge alors sa limite ` vérifie la relation f (`) = `.

Exercices

1. Déterminer les réels a et b pour que la fonction f (x) =

x + a si x < 1

1 + x + bx2 si 1 ≤ x
soit continue sur R.

2. Soit g une fonction continue telle que g(x0) = 1. Montrer qu’il existe δ > 0 tel que

x ∈]x0 − δ, x0 + δ[=⇒ g(x) >
1
2

.

3. Étudier la continuité de h : R→ R définie par h(x) = sin x cos
1
x

si x 6= 0 et h(0) = 0.

4. La fonction définie par g(x) =
x3 + 8
|x + 2| admet-elle un prolongement par continuité en −2?

5. Soit la suite définie par u0 > 0 et un+1 =
√

un. Montrer que (un) est convergente et calculer sa limite.

3.5 Continuité sur un intervalle

3.5.1 Le théorème des valeurs intermédiaires

Théorème 1. [Théorème des valeurs intermédiaires] Soit f une fonction réelle continue sur [a, b]. Pour tout réel

y compris entre f (a) et f (b), il existe c ∈ [a, b] tel que f (c) = y.

x

y

a

f (a)

b

f (b)

y

c1 c2 c3

x

y

a
f (a)

b

f (b)

y

Démonstration. Remarquons que si f (a) = f (b) alors il n’y a rien à démontrer puisque dans ce cas y = f (a).

1. Supposons que f (a) < f (b) et soit y ∈] f (a), f (b)[ fixé. On considère l’ensemble

A =
{

x ∈ [a, b] | f (x) ≤ y
}

.

Puisque A est un ensemble non vide (a ∈ A) majoré (A ⊂ [a, b]), il admet une borne supérieure. Soit

c = sup A. Nous allons montrer que y = f (c).
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x

y

a

f (a)

b

f (b)

y

c = sup(A)A

Comme c = sup A, il existe une suite (un)n∈N ⊂ A telle que (un) converge vers c. Pour tout

n ∈ N, un ∈ A et donc f (un) ≤ y. Et puisque f est continue sur [a, b], par passage à la limite on a

f (c) = lim
n→∞

f (un) ≤ y.

Montrons à présent que f (c) ≥ y. Cela est évident si c = b puisque f (b) ≥ y. Supposons donc

que c < b. Pour tout x ∈]c, b], comme x /∈ A, on a f (x) > y. Comme c = inf]c, b], il existe donc

une suite (vn)n ⊂]c, b] telle que pour tout n ∈ N f (vn) > y et lim
n→∞

vn = c. On en déduit que

f (c) = limn→∞ f (vn) ≥ y.

2. Si f (a) > f (b) et y ∈] f (b), f (a)[ est un réel fixé, on considère l’ensemble

B =
{

x ∈ [a, b] | f (x) ≥ y
}

.

L’ensemble B est non vide ( f (a) ∈ B) majoré (par b) donc admet une borne supérieure que nous

notons c. Il existe donc une suite (un)n ⊂ B qui converge vers c. Comme f est continue sur [a, b]

on a f (c) = lim
n→∞

f (un) ≥ y.

Montrons que f (c) ≤ y. Cela est évident si c = b, car y ≥ f (b) = f (c). Supposons que c < b. Pour

tout x ∈]c, b], on a f (x) < y. Comme c = inf]c, b], il existe une suite (vn)n ⊂]c, b] qui converge vers

c et telle que, pour tout n ∈N, f (vn) ≤ y. Par passage à la limite on obtient f (c) = lim
n→∞

f (un) ≤ y.

3.5.2 Applications du théorème des valeurs intermédiaires

Voici la version la plus utilisée du théorème des valeurs intermédiaires.

Corollaire 1. Soit f une fonction réelle continue sur l’intervalle [a, b]. Si f (a)× f (b) < 0, alors il existe c ∈]a, b[

tel que f (c) = 0.
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x

y

a

f (a) < 0

b

f (b) > 0

c

Démonstration. Il s’agit d’une application directe du théorème des valeurs intermédiaires avec y = 0. L’hy-

pothèse f (a)× f (b) < 0 signifiant que f (a) < f (b) ou f (b) < f (a).

Exemple 18. Tout polynôme de degré impair possède au moins une racine réelle.

x

y
GP

En effet, un tel polynôme s’écrit P(x) = anxn + . . . + a1x + a0 avec n un entier impair. On peut supposer

que le coefficient an est strictement positif. Alors on a lim
−∞

P = −∞ et lim
+∞

P = +∞. En particulier, il existe

deux réels a et b tels que f (a) < 0 et f (b) > 0 et on conclut grâce au corollaire précédent.

Corollaire 2. Soit f une fonction réelle continue sur un intervalle I. Alors f (I) est un intervalle.

Attention ! Le résultat ci-dessus ne signifie pas que si f est une fonction continue sur l’intervalle [a, b]

alors f ([a, b]) = [ f (a), f (b)].
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x

y

a

f (b)

b

f (a)

f ([a, b])

Démonstration. Soient y1, y2 ∈ f (I), y1 ≤ y2. Montrons que si y ∈ [y1, y2], alors y ∈ f (I). Par hypothèse,

il existe x1, x2 ∈ I tels que y1 = f (x1), y2 = f (x2) et donc y est compris entre f (x1) et f (x2). D’après le

théorème des valeurs intermédiaires, comme f est continue, il existe donc x ∈ I tel que y = f (x), et ainsi

y ∈ f (I).

3.5.3 Fonctions continues sur un segment [a, b]

Nous utiliserons le mot segment pour désigner un intervalle fermé et borné de la forme [a, b] où a et b

sont deux réels tels que a ≤ b.

Proposition 8. L’image d’un segment [a, b] par une fonction f continue est un ensemble borné.

Démonstration. Nous allons montrer que f ([a, b]) est un ensemble majoré. La preuve que c’est une ensemble

minoré est laissée comme exercice.

Supposons que f ([a, b]) ne soit pas majoré. Donc pour tout n ∈ N∗ il existerait un yn ∈ f ([a, b]) tel que

yn ≥ n. On en déduit que

∀n ∈N∗ ∃xn ∈ [a, b] tel que f (xn) = yn ≥ n et donc lim
n→n

f (xn) = ∞.

La suite (xn)n ⊂ [a, b] est bornée, elle admet donc une sous-suite (xnk )nk qui converge vers ` ∈ [a, b].

Comme f est continue sur [a, b], on a lim
nk→∞

f (xnk ) = f (`). Cela est en contradiction avec lim
n→n

f (xn) =

∞.

Théorème 2. Soit f une fonction réelle continue sur un segment [a, b]. Alors il existe deux réels m et M tels que

f ([a, b]) = [m, M].

Autrement dit, l’image d’un intervalle fermé par une fonction continue est un intervalle fermé.
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x

y

a b

m

M

Remarque 4. Comme on sait déjà par le théorème des valeurs intermédiaires que f ([a, b]) est un intervalle,

le théorème précédent signifie exactement que

Si f est continue sur [a, b] alors f est bornée sur [a, b] et elle atteint ses bornes.

Donc m est le minimum de la fonction sur l’intervalle [a, b] alors que M est le maximum.

Démonstration. D’après la proposition ci-dessus f ([a, b]) est un ensemble borné, il existe donc deux réels m

et M tels que m = inf f ([a, b]) et M = sup f ([a, b]). Nous allons montrer que m ∈ f ([a, b]). La preuve que

M ∈ f ([a, b]) est laissée en exercice.

Puisque m = inf f ([a, b]), il existe une suite (yn)n ⊂ f ([a, b]) telle que lim
n→n

yn) = m. Soit (xn)n ⊂ [a, b]

une suite telle que, pour tout n ∈ N, f (xn) = yn. La suite (xn)n est bornée, donc admet une sous-suite

(xnk )nk qui converge vers ` ∈ [a, b]. Comme f est continue, on a lim
nk→∞

f (xnk ) = f (l). L’unicité de la limite

implique que m = lim
n→n

yn = lim
n→n

f (xnk ) = f (l).

Exercices

1. Soit P(x) = x5 − 3x− 2 un polynôme sur R. Montrer qu’il existe x0 ∈]1, 2[ tel que P(x0) = 0

2. Montrer qu’il existe x > 0 tel que 2x + 3x = 5x.

3. Soit f : R→ R une fonction continue. Tracer son graphe si f (R) = [0, 1], et si f (R) =]0, 1[.

4. Soient f et g deux fonctions continues sur [0, 1] telles que ∀x ∈ [0, 1] f (x) < g(x). Montrer qu’il existe

m > 0 tel que ∀x ∈ [0, 1] f (x) + m < g(x). Ce résultat est-il vrai si on remplace [0, 1] par R?

5. Soit f une fonction continue sur [1, 5]. On suppose que les seules solutions à l’équation f (x) = 6 sont

x = 1 et x = 4. Montrer que si f (2) = 8 alors f (3) > 6.

3.5.4 Fonctions monotones et bijections

Pour tout ensemble E ⊂ R on notera IdE la fonction identité sur E définie par : x 7→ IdE(x) = x. Rap-

pelons que si f : E → F est une fonction bijective alors il existe une unique application g : F → E telle

que g ◦ f = IdE et f ◦ g = IdFLa fonction g est la bijection réciproque de f et se note f−1. Dans un repère

orthonormé les graphes des fonctions f et f−1 sont symétriques par rapport à la première bissectrice.
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x

y f

f−1

y = x

Voici un résultat important qui permet d’obtenir des fonctions bijectives.

Théorème 3. [Théorème de la bijection] Soit f : I → R une fonction définie sur un intervalle I de R. Si f est

continue et strictement monotone sur I, alors

1. f établit une bijection de l’intervalle I dans l’intervalle image J = f (I),

2. la fonction réciproque f−1 : J → I est continue et strictement monotone sur J et elle a le même sens de

variation que f .

x

y

f

I

J = f (I)

f−1 y = x

En pratique, si on veut appliquer ce théorème à une fonction continue f : I → R, on découpe l’intervalle

I en sous-intervalles sur lesquels la fonction f est strictement monotone.

Exemple 19. Considérons la fonction carrée définie sur R par f (x) = x2. La fonction f n’est pas stricte-

ment monotone sur R, d’ailleurs, on voit bien qu’elle n’est pas injective. Cependant, en restreignant son

ensemble de définition à ]−∞, 0] d’une part et à [0,+∞[ d’autre part, on définit deux fonctions strictement

monotones (les ensembles de départ sont différents) :

f1 :

 ]−∞, 0] −→ [0,+∞[

x 7−→ x2
et f2 :

 [0,+∞[−→ [0,+∞[

x 7−→ x2
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On remarque que f (]−∞, 0]) = f ([0,+∞[) = [0,+∞[. D’après le théorème précédent, les fonctions f1 et

f2 sont des bijections. Déterminons leurs fonctions réciproques f−1
1 : [0,+∞[→]−∞, 0] et f−1

2 : [0,+∞[→

[0,+∞[. Soient deux réels x et y tels que y ≥ 0. Alors

y = f (x)⇔ y = x2

⇔ x =
√

y ou x = −√y,

c’est-à-dire y admet deux antécédents, l’un dans [0,+∞[ et l’autre dans ]−∞, 0]. Et donc f−1
1 (y) = −√y et

f−1
2 (y) =

√
y. On retrouve bien que chacune des deux fonctions f1 et f2 a le même sens de variation que sa

réciproque.

x

y

f1 f2

√
y

y

−√y

y = x

f−1
1

f−1
2

On remarque que la courbe totale en pointillée (à la fois la partie bleue et la verte), qui est l’image du

graphe de f par la symétrie par rapport à la première bissectrice, ne peut pas être le graphe d’une fonction :

c’est une autre manière de voir que f n’est pas bijective.

Généralisons l’exemple précédent.

Exemple 20. Soit n ≥ 1. Soit f : [0,+∞[→ [0,+∞[ définie par f (x) = xn. Alors f est continue et strictement

croissante. Comme lim+∞ f = +∞ alors f est une bijection. Sa bijection réciproque f−1 est notée : x 7→ x
1
n

(ou aussi x 7→ n
√

x) : c’est la fonction racine n-ième. Elle est continue et strictement croissante.

3.5.5 Démonstration

On établit d’abord un lemme utile à la démonstration du théorème précédent.

Lemme 2. Soit f : I → R une fonction définie sur un intervalle I de R. Si f est strictement monotone sur I,

alors f est injective sur I.

Démonstration. Soient x, x′ ∈ I tels que f (x) = f (x′). Montrons que x = x′. Si on avait x < x′, alors on

aurait nécessairement f (x) < f (x′) ou f (x) > f (x′), suivant que f est strictement croissante, ou strictement
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décroissante. Comme c’est impossible, on en déduit que x ≥ x′. En échangeant les rôles de x et de x′, on

montre de même que x ≤ x′. On en conclut que x = x′ et donc que f est injective.

Démonstration du théorème. 1. D’après le lemme précédent, f est injective sur I. En restreignant son en-

semble d’arrivée à son image J = f (I), on obtient que f établit une bijection de I dans J. Comme f

est continue, par le théorème des valeurs intermédiaires, l’ensemble J est un intervalle.

2. Supposons pour fixer les idées que f est strictement croissante.

(a) Montrons que f−1 est strictement croissante sur J. Soient y, y′ ∈ J tels que y < y′. Notons x =

f−1(y) ∈ I et x′ = f−1(y′) ∈ I. Alors y = f (x), y′ = f (x′) et donc

y < y′ =⇒ f (x) < f (x′)

=⇒ x < x′ (car f est strictement croissante)

=⇒ f−1(y) < f−1(y′),

c’est-à-dire f−1 est strictement croissante sur J.

(b) Montrons que f−1 est continue sur J. On se limite au cas où I est de la forme ]a, b[, les autres cas se

montrent de la même manière. Soit y0 ∈ J. On note x0 = f−1(y0) ∈ I. Soit ε > 0. On peut toujours

supposer que [x0 − ε, x0 + ε] ⊂ I. On cherche un réel δ > 0 tel que pour tout y ∈ J on ait

y0 − δ < y < y0 + δ =⇒ f−1(y0)− ε < f−1(y) < f−1(y0) + ε

c’est-à-dire tel que pour tout x ∈ I on ait

y0 − δ < f (x) < y0 + δ =⇒ f−1(y0)− ε < x < f−1(y0) + ε.

Or, comme f est strictement croissante, on a pour tout x ∈ I

f (x0 − ε) < f (x) < f (x0 + ε) =⇒ x0 − ε < x < x0 + ε

=⇒ f−1(y0)− ε < x < f−1(y0) + ε.

Comme f (x0 − ε) < y0 < f (x0 + ε), on peut choisir le réel δ > 0 tel que

f (x0 − ε) < y0 − δ et f (x0 + ε) > y0 + δ

et on a bien alors pour tout x ∈ I

y0 − δ < f (x) < y0 + δ =⇒ f (x0 − ε) < f (x) < f (x0 + ε)

=⇒ f−1(y0)− ε < x < f−1(y0) + ε.

La fonction f−1 est donc continue sur J.
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Exercices

1. Montrer que chacune des hypothèses « continue » et « strictement monotone » est nécessaire dans

l’énoncé du théorème.

2. Soit f : R→ R définie par f (x) = x3 + x. Montrer que f est bijective, tracer le graphe de f et de f−1.

3. Soit n ≥ 1. Montrer que f (x) = 1 + x + x2 + . . . + xn définit une bijection de l’intervalle [0, 1] vers un

intervalle à préciser.

4. Existe-t-il une fonction continue : f : [0, 1[→]0, 1[ qui soit bijective? f : [0, 1[→]0, 1[ qui soit injective?

f :]0, 1[→ [0, 1] qui soit surjective?

5. Pour y ∈ R on considère l’équation x + exp x = y. Montrer qu’il existe une unique solution y. Com-

ment varie y en fonction de x ? Comme varie x en fonction de y ?

3.5.6 Continuité uniforme

Définition 14. Soit f : D ⊂ R −→ R une fonction. On dit que f est uniformément continue sur D si

∀ε > 0 ∃δ > 0 ∀x ∈ D ∀x′ ∈ D |x− x′| < δ =⇒ | f (x)− f (x′)| < ε.

Remarque 5.

— Dans cette écriture logique, α dépend de ε, mais ne dépend ni de x ni de x′. d’où l’origine du mot

uniforme.

— Il est évident qu’une fonction uniformément continue sur D est continue sur D.

— Une fonction f : D ⊂ R −→ R est dite lipschitzienne s’il existe une constante k telle que

∀x ∈ D ∀x′ ∈ D | f (x)− f (x′)| < k |x− x′|.

Il est clair qu’une fonction lipschitzienne est uniformément continue.

Exemple 21. La fonction f définie sur ]0, ∞[ par f (x) =
1√
x

n’est pas uniformément continue. En effet,

supposons qu’elle l’est et soit ε > 0 un réel fixé. Il existe donc un δ > 0 tel que

|x− x′| < δ =⇒
∣∣∣ 1√

x
− 1
√

x′
∣∣∣ < ε.

Pour x′ = 2x, on aurait alors, |x| < δ =⇒
∣∣∣√2− 1√

2x

∣∣∣ < ε. Or ceci est impossible car lim
x→0

√
2− 1√

2x
= ∞.

En général, il n’y a pas une équivalence entre la continuité et la continuité uniforme d’une fonction. Le

théorème suivant précise les conditions pour une telle équivalence.

Théorème 4. [Théorème de Heine] Soient a, b ∈ R tels que a < b et f une fonction réelle continue sur [a, b].

Alors f est uniformément continue sur [a, b].
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Démonstration. On suppose que f n’est pas uniformément continue, donc

∃ε > 0 ∀n ∈N∗ ∃xn, yn ∈ [a, b] |xn − x′n| <
1
n

mais | f (xn)− f (x′n)| > ε.

La suite (xn)n ⊂ [a, b] est bornée, donc admet une sous-suite (xnk )nk qui converge vers x ∈ [a, b]. Comme f

est continue, on a lim
nk→∞

f (xnk ) = f (x).

D’autre part on a |x′nk
− x| ≤ |xnk − x| + |x′nk

− xnk | ≤ |xnk − x| + 1
nk

. On en déduit que la sous-suite

(x′nk
)nk qui converge vers x ∈ [a, b] et par conséquent on a lim

nk→∞
f (x′nk

) = f (x).

Nous avons ainsi deux sous-suites (xnk )nk et (x′nk
)nk telles que | f (xnk )− f (x′nk

)| > ε pour tout nk ∈ N∗

et lim
nk→∞

f (x′nk
) = lim

nk→∞
f (x′nk

). Ceci est évidemment impossible.
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