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Chapitre 1

SYSTEMES LINEAIRES-METHODE DU
PIVOT

INTRODUCTION
De nombreux problèmes mathématiques peuvent être traduits par des équations algèbriques
et notamment par des systèmes linéaires. L’objet du chapitre est la présentation de la méthode
du pivot dans un corps commutatif K, appelée aussi méthode d’élimination de Gauss , et qui
permet la résolution de tels systèmes. Dans ce chapitre, le corps K désigne Q, R, ouC.

1. Systèmes linéaires

1.1. Définition

Définition 1

Un système linéaire est la donnée d’un nombre fini d’équations linéaires telles que :

(1)



a11x1 +a12x2 +a13x3 + ·· · +a1nxn = b1 (← équation 1)
a21x1 +a22x2 +a23x3 + ·· · +a2nxn = b2 (← équation 2)

...
...

...
... = ...

ai1x1 +ai2x2 +ai3x3 + ·· · +ainxn = bi (← équation i)
...

...
...

... = ...
ap1x1 +ap2x2 +ap3x3 + ·· · +apnxn = bp (← équation p)

Les éléments x1, x2, ....., xn sont les inconnues du système (1).
Les termes ai j ,bi pour 1É i É p et 1É j É n sont donnés dans le corps IK et s’appellent
respectivement les coefficients et les seconds membres du système (1).

Résoudre le système (1), c’est déterminer l’ensemble S de toutes les solutions . Nous allons
montrer que si S n’est pas vide, il est soit réduit à un singleton, soit c’est un ensemble infini.
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1.2. Exemples

Exemple 1

En se plaçant dans R , nous cherchons à résoudre le système suivant :
2x −y +4z = −4 (L1)

3x 2y −3z = 17 (L2)

5x −3y +8z = −10 (L3)

Notons L1,L2,L3 les trois lignes de ce système.Remplaçons la ligne L2 par L′
2 = 2L2−3L1

puis L3 par L′
3 = 2L3 −5L1 , nous obtenons le système :

2x −y +4z = −4 (L1)

7y −18z = 46 (L′
2)

−y −4z = 0 (L′
3)

Remplaçons la nouvelle ligne L′
3 par L"

3 = 7L′
3 +L′

2 , on a alors :
2x −y +4z = −4 (L1)

7y −18z = 46 (L′
2)

−46z = 46 (L"
3)

Nous obtenons la solution du système en remontant les lignes : z = −1, y = 4, x = 2 et
S = {(2,4,−1)}

Exemple 2

Soit le système : 
2x −y +z = 4 (L1)

3x 2y −2z = 5 (L2)

−x +y −z = 2 (L3)

Notons L1,L2,L3 les trois lignes de ce système.Remplaçons la ligne L2 par L′
2 = 2L2−3L1

puis L3 par L′
3 = 2L3 +L1 , nous obtenons le système :

2x −y +z = 4 (L1)

7y −7z = −2 (L′
2)

+y −z = 8 (L′
3)

Remplaçons la nouvelle ligne L′
3 par L"

3 = 7L′
3 +L′

2 , on a alors :
2x −y +z = 4 (L1)

7y −7z = −2 (L′
2)

0 = 58 (L"
3)

ce qui est impossible . Par conséquent le système proposé n’a pas de solution soit S =;.
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Exemple 3

Déterminons toutes les solutions du système à quatre inconnues et à trois équations :


x −y +z +t = 2 (L1)

2x −y +2z −t = 3 (L2)

3x +y +z −2t = 5 (L3)

En procédant de façon analogue aux exemples 1 et 2 , nous pouvons "éliminer" les coeffi-
cients de la variable x des lignes L2 et L3 , ce qui donne le système :

x −y +z +t = 2 (L1)

y −3t = −1 (L′
2)

+4y −2z −5t = −1 (L′
3)

Ensuite nous remplaçons la ligne L′
3 par L"

3 = L′
3 −4L′

2 , d’où le système final :
x −y +z +t = 2 (L1)

y −3t = −1 (L′
2)

−2z +7t = 3 (L"
3)

Ainsi le système admet une infinité de solutions ( une droite affine dans R3) qui s’écrivent
sous forme paramètrique , le paramètre étant la variable libre t :

x = −3
2 t+ 5

2
y= 3t−1
z = 7

2 t+ 5
2

d’où S = {(−3
2 t+ 5

2 ,3t−1, 7
2 t+ 5

2

)
/ t ∈R}

.

A travers les exemples traités, il apparaît que la méthode du pivot est basée sur les propriètès
des systèmes liné aires , elle permet à la fois d’assurer l’existence des solutions mais aussi leur
détermination :
Opérations élémentaires : L’ensemble des solutions d’un système linéaire reste inchangé si
l’on procéde aux opérations suivantes :
– La modification de l’ordre des équations ;
– La multiplication d’une ligne par une constante non nulle du corps K ;
– L’addition à une ligne donnée d’une combinaison linéaire des autres lignes.

1.3. Méthode du pivot

Considèrons le système linéaire :
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(1)



a11x1 +a12x2 +a13x3 + ·· · +a1nxn = b1 (← équation 1)
a21x1 +a22x2 +a23x3 + ·· · +a2nxn = b2 (← équation 2)

...
...

...
... = ...

ai1x1 +ai2x2 +ai3x3 + ·· · +ainxn = bi (← équation i)
...

...
...

... = ...
ap1x1 +ap2x2 +ap3x3 + ·· · +apnxn = bp (← équation p)

On commence par modifier l’ordre des équations ( si c’est nécessaire ) pour que le pivot du
système (à savoir le coefficient a11) , soit non nul .Ensuite, la première étape consiste à
"éliminer" les coefficients a21, ....,ap1.Pour cela, nous remplaçons les lignes L2, ...,Lp par les
lignes L′

2 = a11L2 − a21L1, ...,L′
p = a11Lp − ap1L1.Nous obtenons un système ayant le même

ensemble de solutions , il est donné par :

(2)



a11x1 +a12x2 +a13x3 + ·· · +a1nxn = b1

0x1 +a′
22x2 +a′

23x3 + ·· · +a′
2nxn = b′

2
...

...
...

... = ...
0x1 +a′

i2x2 +a′
i3x3 + ·· · +a′

inxn = b′
i

...
...

...
... = ...

0x1 +a′
p2x2 +a′

p3x3 + ·· · +a′
pnxn = b′

p

Nous appliquons la méthode d’élimination explicitée ci-dessus au sous système de (2) représenté
par les lignes L′

2, ...,L′
p.Et ainsi de suite, l’opération donne à la fin un système équivalent de la

forme suivante :

(s)



a11x1 +a12x2 +a13x3 + ·· · +a1nxn = b1

0x1 +a′
22x2 +a′

23x3 + ·· · +a′
2nxn = b′

2
...

...
...

... = ...
...

...
...

... = ...
0x1 +0x2 +0x3 ...........+a(s−1)

ps xs+ ·· · +a(s−1)
pn xn = b(s−1)

p

où tous les coefficients a11,a′
22, ....,a(s−1)

ps sont non nuls, ce sont les pivots successifs.

Remarque 1

Si en appliquant la méthode du pivot, nous obtenons une équation de la forme 0= b , avec
b non nul, nous pouvons affirmer que le système (1) n’a pas de solution.

L’étude du système (s) donne lieu à deux possibilités :
– 1er cas : p = s = n

Le système (s) devient triangulaire :

a11x1 +a12x2 +a13x3 + ·· · +a1nxn = b1

0x1 +a′
22x2 +a′

23x3 + ·· · +a′
2nxn = b′

2
...

...
...

... = ...
...

...
...

... = ...
0x1 0x2 +0x3 + ·· · +a(s−1)

pn xn = b(s−1)
p
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La dernière équation permet de calculer l’inconnue xn.Et de proche en proche en remon-
tant les équations nous pouvons calculer successivement les variables xn−1, xn−2, ....., x1

(voir.l′exemple 1)).Le système admet une solution et une seule.
– 2émecas : p = s < n

Les inconues x1, x2, ....., xp dites principales ,s’expriment en fonction des inconnues restantes
xp+1, xp+2, ....., xn appelées variables libres .Nous obtenons une infinité de solutions dans ce
cas.

2. Systèmes linéaires homogènes

Définition 2

Un système linéaire est dit homogène si les seconds membres de (1) son nuls, c’est à dire :

(1′)



a11x1 +a12x2 +a13x3 + ·· · +a1nxn = 0 (← équation 1)
a21x1 +a22x2 +a23x3 + ·· · +a2nxn = 0 (← équation 2)

...
...

...
... = ...

ai1x1 +ai2x2 +ai3x3 + ·· · +ainxn = 0 (← équation i)
...

...
...

... = ...
ap1x1 +ap2x2 +ap3x3 + ·· · +apnxn = 0 (← équation p)

Remarque 2

– Le n-uplet (0, ...,0) est toujours une soution de (1)’.
– La solution générale (x1, ...., xn) du système (1),est la somme d’une solution particulière

(y1, ...., yn) du système (1) et de la solution générale (z1, ...., zn) du système (1)’.
– Un système linéaire homogène avec plus d’inconnues que d’équations ( n > p ) admet

une infinité de solutions non nulles.



Chapitre 2

ESPACES VECTORIELS

La notion d’espace vectoriel est une structure fondamentale des mathématiques modernes. Il
s’agit de dégager les propriétés communes que partagent des ensembles pourtant très différents.
Par exemple, on peut additionner deux vecteurs du plan, et aussi multiplier un vecteur par un
réel (pour l’agrandir ou le rétrécir). Mais on peut aussi additionner deux fonctions, ou multiplier
une fonction par un réel. Même chose avec les polynômes, les matrices,... Le but est d’obtenir
des théorèmes généraux qui s’appliqueront aussi bien aux vecteurs du plan, de l’espace, aux
espaces de fonctions, aux polynômes, aux matrices,...

Dans ce chapitre et dans les suivants, K désignera un corps commutatif quelconque (le plus
souvent K=R ou C).

1. Généralités

1.1. Structure d’espace vectoriel

Définition 3

On appelle espace vectoriel sur K ou encore K-espace vectoriel, tout ensemble E muni de
deux lois :

1. Une loi interne appelée addition, notée + telle que (E,+) soit un groupe abélien.

2. Une loi externe qui à tout couple (λ, x) ∈K×E fait correspondre un élément de E noté
λ.x, cette loi vérifiant les quatres propriétés suivantes :

(a) ∀x ∈ E 1.x = x

(b) ∀λ ∈K ∀x, y ∈ E λ.(x+ y)=λ.x+λ.y

(c) ∀λ,µ ∈K ∀x ∈ E (λ+µ).x =λ.x+µ.x

(d) ∀λ,µ ∈K ∀x ∈ E (λµ).x =λ.(µ.x)

Les éléments de E s’appellent vecteurs, ceux de K scalaires.

Exemple 4

1. Soit Kn l’ensemble des n-uplets (α1,α2, ...αn) d’éléments de K. Munissons Kn des lois
suivantes :

8
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- Une addition définie par (α1,α2, ...,αn)+ (β1,β2, ...,βn)= (α1 +β1,α2 +β2, ...,αn +βn)
- Une loi externe définie par : λ.(α1,α2, ...,αn)= (λα1,λα2, ...,λαn)

Il est facile de vérifier que (Kn,+, .) est un espace vectoriel sur K.

2. L’ensemble Mn(K) des matrices carrées d’ordre n à coefficients dansK est unK-espace
vectoriel. Les lois sont définies par :

(ai, j)+ (bi, j)= (ai, j +bi, j) et λ.(ai, j)= (λai, j)

3. Si E et F sont des espaces vectoriels sur K, on peut munir E ×F d’une structure
naturelle de K-espace vectoriel, en définissant ainsi les opérations :

∀(x, y), (x′, y′) ∈ E×F (x, y)+ (x′, y′)= (x+ x′, y+ y′)
∀(x, y) ∈ E×F ∀λ ∈K λ.(x, y)= (λx,λy)

L’ensemble E×F muni de ces deux lois s’appelle l’espace vectoriel produit de E par
F.

4. L’ensemble K[X ] des polynômes à coefficients dans K muni des lois classiques :
(P,Q)→ P +Q et (λ,P)→λP est un espace vectoriel sur K.

5. Soit D un ensemble quelconque, et A (D,K) l’ensemble des applications de D dans
K. Munissons A (D,K) des lois suivantes : Pour tout f , g ∈ A (Dd,K) et λ ∈ K

f + g : x → f (x)+ g(x), λ. f : x →λ f (x)
Il n’est pas difficile de vérifier que A (D,K) muni de ces deux lois A (D,K) est un
espace vectoriel sur K (appelé espace des applications de D dans K).

On peut noter les cas particuliers suivants :

(a) D =N, K=R, A (D,K) est l’espace vectoriel réel des suites réelles.

(b) D =N, K=C, A (D,K) est l’espace vectoriel complexe des suites complexes.

(c) D ⊂ R, K = R, A (D,K) est l’espace vectoriel réel des fonctions numériques, de
variable réelle, définies sur le domaine D.

Calcul dans un espace vectoriel

La proposition suivante montre qu’il n’y a absolument aucune surprise et que l’on calcule en
fait comme dans toute structure algébrique classique.

Proposition 1

1. ∀x, y ∈ E, ∀λ ∈K, λ.(x− y)=λ.x−λ.y.

2. ∀λ ∈K, λ.0= 0.

3. ∀y ∈ E, λ. ∈K, λ.(−y)=−λ.y.

4. ∀λ, µ ∈K, ∀x ∈ E, (λ−µ).x =λ.x−µ.x.

5. ∀µ ∈K, ∀x ∈ E, (−µ).x =−µ.x.
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6. ∀x ∈ E, 0.x = 0.

7. ∀x ∈ E, ∀λ ∈K, λ.x = 0⇐⇒λ= 0 ou x = 0.

Démonstration

1). On a λ(x− y)+λy = λ((x− y)+ y) = λx. 2) On fait x = y dans (1). 3) On fait x = 0 dans
dans 1). 4) On a (λ−µ)x+µx = ((λ−µ)+µ)x = λx. 5) On fait λ= 0 dans 4). 6) On fait λ= µ

dans 4). 7) En effet, supposons que λx = 0. Si λ= 0 , on a gagné. Sinon λ est inversible dans
le corps K et on a par multiplication par λ−1 : λ−1(λx)=λ−10= 0, d’où 1.x = 0, i.e x = 0.

Exercices
1. Justifier si les objets suivants sont des espaces vectoriels.

(a) L’ensemble des fonctions réelles sur [0,1], continues, positives ou nulles, pour l’addi-
tion et le produit par un réel.

(b) L’ensemble des fonctions réelles sur R vérifiant limx→+∞ f (x) = 0 pour les mêmes
opérations.

(c) L’ensemble des fonctions sur R telles que f (3)= 7.

(d) L’ensemble R∗+ pour les opérations x⊕ y= xy et λ · x = xλ (λ ∈R).

(e) L’ensemble des points (x, y) de R2 vérifiant sin(x+ y)= 0.

(f) L’ensemble des vecteurs (x, y, z) de R3 orthogonaux au vecteur (−1,3,−2).

(g) L’ensemble des fonctions de classe C 2 vérifiant f ′′+ f = 0.

(h) L’ensemble des fonctions continues sur [0,1] vérifiant
∫ 1

0 f (x) sin x dx = 0.

(i) L’ensemble des matrices
(a b

c d
) ∈ M2(R) vérifiant a+d = 0.

1.2. Sous-espaces vectoriels

Définition 4

Soit (E,+, .) un espace vectoriel sur K et F une partie non vide de E. On dira que F est un
sous-espace vectoriel de E (en abrégé s.e.v) si :

1. F est stable pour les deux lois + et .

2. F muni des deux lois induites + et . est un K-espace vectoriel.

Le théorème suivant donne une caractérisation des sous-espaces vectoriels. Dans la pratique,
pour montrer qu’une partie F d’un espace vectoriel de référence E, est un espace vectoriel il
suffit de montrer que F est un sous-espace vectoriel de E.

Théorème 1

Soit F une partie non vide d’un K-espace vectoriel E. Les propositions suivantes sont
équivalentes :

1. F est un sous-espace vectoriel de E.
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2. ∀x, y ∈ E, ∀λ, µ ∈K, λ.x+µ.y ∈ F.

Démonstration

Il est clair que 1)=⇒ 2). Inversement, supposons qu’on ait 2). Prenons λ= 1 et µ=−1. alors
x ∈ F et y ∈ F entrainent que x− y ∈ F. Donc F est un sous-groupe additif de E. Prenons
ensuite µ= 0. Alors λ ∈K et x ∈ F entrainent λx ∈ F.

Exemple 5

1. Soit E un K-espace vectoriel. Les parties {0} et E sont des sous-espaces vectoriels de
E appelés sous-espaces triviaux.

2. Soit n ∈N. L’ensemble Kn[X ] des polynômes à coefficients dans K de degré inférieur
ou égal à n est un s.e.v de v de K[X ].

3. L’intersection quelconque d’une famille de s.e.v d’un K-espace vectoriel E est un s.e.v
de E.

4. L’analyse fournit de nombreux exemples de s.e.v de A (I,R), où I est un intervalle de
R. Entre autres :

(a) L’ensemble C (I,R) des applications continues sur I.

(b) L’ensemble D(I,R) des applications dérivables sur I.

(c) Pour tout n Ê 1, l’ensemble Dn(I,R) des applications n fois dérivables sur I est
un sous-espace vectoriel de A (I,R). L’intersection de tous ces sous-espaces vec-
toriels est un sous-espace vectoriel noté D∞(I,R), espace vectoriel des fonctions
indéfiniment dérivables sur I.

(d) Pour tout n Ê 1, l’ensemble Cn(I,R) des applications Cn sur I.

5. Il y a évidement des parties de K-espaces vectoriels qui ne sont pas des sous-espaces
vectoriels. Notons en particulier :

(a) L’ensemble des polynômes de degré exactement n n’est pas un sous-espace vec-
toriel de K[X ].

(b) L’ensemble des fonctions positives ou nulles (resp. négatives ou nulles) définies
sur une partie D de R, n’est pas un sous-espace vectoriel de A (D,R).

Exercices
Parmi les ensembles suivants, reconnaître ceux qui sont des sous-espaces vectoriels :

1.
{
(x, y, z) ∈R3 | x+ y= 0

}
2.

{
(x, y, z, t) ∈R4 | x = t et y= z

}
3.

{
(x, y, z) ∈R3 | z = 1

}
4.

{
(x, y) ∈R2 | x2 + xyÊ 0

}
5.

{
(x, y) ∈R2 | x2 + y2 Ê 1

}
6.

{
f ∈F (R,R) | f (0)= 1

}



ESPACES VECTORIELS 12

7.
{
f ∈F (R,R) | f (1)= 0

}
8.

{
f ∈F (R,R) | f est croissante

}
9.

{
(un)n∈N | (un) tend vers 0

}
1.3. Sous-espace engendré par une partie

Définition 5

Soit (x1, ..., xn) un système fini de vecteurs d’un K-espace vectoriel E. Un vecteur x ∈ E est
dit combinaison linéaire des vecteurs x1, ..., xn si l’on peut trouver un système (λ1, ...,λn) de
scalaires, tel que

x =λ1x1 + ...+λn.xn.

Les scalaires λi sont nommés coefficients de la combinaison linéaire x.

Exemple 6

1. Le vecteur 0 est combinaison linéaire de toute famille finie de vecteurs, les coefficients
étant nuls.

2. Tout vecteur x est combinaison linéaire de tout système de vecteurs contenant x, le
coefficient de x étant 1, tous les autres égaux à 0.

3. Dans l’espace vectoriel K3 sur le corps K, soit le triplet (e1, e2, e3) où e1 = (1,0,0), e2 =
(0,1,0), e3 = (0,0,1). Tout vecteur (a,b, c) de K3 est combinaison linéaire des vecteurs
e1, e2, e3 car : (a,b, c)= ae1 +be2 + ce3

Théorème 2

Soit (x1, ..., xn) un système fini de vecteurs d’un K-espace vectoriel E. L’ensemble F des
combinaisons linéaires des vecteurs x1, ..., xn est un s.e.v de E ; c’est le plus petit s.e.v (pour
l’inclusion) de E contenant les vecteurs x1, ..., xn. F est dit sous-espace engendré par les
vecteurs x1, ..., xn et il est noté :

F =V ect(x1, ..., xn)= {λ1x1 + ...+λn.xn : λ1 . . .λn ∈K}

Démonstration

Partons de deux éléments de F :

x =α1.x1 + ...+αn.xn , y=β1.x1 + ...+βn.xn

Quels que soient les scalaires α et β, on a :

α.x+β.y= (αα1 +ββ1).x1 + ...+ (ααn +ββn.)xn

On obtient une combinaison linéaire du système proposé, donc un élément de F qui est, par
conséquent, sous-espace vectoriel de E.
F contient évidemment chacun des xi du système (x1, ..., xn). D’autre part, tout sous-espace,
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contenant les vecteurs x1, ..., xn, doit contenir aussi la somme λ1.x1 + ...λn.xn pour tout n-
uplets de scalaires (λ1, ...,λn). Un tel sous-espace contient donc F qui est, par conséquent,
le plus petit sous-espace contenant les vecteurs x1, ..., xn.

Définition 6

Un système fini (x1, ..., xn) de vecteurs d’un K-espace vectoriex E est dit générateur de E (
ou aussi engendre E) si E =V ect(x1, ..., xn). En d’autres termes :

∀x ∈ E, ∃λ1, ...,λn ∈K, / x =λ1.x1 + ...+λn.xn.

Exemple 7

1. Kn est engendré par les n-uplets (1,0,0, ...,0), (0,1,0, ...,0), ..., (0,0,0, ...,1).

2. Soit n un entier. Dans A (R,R) les fonctions 1, x, x2,...,xn engendrent le sous-espace
vectoriel des fonctions polynômiales de degré inférieur ou égal à n.

Théorème 3

Soit A une partie d’un K-espace vectoriel E. L’ensemble H des combinaisons linéaires finies
d’éléments de A est un s.e.v de E ; c’est le plus petit s.e.v (pour l’inclusion) de E contenant
A. H est dit sous-espace engendré par la partie A, il est noté :

V ect(A)= {λ1.x1 + ...+λn.xn : x1 . . . xn ∈ A n Ê 1}

Exemple 8

1. K[X ] est engendré par la partie {1, X , ..., X n, ....}.

2. Soient (En) une suite croissante de s.e.v d’un K-espace vecrtoriel E. Si Gn est un
système générateur de En, alors E =∪nEn est un s.e.v de E admettant ∪nGn comme
partie génératrice.

Exercices
1. Montrer que le système (u,v,w) est un système générateur de R3 avec u =

(1
1
1

)
, v =

(1
1
0

)
et

w =
(1

0
0

)
2. Peut-on trouver t ∈R tel que le vecteur

( 1
3t
t

)
soit une combinaison linéaire de

(1
3
2

)
et

(−1
1−1

)
?

1.4. Partie libre - Partie liée

Définition 7

1. On dit qu’un système fini (x1, ..., xn) de vecteurs d’un K-espace vectoriel E est libre si
toute combinaison linéaire de x1, ..., xn est triviale càd :

Si λ1, ...,λn ∈K tels que λ1.x1 + ...+λn.xn = 0 , alors λ1 = ...=λn = 0.
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2. On dit qu’un système fini (x1, ..., xn) de vecteurs d’un K-espace vectoriel E est lié s’il
n’est pas libre. Ce qui revient à dire qu’il existe des scalaires λ1, ...,λn non tous nuls
tels que :

λ1.x1 + ...+λn.xn = 0.

Propriété 1

1. Tout vecteur non nul est libre.

2. Tout système contenu dans un système fini libre est libre.

3. Tout système contenant le vecteur nul est lié.

4. Tout système fini contenant un système lié est lié.

Proposition 2

Soit E un K-espace vectoriel. Le système (x1, ..., xn) est lié, si et seulement si, l’un au moins
des vecteurs xi s’exprime comme combinaison linéaire des autres vecteurs.

Démonstration

Supposons que le système (x1, ..., xn) est lié, il existe donc un système (λ1, ...,λn) de scalaires
non tous nuls tel que λ1x1 + ...+λnxn = 0. Soit alors λi 6= 0, il est inversible dans K et on
peut écrire :

ui =λi
−1λ1.x1 + ...+λi

−1λi−1.xi−1 +λi
−1λi+1.xi+1 + ...+λi

−1λn.xn.

Inversement l’autre implication est évidente.

Définition 8

1. On dit qu’une partie A d’un K-espace vectoriel E est libre si tout système fini d’élé-
ments distincts de A est libre, càd :
∀n Ê 1, ∀x1, ..., xn ∈ A,∀λ1, ...,λn ∈K tels que λ1.x1 + ...+λn.xn = 0 , on a :

λ1 = ...=λn = 0.

2. On dit qu’une partie A de E est liée si elle n’est pas libre. Autrement dit, il existe un
système fini de vecteurs de A qui soit lié.

Exemple 9

1. La partie {1, X , ..., X n, ....} est libre dans K[X ]

2. La partie formée des applications fn définies par fn(x)= enx est libre dans A (R,R)
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1.5. Somme de sous-espaces vectoriels

Il est à noter que la réunion de deux s.e.v d’un K-espace vectoriel n’est pas en général un s.e.v.
Pour remédier à cet inconvénient nous allons remplacer l’union des s.e.v par une opération plus
convenable qui est la somme des s.e.v.

Définition 9

Soit E unK-espace vectoriel, de dimemsion finie ou non, F et G deux sous-espaces vectoriels
de E. On appelle somme de F et G l’ensemble, noté F +G, défini par :

F +G = {z ∈ E /∃ x ∈ F, y ∈G , z = x+ y}.

Proposition 3

La somme F +G de deux s.e.v d’un K-espace vectoriel E est un s.e.v de E. De plus c’est le
plus petit s.e.v de E (au sens de l’inclusion) contenant F ∪G.

Démonstration

Soient deux éléments x+ y et x′+ y′ ∈ F +G avec x, x′ ∈ F et y, y′ ∈ G et soit α et β deux
scalaires, on a α(x+ y)+β(x′+ y′)= (αx+βx′)+(αy+βy′) ∈ F+G. Donc F+G est un s.e.v de E.
Il est clair que F +G contient F et G, donc F ∪G. D’autre part, tout sous-espace, contenant
F ∪G, doit contenir aussi la somme x+ y avec x ∈ F et y ∈ G. Un tel sous-espace contient
donc F +G qui est, par conséquent, le plus petit sous-espace contenant F ∪G.

Définition 10

Soit E un K-espace vectoriel et F,G deux s.e.v de E. On dit que la somme F +G est directe
et on note F ⊕G, si tout élément de F +G s’écrit d’une manière unique sous la forme x+ y
avec x ∈ F et y ∈G.

Proposition 4

Soit E un K-espace vectoriel et F,G deux s.e.v de E. Il y a équivalence entre :

1. F +G est directe.

2. F ∩G = {0}.

3. x+ y= 0 avec x ∈ F et y ∈G =⇒ x = y= 0.

Démonstration

– 1)=⇒ 2) Si z ∈ F∩G, z peut s’écrire z = z+0= 0+ z. La décomposition étant unique, z = 0.
– 2)=⇒ 3) Si x+ y= 0 avec x ∈ F et y ∈G, alors x =−y ∈ F∩G = {0}. 3)=⇒ 1) Si x+ y= x′+ y′

avec x, x′ ∈ F et y, y′ ∈G, alors on a (x− x′)+ (y− y′) = 0 avec x− x′ ∈ F et y− y′ ∈G ; donc
x = x′ et y= y′.
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Définition 11

Soit E un K-espace vectoriel et F,G deux s.e.v de E. On dit F et G sont supplémentaires,
et on note E = F ⊕G, si tout élément de E s’écrit d’une manière unique sous la forme x+ y
avec x ∈ F et y ∈G.

En d’autre termes, E = F ⊕G si les deux conditions suivantes sont réalisées :

1. E = F +G.

2. La somme F +G est directe (i.e F ∩G = {0}).

Exemple 10

– Soit E un K-espace vectoriel muni d’une base finie (e1, ..., en) .Alors E = F ⊕G avec
F = vect (e1, ..., e i) et G = vect (e i+1, ..., en) , i ∈ {1, ...,n−1} .

– On a F (R,R) = F ⊕G , avec F ( respectivement G ) l’espace des applications paires
(respectivement impaires ).

Définition 12

Soit E un K-espace vectoriel et soit F un s.e.v de E. On appelle supplémentaire de F
(sous-entendu dans E) tout s.e.v G de E vérifiant E = F ⊕G.

2. Les Applications Linéaires.

2.1. Généralités

Définition 13

Soient E et E′ deux espaces vectoriels sur K et f une application de E dans E′. On dit que
f est linéaire, si :

1. f (v+w)= f (v)+ f (w), ∀v,w ∈ E.

2. f (λv)=λ f (v), ∀v ∈ E, ∀λ ∈K.

Si de plus f est bijective, f est un isomorphisme d’espaces vectoriels.

L’ensemble des applications linéaires de E dans E′ est noté L (E,E′). Une application linéaire
de E dans E est appelé endomorphisme de E. L’ensemble des endomorphismes de E est noté
L (E).

Remarque 3

Pour toute application linéaire f , on a f (0) = 0 puisque f est un homomorphisme de
groupes.(On a : f (x)= f (x+0)= f (x)+ f (0) ).
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Exemple 11

1. L’application f : E → E′ qui associe à un élément v ∈ E, le vecteur nul est linéaire ; elle
est dite l’application nulle.

2. L’application idE : E → E qui associe à un élément v ∈ E, le vecteur v lui même,est
linéaire ; elle est dite l’application identité de E.

3. L’application hλ : E → E qui associe à un élément v ∈ E, le vecteur λv (λ ∈K\{0}) est
linéaire ; elle est appelée l’homothétie de rapport λ.

4. L’application dérivation D :K[X ]→K[X ] qui associe à un polynôme P sa dérivée P ′,
est linéaire.

5. Soit E = E1⊕E2. L’application P1 : E → E qui associe à vecteur x = x1+x2, le vecteur x1

(x1 ∈ E1, x2 ∈ E2), est linéaire ; elle est appelée la projection de E sur E1 parallèlement
à E2.

6. Soit v0 6= 0 un vecteur de E. La translation τ : E → E qui associe à tout vecteur v, le
vecteur v+v0, est non linéaire, car τ(0)= v0 6= 0.

Image et noyau d’ une application linéaire

Proposition 5

Soit f ∈L (E,E′) et F un sous-espace vectoriel de E. Alors f (F) est un sous-espace vectoriel
de E′. En particulier f (E) est un sous espace vectoriel de E′ appelé image de f et noté Imf .

Démonstration

On sait que f (F) est un sous groupe de E′, il suffit donc de vérifier la stabilité pour l’opéra-
tion externe. Soit λ ∈K et f (v) ∈ f (F), on a λ f (V )= f (λv) ∈ f (F).

Remarque 4

On peut montrer que l’image réciproque d’un s.e.v F ′ de E′ est un s.e.v de E.

Proposition 6

Soit f ∈L (E,E′), K er f = {x ∈ E : f (x)= 0} est un sous espace vectoriel de E, appelé noyau
de f .

Démonstration

Il suffit de vérifier la stabilité pour l’opération externe. Si λ ∈K et x ∈ E, on a f (λx)=λ f (x)=
λ0= 0 et par suite λx ∈ ker f .
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Proposition 7

f est injective si et seulement si K er f = {0}

Exemple 12

1. Soit E = E1 ⊕E2. On a ImP1 = E1 et K erP1 = E2.

2. Soit D :K[X ]→K[X ] l’application dérivation. On a K erD =K et ImD =K[X ]

3. Soit f :K3 →K2 l’application définie par f (x, y, z)= (2x+ y, y− z). On a :
K er f = {(x, y, z) ∈ K3 : y = −2x et z = y} = {(x,−2x,−2x) : x ∈ K}. Kerf est la droite
vectorielle engendré par (1,−2,−2).
Imf = {(x′, y′) ∈ K2 : ∃(x, y, z) ∈ K3 : x′ = 2x+ y, ety′ = y− z}. Soit (x′, y′) ∈ K2. En
posant x = x′−y′

2 , y = y′, z = 0, on vérifie que f (x, y, z) = (x′, y′), donc f esr surjective,
d’où Imf =K2.

Proposition 8

Soit f ∈L (E,E′) et (v1, ...,vn) un système de vecteurs de E.

1. Si f est injective et le système (v1, ...,vn) est libre dans E, alors le système
( f (v1), ..., f (vn)) est libre dans E′.Si f est injective et A une partie libre de E ,
alors f (A) est libre dans E′.

2. Si f est surjective et le système (v1, ...,vn) est générateur de E, alors le système
( f (v1), ..., f (vn)) est générateur de E′.Plus généralement, si f est surjective et A une
partie génératrice de E , alors f (A) engendre E′

En particulier si f est bijective, l’image d’une base de E est une base de E′.

Démonstration

1) Supposons que
i=n∑
i=1

λi f (vi)= 0 avec λ1, ...,λn ∈ IK. Comme f est linéaire, f (
i=n∑
i=1

λivi)= 0,d’où

i=n∑
i=1

λivi = 0 compte tenu de l’injection de f . L’indépendence du sysème (v1, ...,vn) entraine

λ1 = ...=λn = 0.Soit A une partie libre de E , alors d’aprés ce qui précéde l’image par f de
toute partie finie de A est libre dans E′, par suite f (A) est libre. 2) Soit y ∈ E′, il existe

donc x ∈ E tel que f (x)= y. Or on peut écrire x =
i=n∑
i=1

λivi où les λi ∈K.

Il s’en suit que y= f (x)= f (
i=n∑
i=1

λivi)=
i=n∑
i=1

λi f (vi).

2.2. Structure des endomorphismes

E,E′,E′′ sont des espaces vectoriels sur K.
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Proposition 9

1. L (E,E′) muni des lois ( f + g)(x) = f (x)+ g(x) et (λ f )(x) = λ f (x), ( f , g ∈ L (E,E′),λ ∈
K, x ∈ E) est un espace vectoriel sur K

2. Si f ∈L (E,E′), g ∈L (E′,E′′), alors g ◦ f ∈L (E,E′′)

3. Pour tout f ,h ∈L (E,E′), g,k ∈L (E′,E′′),λ ∈K :

(a) g ◦ ( f +h)= g ◦ f + g ◦h.

(b) (g+k)◦ f = g ◦ f +k ◦ f .

(c) g ◦ (λ f )=λg ◦ f .

4. Si f est bijective, alors f −1 est linéaire.

Démonstration

L (E,E′) est un espace vectoriel, voir exemple 3 du par.1 chap 2. On a g ◦ f (λx+µy) =
g[ f (λx+µy)] = g[λ f (x)+µ f (y)] = λg( f (x))+µg( f (y) = λ(g ◦ f )(x)+µ(g ◦ f )(y). Il suffit de
vérifier que f −1(λy) = λ f −1(y) puisqu’on a déjà vérifié que f −1 est un homomorphisme de
groupes. Posons y= f (x), alors f −1(λ f (x))= f −1( f (λx))=λx =λ f −1(y)

Anneau L (E) - Groupe Gl(E).

Théorème 4

L’ensemble L (E) des endomorphismes de E muni des opérations ( f , g)→ f + g et ( f , g)→
f ◦ g a une structure d’anneau unitaire.

Démonstration

D’après ce qui précéde, (L (E),+) est un groupe commutatif et la composition des endomor-
phismes est associative et distributive par rapport à l’addition.

Théorème 5

L’ensemble des automorphismes d’un espace vectoriel E est pour la composition des appli-
cations un groupe, appelé groupe linéaire de E et noté Gl(E).

Algèbre L (E)- Application : Les projecteurs

Théorème 6

L’ensemble L (E) muni des opérations
– 1 ( f , g)→ f + g,
– 2 (λ, f )→λ f ,
– 3 ( f , g)→ f ◦ g
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a une structure d’espace vectoriel pour les lois 1 et 2 et de plus λ( f ◦ g)= (λ f )◦ g = f ◦ (λg),
on dit que L (E) a une structure d’algèbre sur K.

Soit E un espace vectoriel sur K, E1, E2 deux sous-espaces vecrtoriels tels que E = E1⊕E2. On
définit l’application PE1 : E → E1 qui associe à x = x1 + x2, le vecteur x1(x1 ∈ E1, x2 ∈ E2).
On a les propriétés suivantes :

1. PE1 est linéaire, K erPE1 = E2 et ImPE1 = E1.

2. (PE1)2 = PE1 , PE1 +PE2 = IdE.

3. PE2 ◦PE1 = PE1 ◦PE2 = 0 et

4. E = K erPE1 ⊕ ImPE2 et E = K erPE2 ⊕ ImPE1 .

Définition 14

Un endomorphisme p de E est appelé projecteur si p ◦ p = p.



Chapitre 3

ESPACES VECTORIELS DE
DIMENSION FINIE

1. Généralités

Définition 15

1. On appelle espace vectoriel de dimension finie tout espace vectoriel engendré par un
système fini de vecteurs. Dans le cas contraire on dit que l’espace vectoriel est de
dimension infinie.

2. Un système (u1, ...,un) de vecteurs d’un K-espace vectoriel E est dit base de E si
(u1, ...,un) est libre et générateur E.

Exemple 13

1. Une base de Kn est (1,0,0, ...,0), (0,1,0, ...,0), ..., (0,0,0, ...,1) ; elle est dite base cano-
nique de Kn.

2. Les polynômes 1, X , X2,...,X n forment une base de l’espace vectoriel Kn[X ] des poly-
nômes de degré inférieur ou égal à n.

3. Si E et F sont deux espaces vectoriels de bases respectives (e1, ..., en) et ( f1, ..., fm),
alors E×F admet pour base (e1,0F ), ..., (en,0F ), (0E, f1), ...(0E, fm).

,

Remarque 5

Il ne faudrait pas croire que tous les espaces vectoriels sur un corps K soient de dimension
finie. L’exemple le plus simple est K[X ], en effet supposons que K[X ] est engendré par
P1,...Pr. Si n est le plus haut degré des polynômes P1,...Pr, le polynôme X n+1 ne peut
s’écrire comme combibaison linéaire des vecteurs P1,...,Pr. Il s’en suit que K[X ] ne peut pas
être engendré par un nombre fini de polynômes.

Le lemme suivant est fondamental. Il nous permettera de montrer que toutes les bases d’un
K-espace vectoriel sont constituées du même nombre de vecteurs. Ce nombre s’appellera dimen-
sion de l’espace.

21
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Lemme 1

Soit E unK-espace vectoriel engendré par le système (e1, ..., en) et soit ( f1, ..., fm) un système
de vecteurs de E. Si m > n, alors ( f1, ..., fm) est lié.

Démonstration

La démonstration se fait par récurrence sur n. Soit m > n.
Cette propriété est vraie pour n = 1, car si ( f1, f2) sont deux vecteurs d’un espace vectoriel
engendré par e1, il existe λ1 et λ2 tels que :

f1 =λ1e1 et f2 =λ2e1.

Si les deux coefficients sont nuls, alors le système est lié. Sinon, on a λ2 f1 −λ1 f2 = 0 et le
système est lié.
On suppose la propriété vraie pour n−1 et on la montre pour n. Soit ( f1, ..., fm) un système
de vecteurs d’un espace vectoriel engendré par (e1, ..., en), avec m > n. On peut écrire

∀i = 1, ...,m f i = ai e1 + g i, avec ai ∈K et g i ∈< e2, ...en > .

Si tous les ai sont nuls, alors les vecteurs f i ∈< e2, ..., en > pour tout i = 1, ...,m. D’après
l’hypothèse de récurrence, le système ( f1, ..., fm) est lié.
Sinon, l’un des ai est non nul, par exemple a1. Dans ce cas on a :

a1 f2 −a2 f1 ∈< e2, ..., en >, ...,a1 fm −am f1 ∈< e2, ..., en > .

Or m−1> n−1 donc l’hypothèse de récurrence s’applique : ils sont liés. Par suite il existe
des coefficients λi non tous nuls tels que :

λ2(a1 f2 −a2 f1)+ ...+λm(a1 fm −am f1)= 0.

Il s’ensuit que
−(λ2a2 + ...+λmam) f1 +λ2a1 f2 + ...+λma1 fm = 0.

Comme l’un des coefficients λia1 6= 0, le système ( f1, ..., fm) est lié, ce qui achève la démons-
tration.

Théorème 7

1. Tout K-espace vectoriel de dimension finie admet au moins une base. Plus précisé-
ment, tout système générateur fini contient au moins une base.

2. Toutes les bases d’un K-espace vectoriel E ont le même nombre de vecteurs. Ce
nombre s’appelle la dimension de E et se note dimE.

Démonstration

– Existence d’une base. Si (e1, ...en) engendre E et si ce système est libre, il forme une base.
S’il est lié, l’un des vecteurs, par exemple en est combinaison linéaire des autres vecteurs.
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Il n’est pas difficile de voir que, dans ce cas, le système (e1, ...en−1) engendre E. On itére
le procédé jusqu’à obtenir un système générateur libre. Cette méthode est constructive.

– Soient (e1, ...en) et ( f1, ..., fm) deux bases de E. Alors on a d’après le lemme fondamental
(e1, ...en) est générateur de E et ( f1, ..., fm) est libre dans E, donc m É n, (e1, ...en) est libre
et ( f1, ..., fm) est générateur, donc n É m.

Théorème 8

Soient E un K-espace vectoriel de dimension finie n.

1. Tout système libre de E ayant n vecteurs est une base.

2. Tout système générateur de E ayant n vecteurs est une base de E.

3. Soit F ⊂ E un sous-espace vectoriel de E. Alors F est de dimension finie, dimF É
dimE et il y a égalité si et seulement si F = E

Démonstration

– Soit (e1, ..., en) un système libre de E, montrons qu’il est générateur de E. Soit x ∈ E, le
système (x, e1, ..., en) est lié d’après le lemme fondamental. Il existe donc un système de
scalaires non tous nuls (λ,λ1, ...,λn) tel que :

λx+λ1e1 + ...+λnen = 0.

Le scalaire λ est forcément non nul, car sinon λ1 = ...= λn = 0 compte tenu de la liberté
du système (e1, ..., en). Par suite on peut écrire :

x =−(λ−1λ1e1 + ...+λ−1λnen).

Donc (e1, ...en) engendre E.

– Soit (e1, ..., en) un système générateur de E, montrons qu’il est libre dans E. Si le système
(e1, ..., en) est lié, alors l’un des vecteurs est combinaison linéaire des autres vecteurs ;
soit par exemple e1. Dans ce cas le système (e2, ...en) est générateur de E, ce qui est
contradictoire en tenant compte du lemme fondamental, car une base de E qui contient
forcément n éléments serait liée.

– Parmi tous les systèmes libres de F, on en choisit un maximal et on le note ( f1, ... fm).
Le nombre des vecteurs de ce système est nécessairement inférieur à dim E, d’après
le lemme fondamental. Ce système est forcément générateur, car si x ∈ F, le système
(x, f1, ... fm) est lié puisque ( f1, ... fm) est libre maximal, et donc x peut s’écrire comme
combinaison linéaire des vecteurs du système ( f1, ..., fm) comme dans 1).
Si F est un sous-espace vérifiant dimE = dimF, alors F = E, puisqu’une base de F étant
un système libre de E, possédant n vecteurs est aussi une base de E en vertu de 1).

Un autre moyen de former une base dans un K-espace vectoriel est le suivant ; c’est le théorème
de la base incomplète.
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Théorème 9

Soit E un espace vectoriel de base (e1, ..., en) et soit ( f1, ..., fm) un systè me libre. Alors il
existe n−m vecteurs parmi les vecteurs e1, ..., en tels que le système constitué de ces n−m
vecteurs et des vecteurs f1, ..., fm forme une base de E.

Démonstration

On voit que si m < n, alors il existe un des vecteurs e i tel que ( f1, ... fm, e i) soit libre. Sinon,
pour tout i = 1, ...,n, tous les systèmes ( f1, ... fm, e i) seront liés et les vecteurs e1, ..., en seront
combinaisons linéaires des vecteurs f1, ... fm et donc le système ( f1, ..., fm) sera générateur
de E, ce qui est impossible. En posant fm+1 = e i, on itère le procédé jusqu’à obtenir n
vecteurs libres f j. Ils forment alors une base. Cette méthode est constructive.

Exemple 14

Dans R4, on prend la base canonique (e1, e2, e3, e4) et le système libre suivant : f1 = e1+2e2

et f2 =−e1 + e2. Le compléter en une base de de R4. On a :
– ( f1, f2, e1) est lié
– ( f1, f2, e2) est lié
– ( f1, f2, e3) est libre
– ( f1, f2, e3, e4) est libre.
Ces quatres vecteurs forment une base de R4.

2. Rang d’un système fini de vecteurs

Soit E un espace vectoriel surK, de dimension n et, soit S = (u1, ...,up) un système de p vecteurs
de E (p É n).

Définition 16

Soit E un espace vectoriel sur K, de dimension n et, soit S = (u1, ...,up) un système de
p vecteurs de E (p É n). On appelle rang du système de vecteus S = (u1, ...,up) et on
note, par rg(S), la dimension du sous-espace vectoriel engendré par ce système i.e rg(S)=
rg(u1, ...,up)= dimV ect(u1, ...,up).

Exemple 15

Dans K4, considérons le système des trois vecteurs :

u1 = (1,0,0,0), u2 = (0,1,0,0), x3 = (1,1,0,0).

Il est clair que le système (u1,u2) est libre dans K4 et que x3 = u1 +u2. Par conséquent, le
sous-espace F engendré par (u1,u2, x3) est aussi engendré par le système libre (u1,u2) et
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par suite le rang de F est 2.

Proposition 10

Le rang d’un système de vecteurs est le nombre maximum de vecteurs libres que l’ on peut
extraire de ce système.

2.1. Somme vectorielle

Proposition 11

Soit E est un K-espace vectoriel de dimension finie. Tout sous-espace vectoriel F de E
admet au moins un supplémentaire G ; de plus tous les supplémentaires ont pour dimension
dimE−dimF.

Démonstration

Si (e1, ..., en) est une base de E et ( f1, ... fm) une base de F, le théorème de la base incomplète
nous permet de compléter la base de F par n−m vecteurs pour former une base de E. Ces
n−m vecteurs engendrent un sous-espace vectoriel G qui sera supplémentaire de F.

Proposition 12

Soient F et G deux sous-espaces vectoriels de dimension finie d’un espace vectoriel E. Alors
F +G est de dimension finie et on a :

dim(F +G)= dimF +dimG−dim(F ∩G).

Démonstration

Soit (e1, ..., ep) une base de F ∩G, que l’on complète en une base (e1, ..., ep, f1, ..., fq) de F et
(e1, ..., ep, g1, ..., gr) de G. On vérifiera alors que (e1, ..., ep, f1, ..., fq, g1, ..., gr) est une base de
F +G.

Corollaire 1

Soient F et G deux sous-espaces vectoriels de dimension finie d’un espace vectoriel E.Alors
E est somme directe de F et de G si et seulement si dimF +dimG = dimE et
F ∩G = {0} .

2.2. Applications linéaires en dimension finie.

Proposition 13

Soit E,E′ deux espaces vectoriels ,E étant de dimension finie. Soit f une application
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linéaire de E dans E′. Alors Imf est un sous-espace vectoriel de dimension finie de E′. Sa
dimension est appelée le rang de f (rg ( f )= dim Imf ).

Démonstration

Soit (e1, ..., en) une base de E.Alors le système image ( f (e1), ..., f (en)) engendre Imf ,qui
est par conséquent de dimension finie avec dim Imf É n.

Théorème 10

Deux espaces vectoriels de dimension finie sont isomorphes si et seulement si, ils ont la
même dimension.

Démonstration

=⇒ Si f : E → E′ est un isomorphisme, alors d’après la proposition précédente l’image d’une
base de E est une base de E′, donc E et E′ ont la même dimension.
⇐= Supposons que dimE = dimE′ et soit (e1, ..., en) une base de E et (e′1, ...e′n) une base de

E′. Soit f : E → E′ définie par f (
i=n∑
i=1

λi e i) =
i=n∑
i=1

λi e′i. Il est facile de voir que f est linéaire

bijective.

Corollaire 2

Soit E un espace vectoriel de dimension finie sur K, alors E est isomorphe à K si et seule-
ment si dimE = n.

Théorème 11

Théorème de la dimension. Soient E et E′ deux espaces vectoriels de dimension finie et
f ∈L (E,E′), alors dimE = dim(K er f )+dim(Imf ).

Démonstration

Supposons que dimE = n, dim(K er f ) = r et montrons que dim(Imf ) = n − r. Soit
(w1, ...,wr) une base de K er f et complétons la pour obtenir une base de E, en l’occu-
rence (w1, ...wr,v1, ...vn−r). montrons que B = ( f (v1), ... f (vn−r)) est une base de Imf . B

engendre Imf en effet f (x) = f (α1w1 + ...+αrwr +λ1v1 + ...+λn−rvn−r) =
i=n−r∑

i=1
λi f (vi). B

est libre puisque si
i=n−r∑

i=1
λi f (vi)= 0, alors f (

i=n−r∑
i=1

λivi)= 0 et donc
i=n−r∑

i=1
λivi ∈ K er f . Il s’en

suit que
i=n−r∑

i=1
λivi =

i=r∑
i=1

λi f (vi)
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Corollaire 3

f ∈L (E,E′), E et E′ étant de même dimension, alors les propriétés suivantes sont équiva-
lentes :

1. f est injective.

2. f est surjective.

3. f est bijective.

Démonstration

Il suffit de montrer que 1) ⇐⇒ 2). De l’égalité dimE = dim(K er f )+dim(Imf ), résulte f
injective ⇐⇒ K er f = {0}⇐⇒ dimE = dim(Imf )⇐⇒ dimE′ = dim(Imf )⇐⇒ E′ = Imf ⇐⇒
f surjective

Remarque 6

1. Ce résultat est faux en dimension infinie. L’application dérivation D :K[X ] →K[X ]
qui à un polynôme P fait correspondre P ′ est surjective mais non injective.

2. Une application linéaire f est parfaitement définie si l’on connait l’image des vecteurs
d’une base, car d’après la linéarité de f on a :
f (x) = f (

∑i=n
i=1 xi e i) = ∑i=n

i=1 xi f (e i), donc si on connait f (e1), ..., f (en), f est connue en
tout vecteur de E.

Théorème 12

Soient E et E′ deux K-espace vectoriels. Si dimE = n et dimE′ = m, alors dimL (E,E′) =
nm.

Démonstration

Soit (e1, ...en) une base de E et (v1, ...,vn) une base de E′. Soit u ∈L (E,E′) et x ∈ E. Il existe
un unique n-uplet (x1, ...xn) ∈Kn tel que x = ∑i=n

i=1 xi e i. Pour tout i = 1, ...,n, on peut écrire
u(e i)=∑ j=m

j=1 αi jv j avec αi j ∈K. Par suite on a :

u(x)= u(
i=n∑
i=1

xi e i)=
i=n∑
i=1

xiu(e i)=
i=n∑
i=1

xi(
j=m∑
j=1

αi jv j)

On pose ui j(e i)= v j et ui j(ek)= 0 pour k 6= i, les applictions ui j sont linéaires et on a :

u(x)=
i=n∑
i=1

xi(
j=m∑
j=1

αi jui j(e i))=
i=n∑
i=1

(
j=m∑
j=1

αi jui j(xi e i))=
i=n∑
i=1

j=m∑
j=1

αi jui j(xi e i)=
i=n∑
i=1

j=m∑
j=1

αi jui j(x).

Il s’en suit que u = ∑i=n
i=1 (

∑ j=m
j=1 αi jui j et les ui j engendrent L(E,E′). Vérifions que les
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ui j forment un système libre. Supposons que
∑

i, jαi jui j = 0. Pour k = 1, ...,n, on a∑
i, jαi jui j(ek)=∑ j=m

j=1 αk jv j = 0. Par suite αk j = 0 pour tout j = 1, ...m et k = 1, ...,n.



Chapitre 4

MATRICES

1. Généralités

Définition 17

Soient n,m ∈N. Une matrice A, à coefficients dans un corps commutatif K est un tableau
qui se présente sous la forme suivante :

A =



a11 . . . a1m

a21 . . . a2m

.

.

.
an1 . . . anm


Il s’agit d’une matrice à m colonnes et à n lignes.Les coefficients ai j ∈ IK , i désigne la
ligne, j celui de la colonne.

Notation : La matrice A se note A = (
ai j

)
1É iÉ n,1É jÉ m˙

L’ensemble des matrices à m colonnes et à n lignes, à coefficients dans K, est noté Mn,m(K).
Si K=R (respectivement K=C), la matrice est dite réelle (respectivement complexe). Si n = m,
la matrice A est dite carrée d’ordre n. Si m = 1, A est dite matrice unicolonne.

Exemple 16

Si n = m et que aii = 1, pour tout i, ai j = 0, si i 6= j , la matrice A est appelée la matrice
identité et se note In.

Si n = m et que aii =λi, pour tout i, ai j = 0, si i 6= j , la matrice est dite diagonale.

Si n = m et que ai j = 0 pour i < j, on dit que A est triangulaire inférieure.

Opérations sur les matrices

29
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1. L’addition :
Soient A,B ∈ Mn,m(K) avec A = (

ai j
)
1É iÉ n,1É jÉ m , B = (

bi j
)
1É iÉ n,1É jÉ m .La matrice

somme de A et B ,notée A+B = C, est définie par : ci j = ai j +bi j.

2. Produit externe :
Si λ ∈K, le produit λ.A est défini par : λ.

(
ai j

)= (
λai j

)
3. Produit de matrices :

Soient A ∈ Mn,m(K),B ∈ Mm,p(K).La matrice produit ,notée A.B = C, est définie par :

ci j =
m∑

k=1
aikbk j.On alors C ∈Mn,p(K).

Remarque 7

Le produit A.B est défini si le nombre de colonnes de A est égal au nombre de lignes
de B .

4. Transposée d’une matrice :
Soit A ∈ Mn,m(K).Lamatrice transposée de A,notée t A,appartenant à Mm,n(K), est
définie par :
t A = (

bi j
)

avec bi j = a ji . A titre d’exemple :

t

(
1 4 −1
2 7 9

)
=

 1 2
4 7
−1 9


Nous avons les propriétés suivantes :
– t (A+B)= t A+t B;
– t(λA)=λt A ;
– t (A.B)=t B.t A ( dans le cas où le produit est bien défini).

Proposition 14

L’espace Mn,m(K) muni de l’addition et de la loi externe est un K-espace vectoriel.

(Mn(K),+,×, .) est une algèbre non commutative sur K.

2. Applications linéaires et matrices

2.1. Matrices associées à une application linéaire

Soient E et E′ deux espaces vectoriels sur K, de dimension m et n respectivement, et f : E → E′

une application linéaire. Choisissons (e1, ..., em) une base de E et (e′1, ..., e′n) une base de E′, les
images par f des vecteurs e1, ...em se décomposent sur la base (e′1, ..., e′n) :

f (e1)= a11e′1 +a21e′2 + ...+an1e′n
f (e2)= a12e′1 +a22e′2 + ...+an2e′n

.

.

.
f (em)= a1me′1 +a2ne′2 + ...+anme′n
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Définition 18

On appelle matrice de f dans les bases B =(e1, ..., em),B′= (e′1, ..., e′n) la matrice notée
M( f )B′,B appartenant à Mn,m(K) dont les colonnes sont les composantes des vecteurs
f (e1), f (e2), ..., f (em) dans la base (e′1, ..., e′n) :

A =



a1,1 a1,2 . . . a1, j . . . a1,p

a2,1 a2,2 . . . a2, j . . . a2,p

. . . . . . . . . . . . . . . . . .
ai,1 ai,2 . . . ai, j . . . ai,p

. . . . . . . . . . . . . . . . . .
an,1 an,2 . . . an, j . . . an,p


ou A = (

ai, j
)

1ÉiÉn
1É jÉp

ou
(
ai, j

)
.

Il est clair que la matrice associée à f dépend du choix des bases de E et de E′.

Exemple 17

1. Soit E de dimension finie et idE : E → E l’application qui à x associe x. On considère
une base (e i, i = 1, ...,n) de E. On a

M(idE)e i =



1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 . . . 1 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 1


matrice unité de Mn(K).

2. Soit E =K2 et P1 :K2 →K2 l’application linéaire qui à (x, y) associe (x,0). Considérons

la base canonique (e1, e2) de K2. On a P1(e1)= e1 , P1(e2)= 0 et M(P1)e i =
(
1 0
0 0

)
3. Soit (e1, e2, e3) la base canonique de K3 et (e′1, e′2) la base canonique de K2. Considé-

rons l’application linéaire f :K3 →K2 qui à (x, y, z) associe (x− y, z− y). On a :

M( f )B′,B =
(
1 −1 0
0 −1 1.

)
.

4. Soit D :K4[X ]→K3[X ] l’application linéaire qui à p(X ) associe p′(X ). On a

M(D)B′,B =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

 .

(1, X , ..., X4) et (1, X , .., X3) étant les bases canoniques respectivement de K4[X ] et de
K3[X ].
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Proposition 15

Soient E et E′ deux K-espaces vectoriels de dimension m et n respectivement, (e i, ı = 1, ...m)
et (e′j, j = 1, ...,n) des bases de E et E′. Alors l’aplication M : L (E,E′) → Mn,m(K) qui à f
associe M( f )B′,B est un isomorphisme d’espaces vectoriels. En particulier dimL (E,E′)=
mn.

Démonstration

Il est facile de vérifier la linéarité de M. Soit f ∈ K erM, donc M( f )B′,B = 0 et par suite
f (e1)= f (e2)= ... f (em)= 0 d’où f = 0 et M est injective.
Elle est aussi surjective, car si

A =



a1,1 a1,2 . . . a1, j . . . a1,p

a2,1 a2,2 . . . a2, j . . . a2,p

. . . . . . . . . . . . . . . . . .
ai,1 ai,2 . . . ai, j . . . ai,p

. . . . . . . . . . . . . . . . . .
an,1 an,2 . . . an, j . . . an,p


on construit f en posant :
f (e1)= a11e′1 +a21e′2 + ...+an1e′n
f (e2)= a12e′1 +a22e′2 + ...+an2e′n.
.
.
f (em)= a1me′1 +a2me′2 + ...+anme′n.
Pour x ∈ E, x = x1e1 + ...xnen avec xi ∈K. On pose f (x) = x1 f (e1)+ ... = xn f (en). On vérifie
que f est linéaire et que M( f )B′,B = A.

Soient E,F,G trois K-espaces vectoreils, f ∈L (E,F), g ∈L (F,G). Soient B = (e1, ..., em), C =
(e′1, ..., e′n) et D = (e"1, ..., e"p) des bases respectives de E,F,G. Posons :
MC B( f )= (ak j) matrice de type (n,m)
MDC (g)= (bik) matrice de type (p,n)
MC B(g ◦ f )= (ci j) matrice de type (n,m)
On a alors ∀ j = 1, ...m :
g ◦ f (e j)= g( f (e j))= g(

∑k=p
k=1 ak j e′k)=∑k=p

k=1 ak jg()e′k
∑k=p

k=1 ak j(
∑i=m

i=1 bike"i )=∑k=p
k=1

∑i=m
i=1 ak jbike"i

∑i=m
i=1 (

∑k=p
k=1 bikak j)e"i

Proposition 16

Avec les notations précédentes on a : MDB(g ◦ f )= MDC (g)MC B( f ).

Matrice de l’inverse d’une application linéaire



MATRICES 33

Proposition 17

Soient E et E′ deux espaces vecroriels de même dimension et de bases respectives B et B′.
f ∈L (E,E′) est bijective si et seulement si M( f )B′B est inversible. De plus M( f −1)BB′ =
M( f )B′ B

−1.

Démonstration

Comme f ◦ f −1 = idE′ et f −1 ◦ f = idE, M( f −1 ◦ f )B = M( f ◦ f −1)B′ = M(idE) = M(idE′) et
par suite M( f −1)M( f )= M( f )M( f −1)= In où n = dimE, par suite M( f −1)= M( f )−1.

matrice colonne

Soit E un espace vectoriel, B = (e1, ...en) une base de E. Chaque vecteur x ∈ E s’écrit x =
x1e1+...+xnen. On peut ainsi associer à chaque vecteur x ∈ E une matrice du type (n,1) suivante

X =



x1

x2

.

.

.
xn


. Une matrice de ce type s’appelle une matrice colonne. Une matrice colonne peut être

interprétée comme matrice de l’application linéaire X :K→ E qui à chaque λ ∈K associe λx.
On a X = M1,B(X ) où (1) est la base canonique K.

Proposition 18

Soient E,F deux espaces vectoriels munis respectivement des bases B = (e1, ..., en), C =
(e′1, ..., e′p) et f ∈L (E,F). Soient Y la matrice colonne associé à f (x) dans la base C et X la
matrice colonne de x dans la base B. On a Y = MB C .X

Démonstration

Nous pouvons utiliser la proposition précédente. On a :
∀λ ∈ K . f ◦ x(λ) = f (X (λ)) = f (λx) = λ f (x) = f (x)(λ) càd f ◦ X = f (X ) et par passage aux
matrices on a Y = MB C .X

2.2. Changement de bases

Soient B = (e1, ..., en) et B′ = (e′1, ..., e′n) deux bases d’un espace vectoriel E.

Définition 19

On appelle matrice de passage de la base B à la base B′, la matrice P, carrée d’ordre n,
dont la jème colonne est formée des coordonnées du vecteur e′ j dans la base B. Autrement
dit si e′j =

∑i=n
i=1 pi j e i ( j = 1, ...,n), alors :
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P = (pi j)=


p11 p12 ... p1n

p21 p22 ... p2n

. . ... .

. . ... .
pn1 pn2 ... pnn.



Exemple 18

Si E est un espace vectoriel de base (e1, e2) et (e′1, e′2) avec e′1 = 3e1 + e2 et e′2 =−2e1 +5e2,

alors la matrice de passage de la base (e1, e2) à la base (e′1, e′2) est P =
(
3 −2
1 5

)

Interprétation. Pour tout indice j, la jème colonne de P est l’expression du vecteur e′j

dans la base B. P est donc la matrice de l’application identitée de E dans E quand on munit
au départ E de la base B′ et à l’arrivée de la base B. Autrement dit P = MB B′(idE).

Théorème 13

Soient B et B′ deux bases de E, P la matrice de passage de B à B′ et P ′ la matrice de
passage de B′ à B. Alors PP ′ = P ′P = I et ainsi P ′−1 = P.

Démonstration

Considérons le diagramme : (E,B′) → (E,B) → (E,B′). Comme id ◦ id = id, en passant
aux matrices on obtient MB′(id)= MB B′MB′B càd I = PP ′ = P ′P.

Action sur les coordonnées

Proposition 19

Soient x ∈ E, B et B′ deux bases de E et P la matrice de passage DE B à B′. Soient X la
matrice colonne de x dans B et X ′ la matrice colonne de x dans la base B′. On a X = PX ′

et ainsi X ′ = P−1X .

Démonstration

Découle immédiatement de l’égalité id(x) = x où id : (E,B′) → (E,B′) et de la proposition
précédente.

Exemple 19

Soit K2 muni de deux bases, la base canonique (e1, e2) et la base (e′1, e′2) définie par e′1 =
2e1 + e2 et e′2 = 3e1 +2e2. Soit x = 2e1 +3e2, calculons les composantes de x dans la base
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(e′1, e′2). On a P =
(
2 3
1 2

)
, P−1 =

(
2 −3
−1 2

)
, X ′ =

(
2 −3
−1 2

)(
2
3

)
=−5

4
, et ainsi x′ =−5e′1+4e′2

Proposition 20

Soient E et E′ deux espaces vectoriels de dimension finie et f ∈L (E,E′). Soient B, C deux
bases de E et B′, C ′ deux bases de E′. Notons A = M( f )B′,B A′ = M( f )C ′C , P la matrice
de passage de B `a C et Q la matrice de passage de B′ à C ′. On a alors A′ =Q−1AP.

Démonstration

Considérons le diagramme :
(E,B) f−→ (E′,B′)
↓ ↓
(E,C ) f−→ (E′,C ′)

On a f ◦ idE = idE′ ◦ f , et donc M( f )C ′C M(idE)C B = M(idE′)C ′B′M( f )B′B′ càd A′P−1 =
Q−1A ou encore A′ =Q−1AP.

Corollaire 4

Soit f ∈L(E) et B, B′ deux bases de E. Notons A = M( f )B , A′ = M( f )B′ et P la matrice de
passage de B à B′. On a alors A′ = P−1AP.

Définition 20

Deux matrices A, A′ ∈Mn(IKIK) sont dites semblables s’il existe une matrice P ∈Mn(IKIK)
inversible telle que P−1AP = A′.

Exemple 20

Soit f l’endomorphisme de K2 qui dans la base canonique (e1, e2) est représenté par la

matrice A = M( f )e i =
(
3 −1
0 2

)
. Déterminons la matrice A′ qui représente f dans la base

(e′1, e′2) avec e′1 = (0,−1) et e′2 = (1,1).OnaA′ = P−1AP =
(
1 −1
1 0

)(
3 −1
0 2

)(
0 1
−1 1

)
=

(
5 −2
3 0

)
.

2.3. Rang d’une Matrice

Définition 21

Soit A ∈Mn,m(K), A = [c1, ..., cm] où l’on a noté c j le vecteur colonne d’indice j (c j ∈Kn). On
appelle rang de A le rang du système constitué des vecteurs colonnes de A.
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Lemme 2

Soient E,F,G des espaces vectoreils de dimension finie, f ∈L (E,F), g ∈L (G,E).On a les
résultats suivants
– Si g est surjective, alors rang ( f )= rang ( f ◦ g) ,
– Si f est injective, alors rang (g )= rang ( f ◦ g) .

Démonstration

a) rang ( f )= dim f (E)= dim f (g (G))= dim( f ◦ g) (E)= rang ( f ◦ g) .
b) Soit (g(v1), ..., g(vr)) une base de Img . Le système ( f (g(v1)), ..., f (g(vr))) est libre puisque
f est injective et il est générateur de Im( f ◦ g) car si y ∈ Im( f ◦ g) , on peut écrire y =
( f ◦g)(x)= f [g(x)]= f (

r∑
i=1

αi g(vi))=
r∑

i=1
αi f [g (vi)] , donc ( f (g(v1)), ..., f (g(vr))) est une base

de Im( f ◦ g) , d’où rang(g )= rang( f ◦ g).

Proposition 21

Soit f ∈ L(E,E′). Soient B et B′ deux bases quelconques de E et E′ respectivement et
A = M( f )B′ ,B . On a alors rangf = rangA. Ainsi deux matrices qui représentent la même
application linéaire en des bases différentes ont même rang, en particulier deux matrices
semblables ont même rang.

Démonstration

On a : A = [ f (e1) , ..., f (en)] , où B =(e1, ..., en).Par définition nous avons :
rangA = dimvect ( f (e1), ..., f (en))= dim Imf = rangf .

Définition 22

Deux matrices A,B ∈Mn,m(K) sont dites équivalentes s’il existe P ∈ Mm(K) et Q ∈ Mn(K)
inversibles telles que B =Q−1AP .Il s’agit d’une relation d’équivalence sur Mn,m(K) .

Lemme 3

Soit A ∈Mn,m(K) .Alors A est de rang r Ê 1 si et seulement si A est équivalente à la
matrice Jr définie par blocs :

Jr =
(
Ir 0
0 0

)

où Ir désigne la matrice identité d’ordre r.
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Démonstration

Soit A = (
ai j

) ∈Mn,m(K) , de rang r. Considérons l’application linéaire φ :Km →Kn as-
sociée à la matrice A et définie par : φ(e i)=∑ j=n

j=1 a ji e′j ,1É i É m, où (e i)1É i É m (respec-
tivement

(
e′i

)
1É i É n ) est la base canonique de Km ( respectivement de Kn ).Comme A

est de rang r,on peut supposer par exemple que le système
(
φ(e i)

)
1É i É r forme une base

de Imφ.Ecrivons alors : φ(ek) =∑ j=n
j=1 ck jφ(e j) , pour k ∈ {r+1, ...,m} .On définit une base

nouvelle deKm,notée ( fk) ,en posant : fk = ek , pour k ∈ {1, ..., r} et fk = ek−∑ j=n
j=1 ck j e j,pour

k ∈ {r+1, ...,m} . On a alors : φ( fk) = 0 , pour k ∈ {r+1, ...,m} .Notons t j = φ( f j) , pour
j ∈ {1, ..., r} .Le système

(
t j

)
1É j É r étant libre, il peut être complété en une base de Kn,notée

aussi
(
t j

)
1É j É n .Considérons la matrice de l’application dans les bases ( fk)1É k É m et(

t j
)
1É j É n ., nous obtenons :

M(φ) f i , t j =


1 0 . . 0
0 1 . . 0
. 0 1 0
. 0 0 0
0 0 . . 0

= Jr

Les matrices A et Jr sont alors équivalentes car elles représentent l’application linéaire
φ.

Théorème 14

Soient A,B ∈Mn,m(K). Alors A et B sont équivalentes si et seulement si rangA = rangB.

Démonstration

Supposons que A et B soient équivalentes.Il existe alors des matrices inversibles P ∈
MmK) et Q ∈ Mn(K) telles que : B =Q−1AP .Notons f , g et h les applications linéaires
associées respectivement à A,P et Q.Grâce au lemme , on a :
rang

(
h−1 ◦ f ◦ g

) = rang( f ),d’où rangA = rangB.Réciproquement si rangA = rangB, le
lemme précédent permet d’affirmer que les matrices A et B sont équivalentes à la
matrice Jr, par conséquent elles sont équivalentes.

Théorème 15

Soit A ∈Mn(K). Alors A rangA = rangt A. Cela signifie que le rang d’une matrice donnée
est égal à la dimension du système formé des vecteurs lignes de la matrice.

Démonstration

supposons que rangA = r, donc A est équivalente à la matrice Jr, et par suite, il existe
P ∈ Mm(K) et Q ∈ Mn(K) inversibles telles que A = Q−1JrP. Donc t A =t P tJr

t(Q−1) =
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(tP−1)−1Jr
t(Q−1), car Jr est symétrique, d’où t A est équivalente à A et donc rangt A =

rang A = r.

2.4. Détermination pratique du rang d’une matrice.

Soit A ∈Mn,m(K).
i) On supprime toute ligne (ou colonne)qui est nulle ou qui est colinéaire à une autre.
ii) En permutant les lignes ou les colonnes, on obtient une matrice de la forme :

A1 =



a11 . . . a1m

a21 . . . a2m

.

.

.
an1 . . . anm


avec a11 non nul et de préférence valant 1.
iii) Pour tout i ∈ [2,n] , on remplace la ligne L i par L i − ai 1

a1 1
L1 , on se ramène à une matrice :

A′
1 =



a11 . . . a1m

0 . . . a′
2m

.

.

.
0 . . . a′

nm


soit A′

1 =
(

a11

0 B

)
où B est une matrice du type (n−1,m−1) .
iv) On applique les étapes i) à iii) à la matrice B.En répétant au besoin la méthode indiquée ,
nous obtenons une matrice échelonnée :

C =



c11 . . . c1m

0 c22. . . a′
2m

.

. crr

. 0 0
0 0 . 0 0


où les coefficients cii sont non nuls, et le rang est celui du nombre des lignes non nulles.
v) En procédant de façon analogue sur les lignes et les colonnes, on obtient une matrice équiva-
lente à A,de la forme :

Jr =
(

Ir 0
0 0

)

Exemple 21

Déterminons le rang de la matrice : A =

 1 2 0 −1
2 6 −3 −3
3 10 −6 −5


Les opérations élémentaires donnent :
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A1 =

 1 2 0 −1
0 2 −3 −1
0 4 −6 −2

 , A2 =

 1 2 0 −1
0 2 −3 −1
0 0 0 0


Les deux vecteurs lignes de la matrice A2 étant linéairement indépendants, le rang de A
est égal à 2.

Calcul de l’inverse d’une matrice carrée par la méthode du pivot.

Soit A ∈Mn(K). On considère la matrice A1 ∈Mn,2n(K),définie par :
A1 =

(
A In

)
On effectue des opérations élémentaires uniquement sur les lignes (ou uniquement sur les
colonnes) de B , de telle sorte que la matrice obtenue soit de la forme :
Am =

(
In C

)
La matrice C correspond à l’inverse de A.

Exemple 22

Soit à calculer l’inverse de la matrice A =

 1 2 −1
2 1 0
−1 1 2


On pose A1 =

 1 2 −1 . 1 0 0
2 1 0 . 0 1 0
−1 1 2 . 0 0 1

 .Nous obtenons :

A2 =

 1 2 −1 . 1 0 0
0 −3 2 . −2 1 0
0 3 1 . 1 0 1

 L2 → L2 −2L1, L3 → L3 +L1

A3 =

 1 2 −1 . 1 0 0
0 −3 2 . −2 1 0
0 0 3 . −1 1 1

 L3 → L3 +L2

A4 =

 1 2 −1 . 1 0 0
0 −3 2 . −2 1 0
0 0 1 . −1/3 1/3 1/3

 L3 → 1/3L3

A5 =

 1 2 0 . 2/3 1/3 1/3
0 −3 0 . −4/3 1/3 −2/3
0 0 1 . −1/3 1/3 1/3

 L2 → L2 −2L3,L1 → L1 +L3

A6 =

 1 2 0 . 2/3 1/3 1/3
0 1 0 . 4/9 −1/9 2/9
0 0 1 . −1/3 1/3 1/3

 L2 → (−1/3)L2

A7 =

 1 0 0 . −2/9 5/9 −1/9
0 1 0 . 4/9 −1/9 2/9
0 0 1 . −1/3 1/3 1/3

 L1 → L1 −2L2
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d’où A−1 =

 −2/9 5/9 −1/9
4/9 −1/9 2/9
−1/3 1/3 1/3





Chapitre 5

DETERMINANTS ET APPLICATIONS

1. Définition des déterminants par récurrence

Définition 23

Soit n Ê 1. Pour toute matrice carrée A = (
ai j

)
, d’ordre n, nous associons det A ∈K,défini

comme suit :
Si n = 1, on pose det(a)= a (avec A = (a) ).
Si n > 1, en supprimant la première ligne et la j-ième colonne de A,nous obtenons une
matrice carrée d’ordre n−1 notée A1 j.L’hypothèse de récurrence permet alors de poser :

det A =
n∑

j=1
(−1)1+ j a1 j det A1 j

Remarque 8

la formule a été obtenue en développant le déterminant de A suivant la première ligne,
on peut montrer que la quantité est indépendante du choix de la ligne ou de la colonne.
– Cas où n = 2.

Soit A =
(

a c
b d

)
.En développant le déterminant de A suivant la première ligne ( ou

colonne), nous obtenons :

det A =
∣∣∣∣∣ a c

b d

∣∣∣∣∣= ad−bc

– Cas où n = 3. Soit A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 . Développons le déterminant de A, suivant la

première ligne :

det A =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣= a11

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣−a12

∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣+a13

∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣
= a11a22a33 −a11a23a32 −a12a21a33 +a12a31a23 +a21a13a32 −a13a22a31

Régle de Sarrus :
Cette méthode propose de calculer les déterminants d’ordre 3 de la façon suivante :

41
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Une fois le déterminant posé, nous plaçons à sa droite les 2 premières colonnes.Ensuite,
nous calculons, en partant de gauche à droite, les trois premières diagonales puis nous
soustrayons les trois diagonales en partant de droite à gauche.Nous obtenons :∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
a11 a12

a21 a22

a31 a32

=

a11a22a33 +a12a23a31 +a13a21a32 −a12a21a33 −a11a23a32 −a13a22a31∣∣∣∣∣∣∣
3 −1 −1
1 2 0
2 5 7

∣∣∣∣∣∣∣
3 −1
1 2
2 5

= 42+20−16+7= 53

– Cas où la matrice A est triangulaire :

A =


a11 0 . . 0
a21 a22 0 . 0

.

. 0
an1 ann


Le calcul du déterminant de A se fait par récurrence sur n , nous obtenons :

det A = a11a22a33...ann

Définition 24

Soit E un espace vectoriel de dimension n sur K, et B =(e1, ..., en) une base de E. Soit

(v1, ...,vn) un système de n vecteurs de E. Ecrivons v j =
n∑

i = 1
ai j e i . On définit le détermi-

nant du système
(
v j

)
, en posant :

det (v1, ...,vn)= det
(
ai j

)
Nous verrons ultérieurement que cette quantité est indépendante de la base B.

2. Propriétés des déterminants.

Grâce à la définition 24, nous pouvons exprimer le détérminant d’une matrice d’ordre n comme
le déterminant des vecteurs colonnes composant la matrice,soit :
det A = det(c1, ..., cn) , où c j désigne la j-ième colonne de A.
Le théorème suivant donne les premières propriétés des déterminants.

Théorème 16

Avec les notations ci-dessus, nous avons :
– det(c1, ...,λck, ..., cn)=λdet(c1, ..., ck, ..., cn) , ∀λ ∈ IK .
– det(c1, ..., ck + c′k, ..., cn)= det(c1, ..., ck, ..., cn)+det(c1, ..., c′k, ..., cn)

ce qui signifie que l’application ck → det(c1, ..., ck, ..., cn), est linéaire, pour tout k ∈
{1, ...,n} .

– Si deux colonnes sont égales ( ou colinéaires) , le déterminant est nul.



DETERMINANTS ET APPLICATIONS 43

Démonstration

– Raisonnons pa récurrence sur n.Le résultat est évident pour n = 2.∣∣∣∣∣ λa c
λb d

∣∣∣∣∣=
∣∣∣∣∣ a λc

b λd

∣∣∣∣∣=λ (ad−bc)

Supposons la propriété vraie pour tout déterminant d’ordre É n−1.
Posons A = [c1...ck...cn]= (

ai j
)
,B = [c1...λck...cn]= (

bi j
)
.

On a : bi j = ai j si j 6= k, bik =λaik.

i)On a : det(c1, ...,λck, ..., cn) =
n∑

j =1
(−1)1+ j b1 j detB1 j =

n∑
j = 1, j 6=k

(−1)1+ j a1 j detB1 j +

(−1)1+kλaik det A1k

La matrice B1 j étant d’ordre n−1 , l’hypothèse de récurrence donne alors :
detB1 j =λdet A1 j pour tout j 6= k
par suite,

det(c1, ...,λck, ..., cn)=λ
n∑

j = 1
(−1)1+ j a1 j det A1 j =λdet(c1, ..., cn)

– De façon analogue, nous raisonnons pa récurrence sur n.Le résultat est vraie pour n =
2.En effet :∣∣∣∣∣ a+a′ c

b+b′ d

∣∣∣∣∣= (
a+a′)d− (

b+b′) c = (ad−bc)+ (
a′d−b′c

)= ∣∣∣∣∣ a c
b d

∣∣∣∣∣+
∣∣∣∣∣ a′ c

b′ d

∣∣∣∣∣
Supposons la propriété vraie pour tout déterminant d’ordre É n−1.
Posons A = [c1...ck...cn]= (

ai j
)
,B = [

c1...c′k...cn
]= (

bi j
)
,D = [

c1...ck + c′k...cn
]= (

di j
)

On a : bi j = ai j si j 6= k, bik = a′
ik et di j = ai j si j 6= k ,dik = aik +a′

ik

det(c1, ..., ck+c′k, ..., cn)=
n∑

j = 1
(−1)1+ j d1 j detD ik =

n∑
j = 1, j 6=k

(−1)1+ j a1 j detD1 j+(−1)1+k (a1k+

a′
1k)det A ik

La matrice D1 j étant d’ordre n−1 , l’hypothèse de récurrence donne alors :
detD1 j = det A1 j +detB1 j

d’où :

det(c1, ..., ck + c′k, ..., cn)=
n∑

j = 1
(−1)1+ j a1 j det A1 j +

n∑
j = 1

(−1)1+ j b1 j detB1 j

= det(c1, ..., ck, ..., cn)+det(c1, ..., c′k, ..., cn)
– Raisonnons pa récurrence sur n.Le résultat est évident pour n = 2.∣∣∣∣∣ a a

b b

∣∣∣∣∣= ab−ab = 0

Supposons la propriété vraie pour tout déterminant d’ordre É n−1.
Résolvonsd’abord le cas où les deux colonnes sont adjacentes :
Soit A = [c1...ck...cn] .Supposons que les colonnes cl et cl+1 sont égales.Par définition
on a :

det A =
n∑

j = 1, j 6=l, j 6=l+1
(−1)1+ j a1 j det A1 j + (−1)1+l a1l det A1l + (−1)1+l+1 a1l+1 det A1l+1

Pour tout j 6= l,et j 6= l +1, la matrice A1 j est d’ordre n−1 et contient deux colonnes
égales,donc d’après l’hypothèse de récurrence son déterminant est nul. D’autre part, on
a : a1l = a1l+1 et A1l = A1l+1, ce assure que le déterminant de A est nul.

Montrons le lemme suivant :
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Lemme 4

Si dans un déterminant donné,on permute deux colonnes adjacentes, la valeur du
déterminant est multipliée par -1.

Démonstration

D’après le résultat précédent on a :
det(c1, ..., cl + c′l+1, cl + c′l+1..., cn)= 0
puisque deux colonnes adjacentes sont égales.
Ensuite,grâce à la linéarité du déterminant par rapport aux colonnes d’indices rerspec-
tivement l et l+1 , nous obtenons :
det(c1, ..., cl , cl , ..., cn)+det(c1, ..., c′l+1, c′l+1..., cn)+
det(c1, ..., cl , c′l+1, ..., cn)+det(c1, ..., c′l+1, cl , ..., cn)= 0
Les deux premiers termes de l’expression ci-dessus sont nuls, puiqu’il s’agit de déter-
minants contenant deux colonnes adjacentes égales, ce qui donne le résultat du lemme.

Suite de la preuve du théorème :
Soit un déterminant d’ordre n,comprenant deux colonnes ck et cl égales avec l > k+1.En
échangeant les colonnes ck et ck+1,puis ck et ck+2 et ainsi de suite nous obtenons grâce
au lemme 4, un déterminant avec deux colonnes adjacentes :
det(c1, ..., ck, ..., cl , ..., cn)= (−1)l−k−1 det(c1, ..., ck, cl , ..., cn)= 0.

Le lemme admet l’extension suivante :

Corollaire 5

Si dans un déterminant donné,on permute deux colonnes , la valeur du déterminant est
multiplié par −1

Démonstration

reprenant les notations précédentes et en permutant la colonne cl et les colonnes précé-
dentes jusqu’à la colonne d’indice k nous obtenons :
det(c1, ..., ck, ..., cl , ..., cn)= (−1)2(l−k)−1 det(c1, ..., cl , ..., ck, ..., cn)=−det(c1, ..., cl , ..., ck, ..., cn)

Exemple 23

Soit à calculer le déterminant suivant :∣∣∣∣∣∣∣∣∣
1 0 0 0
2 0 4 0
−1 0 1 9
1 3 5 7

∣∣∣∣∣∣∣∣∣
Après permutation des colonnes 2 et 3 puis 3 et 4 nous obtenons :
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∣∣∣∣∣∣∣∣∣
1 0 0 0
2 0 4 0
−1 0 1 9
1 3 5 7

∣∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣∣

1 0 0 0
2 4 0 0
−1 1 9 0
1 5 7 3

∣∣∣∣∣∣∣∣∣= 4×9×3= 108

Le théorème suivant donne un critère pour vérifier qu’un système de vecteurs est libre.

Théorème 17

Soit E un espace vectoriel de dimension n sur IK et (v1, ...,vn) un système de vecteurs
de E .Alors (v1, ...,vn) est une base de E si et seulement si det (v1, ...,vn) 6= 0.

Démonstration

Supposons que le système (v1, ...,vn) ne soit pas une base de E ,alors il est nécessairement
lié .Supposons par exemple, que le vecteur v1 soit une combinaison linéaire des autres
vecteurs, c’est à dire :

v1 =
n∑

i = 2
αivi

Nous avons alors :

det (v1, ...,vn)= det (
n∑

i=2
αivi, ...,vn)=

n∑
i=2

det (vi,v2, ...,vn)= 0

puisque tous les déterminants figurant dans cette expression sont nuls car contenant cha-
cun deux colonnes égales.
Réciproquement supposons que le système (v1, ...,vn) soit une base de E.Soit B =(e1, ..., en)
la base canonique de E.Tout vecteur e i s’exprime en fonction de la base (v1, ...,vn).Nous
avons :

e i =
n∑

j = 1
βi jv j.Le calcul du déterminant,gâce à la linéarité par rapport à la première colonne,

donne :

det (e1, e2, ..., en)=
n∑

j1 = 1
β1 j1 det (v j1 , e2, ..., en)

En procédant de même avec les vecteurs e2, ..., et en , et en simplifiant les déterminants
contenant au moins 2 colonnes égales ,on a :

det (e1, e2, ..., en)=
n∑

j1, j2,..., jn = 1

n∑
l=1

βl jl det (v j1 ,v j2 , ...,v jn) avec jk 6= jl pour k 6= l.

Tout n-uplet ( j1, j2, ..., jn) avec jk 6= jl pour k 6= l, se déduit par permutation du n-uplet
(1,2, ...,n) .Il existe alors un scalaire λ :
det (e1, e2, ..., en)=λdet (v1, ...,vn)= 1
Donc det (v1, ...,vn) 6= 0.

Le théorème suivant donne une formule explicite du déterminant d’une matrice,à l’aide des
permutations du groupe symétrique :

Théorème 18

Soit A = (
ai j

)
une matrice carrée d’ordre n , on a :

det A = ∑
σ∈ Sn

ε (σ)aσ(1)1.aσ(2)2...aσ(n)n
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où Sn désigne le groupe symétrique d’ordre n et ε (σ) la signature de la permutation σ.

Exemple 24

– On prend n = 2.Le groupe symétrique S2 est constitué de deux éléments :

σ1 =
(

1 2
1 2

)
et σ2 =

(
1 2
2 1

)
avec ε (σ1)= 1,ε (σ2)=−1.
L’application de la formule du théorème 2.5 , donne :∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣= a11a22 −a21a12

– On prend n = 3.Déterminer les éléments du groupe symétrique S3 ainsi que leurs signa-
tures.En déduire l’expression du déterminant d’ordre 3.

Théorème 19

Soit A = (
ai j

)
une matrice carrée d’ordre n,on a :

det(t A)= det A

où t A désigne la matrice transposée de A.

Démonstration

Posons t A = (
bi j

)
.Par définition on a : bi j = a j i.La formule du théorème 18, appliquée à

B, donne :
det(t A)= ∑

σ∈ Sn

ε (σ)bσ(1)1.bσ(2)2...bσ(n)n = ∑
σ∈ Sn

ε (σ)a1σ(1).a2σ(2)...anσ(n)

Pour tout i ∈ {1, ...,n}, soit pi tel que σ (pi)= i.On a : apiσ(pi) = aσ−1(i)i, ce qui donne, grâce
à la commutativité du produit des scalaires :

det(t A)= ∑
σ∈ Sn

ε (σ)aσ−1(1)1.aσ−1(2)2...aσ−1(n)n

Comme ε (σ)= ε
(
σ−1), et en posant τ=σ−1,nous obtenons :

det(t A)= ∑
τ∈ Sn

ε (τ)aτ(1)1.aτ(2)2...aτ(n)n = det A

Le théorème 19 permet d’étendre aux lignes les propriètès des colonnes.C’est l’objet du prochain
corollaire :

Corollaire 6

Soit A = (
ai j

)
une matrice carrée d’ordre n.A s’écrit A =


L1

.

.

.
Ln

 .
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On a les propriètès suivantes :
– Le déterminant est linéaire par rapport à chaque ligne.
– Si dans un déterminant donné on échange deux lignes, la valeur du déterminant change

de signe.
– Si dans un déterminant donné deux lignes sont égales (ou colinéaires),le déterminant est

nul.
– Plus généralement, le déterminant d’une matrice est non nul si seulement si le système

des vecteurs lignes (L1, ...,Ln) est une base de IKn.

Le théorème suivant affirme que le déterminant du produit de deux matrices carrées est égal
au produit des déterminants des matrices :

Théorème 20

Soient A et B deux matrices carrées d’ordre n, on a le résultat :

det(A.B)= det A.detB

Corollaire 7

Une matrice carrée d’odre n est inversible si et seulement si son déterminant est non nul.

Démonstration

Soit A une matrice inversible.On a alors :A.A−1 = In .Par suite :
det

(
A.A−1)= det A.det A−1 = det In = 1,

donc det A est non nul,et l’on a :
det A−1 = 1

det A
Réciproquement,supposons que det A soit non nul et notons A = [c1...ck...cn] .
Comme det(c1, ..., ck, ..., cn) 6= 0,le système (c1, ..., ck, ..., cn) est libre ( th.2.4).

Posons : f (x) = A.x, x ∈ IKn.On a : A.x =
n∑

i=1
xi ci. Alors x ∈ ker f si et seulement si

:
n∑

i=1
xi ci = 0.Ce qui implique que xi = 0, i = 1, ..,n

puisque le système (c1, ..., ck, ..., cn) est libre.Donc f est injective et par suite A est

inversible.

Corollaire 8

Si A et A′ sont deux matrices semblables, alors det A = det A′.

Démonstration

On a : A′ = P−1AP , d’où det A′ = detP−1.det A.detP = det In.det A = det A.
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Définition 25

Soit E un espace vectoriel de dimension finie muni d’une base (e i) et f un endomorphisme
de E .On appelle déterminant de f le déterminant de la matrice de f dans la base (e i) :
det f = det M ( f )e i

Exemple 25

Soit θ ∈ [0,π[,calculons le déterminant de l’endomorphisme f de R2 associé à la rotation
d’angle θ.On a :
f (1,0)= (cosθ,sinθ) : f (0,1)= (−sinθ,cosθ)
donc :

M ( f )e i
=

(
cosθ −sinθ
sinθ cosθ

)
d’où :

det f =
∣∣∣∣∣ cosθ −sinθ

sinθ cosθ

∣∣∣∣∣= cos2θ+sin2θ = 1

3. Aplications des déterminants

3.1. Calcul des déterminants par les cofacteurs

Définition 26

Soit A = (
ai j

)
une matrice carrée d’ordre n, on appelle cofacteur de l’élément ai j le

scalaire défini par :
cof

(
ai j

)= (−1)i+ j det A i j

où A i j la matrice d’ordre n-1,obtenue en supprimant la j-ième colonne et la i-ième ligne.

Le théorème suivant donne le calcul du déterminant en développant suivant la j-ième colonne
ou de i-ième ligne :

Théorème 21

Soit A = (
ai j

)
,on a les formules :

det A =
n∑

k=1
(−1)k+ j ak j cof (ak j)

det A =
n∑

k=1
(−1)k+i ai kcof (ai k )

Exemple 26

Soit à calculer le déterminant de la matrice A =

 1 −5 7
3 2 2
1 −4 0


Développons suivant la dernière colonne :
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det A = 7

∣∣∣∣∣ 3 2
1 −4

∣∣∣∣∣−2

∣∣∣∣∣ 1 −5
1 3

∣∣∣∣∣=−98−16=−114

Le théorème suivant donne une formule permettant le calcul de l’inverse d’une matrice à l’aide
des cofacteurs :
La proposition suivante permet d’effectuer des opérations élémentaires sur les déterminants :

Proposition 22

Le déterminant d’une matrice reste inchangé si l’on ajoute à une colonne ( respectivement
une ligne) donnée ,une combinaison linéaire des autres colonnes (respectivement des autres
lignes).

Démonstration

Le résultat découle des théorèmes 16 et 19

Exemple 27

Soit à calculer ∆=

∣∣∣∣∣∣∣∣∣
1 2 1 0
0 3 1 1
−1 0 5 2
2 1 3 0

∣∣∣∣∣∣∣∣∣
Nous remplaçons les lignes L3 et L4 par L3 +L1 et L4 −2L1 , nous obtenons :

∆=

∣∣∣∣∣∣∣∣∣
1 2 1 0
0 3 1 1
0 2 6 2
0 −3 1 0

∣∣∣∣∣∣∣∣∣ En développant par rapport à la première colonne, on a :

∆=

∣∣∣∣∣∣∣
3 1 1
2 6 2
−3 1 0

∣∣∣∣∣∣∣ Remplaçons L′
1 par L′

1+L′
3 ,on a : ∆=

∣∣∣∣∣∣∣
0 2 1
2 6 2
−3 1 0

∣∣∣∣∣∣∣ puis la colonne

C′′
2 par la colonne C′′

2 −2C′′
3, on a alors,en développant suivant la première ligne :

∆=

∣∣∣∣∣∣∣
0 0 1
2 2 2
−3 1 0

∣∣∣∣∣∣∣= 8

Le théorème suivant donne l’expression de l’inverse d’une matrice à l’aide des cofacteurs :

Théorème 22

Soit A = (
ai j

)
une matrice carrée invesible,alors on a :

A−1 = 1
det A

tcom (A)
avec com (A)= (

bi j
)

où bi j = cof
(
ai j

)
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Exemple 28

Soit à calculer l’inverse de la matrice carrée d’ordre 2 , A =
(

a c
b d

)
.On a grâce à la formule

ci-dessus on a :

A−1 = 1
ad−bc

(
d −c
−b a

)

3.2. Calcul du rang d’une matrice

Définition 27

On appelle mineur d’ordre r d’une matrice A le déterminant δ d’une matrice carrée d’ordre
r extraite de A.On appelle bordant du mineur δ tout déterminant d’ordre r+1 contenant
le déterminant δ.

Exemple 29

Soit la matrice A =


3 1 4 0
0 2 3 −2
−1 3 5 1
0 2 3 1
−3 2 2 4

 .Déterminer tous les bordants la sous matrice A1 =

(
1 0
2 −2

)

Théorème 23

Le rang d’une matrice A est r si et seulement si l’on peut en extraire un mineur δ d’ordre
r non nul et que les bordants de δ soient nuls.

Exemple 30

Déterminer le rang de la matrice


1 2 6
1 3 8
2 3 10
−2 4 4




