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Chapitre 1

SYSTEMES LINEAIRES-METHODE DU
PIVOT

INTRODUCTION

De nombreux problémes mathématiques peuvent étre traduits par des équations algebriques
et notamment par des systemes linéaires. L'objet du chapitre est la présentation de la méthode
du pivot dans un corps commutatif K, appelée aussi méthode d’élimination de Gauss , et qui
permet la résolution de tels systémes. Dans ce chapitre, le corps K désigne Q, R, ouC.

1. Systéemes linéaires

1.1. Définition

Définition 1

Un systeme linéaire est la donnée d’'un nombre fini d’équations linéaires telles que :

ai1x1 “+aigxs +aizxs + - +aipx, = bi (— équation 1)
a91X1 “+ag9xes +agzxs + - +aoux, = bo (< équation 2)
(1) < ; ..
a;1x1 +a;exe +a;zxs + -+ +agpuxX, = b; (— équation 1)
ap1X1 +apeXs +ap3xz + - +appxX, = bp (<~ équation p)
Les éléments x1,x9,.....,x, sont les inconnues du systeme (1).

Les termes a;; ,b; pour 1<i<p et 1<j<n sontdonnésdanslecorps IK ets’appellent

respectivement les coefficients et les seconds membres du systéme (1).

Résoudre le systeme (1), c’est déterminer ’'ensemble S de toutes les solutions . Nous allons
montrer que si S n’est pas vide, il est soit réduit a un singleton, soit c’est un ensemble infini.
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1.2. Exemples

Exemple 1

En se placant dans R , nous cherchons a résoudre le systéme suivant :

2x -y +4z = -4 (L)
3x 2y -3z = 17 (L2)
bx -3y +8z = -10 (L3)

Notons L1,Lg,L3 les trois lignes de ce systeme.Remplacgons la ligne Lo par Li, = 2Ly —3L;
puis Lg par Lg =2L3—5L1 ,nous obtenons le systeme :

2x -y +4z = -4 (L1)
7y -18z = 46 (€@l
-y -4z = 0 ()

Remplacons la nouvelle ligne L} par Lé =TL5+L; ,onaalors:

2x —y +4z = -4 (L1)
Ty -18z = 46 (Ly)
-46z = 46 (Ly)
Nous obtenons la solution du systeme en remontant les lignes: z=-1,y =4,x =2 et
S ={(2,4,-1)}
Exemple 2
Soit le systeme :
2x -y +z = 4 (L)
3x 2y -2z = 5 (L2)
-x +y -z = 2 (L3)

Notons L1,Lg,L3 les trois lignes de ce systeme.Remplacons la ligne Lo par L’2 =2Lo—3Lq
puis L3 par Lé =2L3+ L1 ,nous obtenons le systeme :

2x -y +z = 4 (L1)
Ty -7z = -2 (LY
+y -z = 8 (LY)

Remplacons la nouvelle ligne L} par Lé =TL5+L; ,onaalors:

2x -y +z = 4 (L1)
Ty -7z = -2 (LY
0 = 58 (Ly)

ce qui est impossible . Par conséquent le systeme proposé n’a pas de solution soit S = @.
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Exemple 3

Déterminons toutes les solutions du systéme a quatre inconnues et a trois équations :

x -y 4z 4+t = 2 (L)
2 -y +2z -t = 3 (L2)
3x +y +z -2t = 5 (L3)

En procédant de facon analogue aux exemples 1 et 2 , nous pouvons "éliminer" les coeffi-
cients de la variable x deslignes Lo et L3 , ce qui donne le systéeme :

x -y 4z +t = 2 (L1)
y -3t = -1 @y
+4y -2z -5t = -1 (L)

Ensuite nous remplacons la ligne L} par Lg = L5 —4L,, , d'ot1 le systeme final :

x -y +z 4+t = 2 (L)
y -3t = -1 (L)
-2z +7t = 3 (Ly)

Ainsi le systéme admet une infinité de solutions ( une droite affine dans R?) qui s’écrivent
sous forme parametrique , le parameétre étant la variable libre ¢ :

_ 3 5
X = —§t+§
y= 3t-1

_ 7 5
Z2= §t+§

dou S={(-3t+2,3t-1,2t+2)/ teR}.

A travers les exemples traités, il apparait que la méthode du pivot est basée sur les propriétes
des systémes liné aires , elle permet a la fois d’assurer 'existence des solutions mais aussi leur
détermination :

Opérations élémentaires : Lensemble des solutions d’'un systéme linéaire reste inchangé si
I’'on procéde aux opérations suivantes :

- La modification de 'ordre des équations;

— La multiplication d’'une ligne par une constante non nulle du corps K ;

- DL'addition a une ligne donnée d’une combinaison linéaire des autres lignes.

1.3. Méthode du pivot

Considerons le systeme linéaire :



SYSTEMES LINEAIRES-METHODE DU PIVOT E

ai1xy +aigxe +ai13xg + o+ FAipxX, = b (— équation 1)
ag1xX1 “+agexs +aggxs + - +aoux, = bo (— équation 2)
(1) < , .
a;1x1 “+a;oxe +a;zxs + -+ +ajpx, = b; (— équation i)
Ap1X1 +ap2Xy +Ap3x3 + 0 +aAppXp, = bp (— équation p)

On commence par modifier 'ordre des équations ( si c’est nécessaire ) pour que le pivot du
systeme (a savoir le coefficient a11) , soit non nul .Ensuite, la premiere étape consiste a
"éliminer" les coefficients asj,....,a1.Pour cela, nous remplacons les lignes Lg,...,L, par les
lignes Lj, = ay1Lg — a21L1,...,L;, =a11L, —ap1L1.Nous obtenons un systéme ayant le méme
ensemble de solutions , il est donné par :

ai1x1 +aigxe +aisxg + - +a1pXn, = b1

/ / / _ '

Ox1  +agyxe +aggxs + -+ +ay,xn = by

(2) < / / / ~ '
0x1 +ai2x2 +ai3x3 + .. +ainxn = bi

/ / / _ /

0x1 +a,0X2 FA3X3 + o A Xn = bp

Nous appliquons la méthode d’élimination explicitée ci-dessus au sous systeme de (2) représenté
par les lignes L5, ...,L},.Et ainsi de suite, I'opération donne a la fin un systéme équivalent de la
forme suivante :

a11x1 +aigxz +ais3xs + v tamxa = by
li ! ! = !
0x1 +a22x2 +a23x3 + +a2nxn - b2
) { : : 5 =
0x1 +0x9 +0x3  .eeennns + agfs_l)xs+ e +a§fr:1)xn = bfvs_l)

ou tous les coefficients all,a’22, ....,ag,ss_ D sont non nuls, ce sont les pivots successifs.

Remarque 1

Si en appliquant la méthode du pivot, nous obtenons une équation de la forme 0=25, avec
b non nul, nous pouvons affirmer que le systéme (1) n’a pas de solution.

L'étude du systeme (s) donne lieu a deux possibilités :
- 1%cas:p=s=n
Le systeme (s) devient triangulaire :

aiixiy “+aigxg +aigxg + - +ai1,Xn = bl
/ !/ !/ _ /
Ox1  +ageXe +aygxs + - t+ay, %X, = by
) . . _
0x1 0x9 +0x3 + --- +a§;1)xn = b;f_l)
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La derniére équation permet de calculer I'inconnue x,.Et de proche en proche en remon-
tant les équations nous pouvons calculer successivement les variables x,-1,x,-2,.....,X1
(voir.l'exemple 1)).Le systéme admet une solution et une seule.

- 2M€cas:p=s<n
. P ) .. , ) ) )
Les inconues x7,x xp dites principales ,s’expriment en fonction des inconnues restantes
Xp+1,Xp+2,.....,%, appelées variables libres .Nous obtenons une infinité de solutions dans ce
cas.

2. Systéemes linéaires homogeénes

Définition 2

Un systéme linéaire est dit homogeéne si les seconds membres de (1) son nuls, c’est a dire :

aiix1 “+aigxe +aigxs + - +aipx, = 0 (< équation 1)
ag1x1 “+aggxe +agyxs + - +asgpx, = 0 (— équation 2)
1) < _ .
aj1x1 “+ajoxe +ajzxg + - +ajgpx, = 0 (— équation i)
ap1x1 +apexs +ap3xz + - +appx, = 0 (— équation p)

Remarque 2

— Le n-uplet (0,...,0) est toujours une soution de (1)’.

- La solution générale (x1,....,x,) du systéeme (1),est la somme d’une solution particuliere
(Y15, ¥n) du systéeme (1) et de la solution générale (zy,....,2,) du systéeme (1).

— Un systeme linéaire homogeéne avec plus d’inconnues que d’équations (n > p ) admet

une infinité de solutions non nulles.




Chapitre 2

ESPACES VECTORIELS

La notion d’espace vectoriel est une structure fondamentale des mathématiques modernes. Il
s’agit de dégager les propriétés communes que partagent des ensembles pourtant tres différents.
Par exemple, on peut additionner deux vecteurs du plan, et aussi multiplier un vecteur par un
réel (pour 'agrandir ou le rétrécir). Mais on peut aussi additionner deux fonctions, ou multiplier
une fonction par un réel. Méme chose avec les polynoémes, les matrices,... Le but est d’obtenir
des théoremes généraux qui s’appliqueront aussi bien aux vecteurs du plan, de ’espace, aux
espaces de fonctions, aux polynémes, aux matrices,...

Dans ce chapitre et dans les suivants, K désignera un corps commutatif quelconque (le plus
souvent K =R ou C).

1. Généralités

1.1. Structure d’espace vectoriel

Définition 3
On appelle espace vectoriel sur K ou encore K-espace vectoriel, tout ensemble E muni de
deux lois :

1. Une loi interne appelée addition, notée + telle que (E,+) soit un groupe abélien.

2. Une loi externe qui a tout couple (A,x) € K x E fait correspondre un élément de E noté
A.x, cette loi vérifiant les quatres propriétés suivantes :

(a) VxeE lx=x

(b) VieK Vx,yeE A(x+y)=Ax+Ay
(c) VA, uelk VxeE (A+pu)x=Ax+ux
(d) VA ueK VxeE (Au).x=A.(u.x)

Les éléments de E s’appellent vecteurs, ceux de K scalaires.

Exemple 4

1. Soit K" ’ensemble des n-uplets (a1, as,...a,) d’éléments de K. Munissons K" des lois
suivantes :
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- Une addition définie par (a1, ag,...,a,) +(B1, B2, ..., Bn) = (@1 + B1,a2 + Bo,...,an + Br)
- Une loi externe définie par : A.(a1,aqg,...,a,) =(Aai, Aag,...,Aa,)

Il est facile de vérifier que (K", +,.) est un espace vectoriel sur K.

2. Lensemble .4, (K) des matrices carrées d’ordre n a coefficients dans K est un K-espace
vectoriel. Les lois sont définies par :

(ai,))+(bij)=(a;;+b;j et Ad(a;;)=(Aa;;)

3. Si E et F sont des espaces vectoriels sur K, on peut munir E x F d'une structure
naturelle de [K-espace vectoriel, en définissant ainsi les opérations :
Y(x,y), (x',y)EExF (x,y)+(x',y)=(x+x",y+y)
V(x,y)EExF VYAeK A.(x,y)=Ax,Ay)
L'ensemble E x F muni de ces deux lois s’appelle I'espace vectoriel produit de E par
F.

4. Lensemble K[X] des polynomes a coefficients dans K muni des lois classiques :
(P,Q)—P+Q et (1,P)— AP est un espace vectoriel sur K.
5. Soit D un ensemble quelconque, et </ (D,K) 'ensemble des applications de D dans
K. Munissons «/(D,K) des lois suivantes : Pour tout f, g € #/(Dd,K) et 1 € K
f+g:x—fx)+gx), A.f :x— Af(x)
Il n’est pas difficile de vérifier que «/(D,K) muni de ces deux lois «/(D,K) est un
espace vectoriel sur [K (appelé espace des applications de D dans K).

On peut noter les cas particuliers suivants :

(a) D=N,K=R, «(D,K) est 'espace vectoriel réel des suites réelles.
(b) D=N,K=C, «(D,K) est 'espace vectoriel complexe des suites complexes.

(c) DcR, K =R, «/(D,K) est 'espace vectoriel réel des fonctions numériques, de
variable réelle, définies sur le domaine D.

Calcul dans un espace vectoriel

La proposition suivante montre qu’il n’y a absolument aucune surprise et que 1’'on calcule en
fait comme dans toute structure algébrique classique.

Proposition 1

Vx,yeE, VAeK, A (x—y)=A.x—A.y.
VAeK, 1.0=0.

VyeE, LMeK, A(=y)=-A.y.

VA, peK,VxeE, (A—p).x=A.x—p.x.
VuekK,VxeE, (—u).x=—u.x.

A A
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6. VxeE, 0.x=0.
7. VxeE, VAeK, Lx=0<=A1=00ux=0.

Démonstration

1). On a Mx—y)+ Ay = M(x —y)+y) = Ax. 2) On fait x = y dans (1). 3) On fait x = 0 dans
dans 1). 4) On a (A — wx + px = (A — w) + pw)x = Ax. 5) On fait A =0 dans 4). 6) On fait A =pu
dans 4). 7) En effet, supposons que Ax =0. Si A =0, on a gagné. Sinon A est inversible dans
le corps K et on a par multiplication par A1 : 17 1(Ax)=1710=0, doi1 1.x =0, i.e x = 0.

Exercices
1. Justifier si les objets suivants sont des espaces vectoriels.

(a) Lensemble des fonctions réelles sur [0, 1], continues, positives ou nulles, pour ’addi-
tion et le produit par un réel.

(b) L'ensemble des fonctions réelles sur R vérifiant lim,_, ;o f(x) = 0 pour les mémes
opérations.

(¢) Lensemble des fonctions sur R telles que f(3) ="7.

(d) Lensemble R* pour les opérations x®y =xy et 1-x =x* (A€ R).

(e) Lensemble des points (x,y) de R? vérifiant sin(x + y) = 0.

(f) Lensemble des vecteurs (x,y,z) de R? orthogonaux au vecteur (—1,3,—2).
(g) Lensemble des fonctions de classe €2 vérifiant f” + f = 0.

(h) L'ensemble des fonctions continues sur [0, 1] vérifiant fol f(x)sinxdx =0.

(i) Lensemble des matrices (¢ 2) € M5(R) vérifiant a +d = 0.

1.2. Sous-espaces vectoriels

Définition 4

Soit (E,+,.) un espace vectoriel sur K et F' une partie non vide de E. On dira que F est un
sous-espace vectoriel de E (en abrégé s.e.v) si :

1. F est stable pour les deux lois + et .

2. F muni des deux lois induites + et . est un [K-espace vectoriel.

Le théoreme suivant donne une caractérisation des sous-espaces vectoriels. Dans la pratique,
pour montrer qu'une partie F d’'un espace vectoriel de référence E, est un espace vectoriel il
suffit de montrer que F' est un sous-espace vectoriel de E.

Théoréme 1

Soit F' une partie non vide d’'un K-espace vectoriel E. Les propositions suivantes sont
équivalentes :

1. F est un sous-espace vectoriel de E.
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2. Vx,yeE, VA, pekK, Ax+uyekF.

Démonstration

Il est clair que 1) = 2). Inversement, supposons qu’on ait 2). Prenons 1 =1 et u=—1. alors
x € F et y € F entrainent que x —y € F. Donc F' est un sous-groupe additif de E. Prenons
ensuite u=0. Alors 1 €K et x € F entrainent Ax € F.

Exemple 5
1. Soit E un K-espace vectoriel. Les parties {0} et E sont des sous-espaces vectoriels de
E appelés sous-espaces triviaux.

2. Soit n € N. L'ensemble K,[X] des polynémes a coefficients dans K de degré inférieur
ou égal a n est un s.e.vde vde K[X].

3. Lintersection quelconque d’'une famille de s.e.v d’'un K-espace vectoriel E est un s.e.v
de E.

4. Danalyse fournit de nombreux exemples de s.e.v de <«/(I,R), ou I est un intervalle de
R. Entre autres :

(a) L'ensemble ¢ (I,R) des applications continues sur 1.
(b) L'ensemble 2(I,R) des applications dérivables sur I.

(c) Pour tout n =1, I'ensemble 2,,(I,R) des applications n fois dérivables sur I est
un sous-espace vectoriel de «/(I,R). Lintersection de tous ces sous-espaces vec-
toriels est un sous-espace vectoriel noté 2°°(I,R), espace vectoriel des fonctions
indéfiniment dérivables sur I.

(d) Pour tout n =1, I'ensemble %,(I,R) des applications %, sur I.

5. Il y a évidement des parties de [K-espaces vectoriels qui ne sont pas des sous-espaces
vectoriels. Notons en particulier :

(a) L'ensemble des polynomes de degré exactement n n’est pas un sous-espace vec-
toriel de K[X].

(b) L'ensemble des fonctions positives ou nulles (resp. négatives ou nulles) définies

sur une partie D de R, n’est pas un sous-espace vectoriel de <«/(D,R).

Exercices
Parmi les ensembles suivants, reconnaitre ceux qui sont des sous-espaces vectoriels :

1. {(x,y,2)€R3|x+y=0}

2. {(x,y,z,t)€R4|x:tety:z}
3. {(x,y,z)elR3|z:1}

4. {(x,y) eR%|x? +xy =0}

5. {(x,y)€R2|x2+y2>1}

6. {f e FR,R)| f(0)=1}



ESPACES VECTORIELS (12

7. {feZR,P)| f(1) =0}
8. {f e ZR,R)| f est croissante }
9. {(wn)nen | (uy) tend vers 0}

1.3. Sous-espace engendré par une partie

Définition 5

Soit (x1,...,4,) un systeme fini de vecteurs d’'un K-espace vectoriel E. Un vecteur x € E est
dit combinaison linéaire des vecteurs x1,...,x, si l’on peut trouver un systeme (11,...,1,) de
scalaires, tel que

x=A1x1+...+A,.%,.

Les scalaires A; sont nommés coefficients de la combinaison linéaire x.

Exemple 6

1. Le vecteur 0 est combinaison linéaire de toute famille finie de vecteurs, les coefficients
étant nuls.

2. Tout vecteur x est combinaison linéaire de tout systeme de vecteurs contenant x, le
coefficient de x étant 1, tous les autres égaux a 0.

3. Dans l'espace vectoriel K2 sur le corps K, soit le triplet (e, es,e3) ot e1 =(1,0,0),e9 =

(0,1,0),e3 = (0,0,1). Tout vecteur (a,b,c) de K3 est combinaison linéaire des vecteurs
et1,eg,egcar :(a,b,c)=aeq+beg+ces

Théoréeme 2

Soit (x1,...,4,) un systeme fini de vecteurs d'un K-espace vectoriel E. L'ensemble F' des
combinaisons linéaires des vecteurs x1,...,x, est un s.e.v de E ; c’est le plus petit s.e.v (pour
Iinclusion) de E contenant les vecteurs x1,...,x,. F' est dit sous-espace engendré par les
vecteurs x1,...,x, et il est noté :

F=Vect(x1,...,xp) ={A1x1+...+ 1., : A1... A, €K}

Démonstration

Partons de deux éléments de F' :
Xx=a1.X1+...+AnXy , y=P1.X1+...+ Br.xn
Quels que soient les scalaires a et §,0on a :
ax+p.y=(aai+pP1).x1+...+(aa, + BPBr.)xn

On obtient une combinaison linéaire du systéme proposé, donc un élément de F' qui est, par
conséquent, sous-espace vectoriel de E.
F contient évidemment chacun des x; du systeme (x1,...,x,). D’autre part, tout sous-espace,
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contenant les vecteurs x1,...,x,, doit contenir aussi la somme A1.x1 +...A,.x, pour tout n-
uplets de scalaires (11,...,1,). Un tel sous-espace contient donc F' qui est, par conséquent,
le plus petit sous-espace contenant les vecteurs x1,...,x,.

Définition 6

Un systéme fini (x1,...,x,) de vecteurs d'un K-espace vectoriex E est dit générateur de E (
ou aussi engendre E) si E = Vect(xy,...,x,). En d’autres termes :

VaeE, AA,.., A, €K, /x=A1.01+... + 1. 5.

Exemple 7

1. K™ est engendré par les n-uplets (1,0,0,...,0), (0,1,0,...,0),..., (0,0,0,...,1).

2

2. Soit n un entier. Dans </ (R,R) les fonctions 1, x, x~,...,x"* engendrent le sous-espace

vectoriel des fonctions polynémiales de degré inférieur ou égal a n.

Théoréme 3

Soit A une partie d’'un K-espace vectoriel E. Lensemble H des combinaisons linéaires finies
d’éléments de A est un s.e.v de E ; c’est le plus petit s.e.v (pour I'inclusion) de E contenant
A. H est dit sous-espace engendré par la partie A, il est noté :

Vect(A)={A1.x1+...+A,.x, :x1...%,€EA n=1}

Exemple 8

1. K[X] est engendré par la partie {1,X,...,.X",....}.

2. Soient (E,) une suite croissante de s.e.v d'un K-espace vecrtoriel E. Si G, est un
systeme générateur de E,,, alors E = U, E,, est un s.e.vde E admettant U,G, comme
partie génératrice.

Exercices

1 1
1. Montrer que le systéme (u,v,w) est un systéme générateur de R avec u = (%), v= (6) et

(i)

1 . .. C . 1 -1
2. Peut-on trouver ¢ € R tel que le vecteur (?;tt) soit une combinaison linéaire de (%) et ( 11) ?

1.4. Partie libre - Partie liée

Définition 7

1. On dit qu’un systéme fini (x1,...,x,) de vecteurs d'un K-espace vectoriel E est libre si
toute combinaison linéaire de x1,...,x, est triviale cad :

Si Aq,...,ApeK telsque A1.x1+...+1,.6,=0,alors 11=...=1,=0.
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2. On dit qu'un systéme fini (x1,...,x,) de vecteurs d'un K-espace vectoriel E est lié s’il
n’est pas libre. Ce qui revient a dire qu’il existe des scalaires 11,...,A, non tous nuls
tels que :

Ax1+...+ An.xn =0.

Propriété 1
1. Tout vecteur non nul est libre.
2. Tout systéeme contenu dans un systeme fini libre est libre.

3. Tout systeme contenant le vecteur nul est lié.

4. Tout systéme fini contenant un systeme lié est lié.

Proposition 2

Soit E un K-espace vectoriel. Le systeme (x1,...,x,) est lié, si et seulement si, 'un au moins
des vecteurs x; s’exprime comme combinaison linéaire des autres vecteurs.

Démonstration

Supposons que le systeme (x1,...,x,) est lié, il existe donc un systeme (14,...,A,) de scalaires
non tous nuls tel que A1x1 +... + 1,x, = 0. Soit alors A; # 0, il est inversible dans K et on
peut écrire :

-1 -1 -1 -1
ui=A; A1x1+ .+ AT A1t A A1 X1 AT A X

Inversement 'autre implication est évidente.

Définition 8

1. On dit qu’une partie A d'un K-espace vectoriel E est libre si tout systéme fini d’élé-
ments distincts de A est libre, cad :
Vn=1, Vxi,...,x, € A,VAq,...,Ap €K telsque A1.x1+...+1,.x,=0,0na :

2. On dit qu'une partie A de E est liée si elle n’est pas libre. Autrement dit, il existe un
systéme fini de vecteurs de A qui soit lié.

Exemple 9

1. La partie {1,X,...,X",....} est libre dans K[X]

2. La partie formée des applications f, définies par f,(x) = e™ est libre dans </ (R,R)
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1.5. Somme de sous-espaces vectoriels

Il est a noter que la réunion de deux s.e.v d’'un [K-espace vectoriel n’est pas en général un s.e.v.
Pour remédier a cet inconvénient nous allons remplacer I'union des s.e.v par une opération plus
convenable qui est la somme des s.e.v.

Définition 9

Soit E un K-espace vectoriel, de dimemsion finie ou non, F et G deux sous-espaces vectoriels
de E. On appelle somme de F et G 'ensemble, noté F' + G, défini par :

F+G={z€eE /AxeF, yeG,z=x+y}.

Proposition 3

La somme F +G de deux s.e.v d'un K-espace vectoriel E est un s.e.v de E. De plus c’est le
plus petit s.e.v de E (au sens de I'inclusion) contenant FF UG.

Démonstration

Soient deux éléments x+y et x'+y € F+ G avec x,x' € F et y,y € G et soit a et § deux
scalaires, on a a(x+y)+ p(x'+y") = (ax+ px")+(ay+ Py )e F+G. Donc F+G est un s.e.vde E.
Il est clair que F + G contient F' et G, donc F UG. D’autre part, tout sous-espace, contenant
F uQ@, doit contenir aussi la somme x +y avec x € F et y € G. Un tel sous-espace contient
donc F' + G qui est, par conséquent, le plus petit sous-espace contenant F UG.

Définition 10

Soit E un [K-espace vectoriel et F',G deux s.e.v de E. On dit que la somme F + G est directe
et on note F @ G, si tout élément de F + G s’écrit d'une manieére unique sous la forme x + y
avecxeF et yeq@.

Proposition 4

Soit E un K-espace vectoriel et F,G deux s.e.v de E. Il y a équivalence entre :
1. F +G@ est directe.
2. FnG ={0}.

3. x+y=0avecxeFetyceG=x=y=0.

Démonstration

- 1)=2)Size FnG, z peut s’écrire z = z+0 =0+ 2. La décomposition étant unique, z = 0.

-2)—=3)Six+y=0avecxeFetyeG,alorsx=-ye FNG={0}.3) = 1) Six+y=x"+y'
avecx,x’ €eFety,y eG,alorsona(x—x)+(y—y)=0avecx—x'e F et y—y' € G; donc
x=x'ety=y'
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Définition 11

Soit £ un K-espace vectoriel et F',G deux s.e.v de E. On dit F' et G sont supplémentaires,
et on note £ = F & G, si tout élément de E s’écrit d'une maniére unique sous la forme x +y
avecxeF et yeq@.

En d’autre termes, E = F & G si les deux conditions suivantes sont réalisées :
1. E=F+G.
2. La somme F + G est directe (i.e F NG ={0}).

Exemple 10

- Soit E un [K-espace vectoriel muni d’'une base finie (eq,...,e,;).Alors E=F&G avec
F =vect(ey,...,e;) et G=vect(eji1,...,en),1 €{1,...,n—1}.

- Ona R,R)=FaeG , avec F ( respectivement G ) 'espace des applications paires
(respectivement impaires ).

Définition 12

Soit £ un [K-espace vectoriel et soit F' un s.e.v de E. On appelle supplémentaire de F
(sous-entendu dans E) tout s.e.v G de E vérifiant E =F & QG.

2. Les Applications Linéaires.

2.1. Généralités

Définition 13
Soient E et E’ deux espaces vectoriels sur K et f une application de E dans E’. On dit que
f est linéaire, si :

1. fo+w)=FfWw)+f(w), Yv,wekE.

2. f(Av)=Af(v), VveE, VAeK.

Si de plus f est bijective, f est un isomorphisme d’espaces vectoriels.

Lensemble des applications linéaires de E dans E’ est noté £(E,E'). Une application linéaire
de E dans E est appelé endomorphisme de E. L'ensemble des endomorphismes de E est noté
Z(E).

Remarque 3

Pour toute application linéaire f, on a f(0) = 0 puisque f est un homomorphisme de
groupes.(Ona : f(x)=f(x+0)=F(x)+(0) ).
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Exemple 11

1. Lapplication f : E — E' qui associe a un élément v € E, le vecteur nul est linéaire; elle
est dite 'application nulle.

2. Lapplication idg : E — E qui associe a un élément v € E, le vecteur v lui méme,est
linéaire; elle est dite 'application identité de E.

3. Lapplication h) : E — E qui associe a un élément v € E, le vecteur Av (A € K\ {0}) est
linéaire; elle est appelée ’'homothétie de rapport A.

4. Lapplication dérivation D : K[X]— K[X] qui associe & un polynome P sa dérivée P’,
est linéaire.

5. Soit E = E1eE. Lapplication P; : E — E qui associe a vecteur x = x1+x9, le vecteur x;
(x1 € E1,x9 € E9), est linéaire; elle est appelée la projection de E sur E; paralléelement
akEs.

6. Soit vy # 0 un vecteur de E. La translation 7 : E — E qui associe a tout vecteur v, le
vecteur v + vy, est non linéaire, car 7(0) = vy # 0.

Image et noyau d’ une application linéaire

Proposition 5

Soit f € £(E,E’) et F un sous-espace vectoriel de E. Alors f(F') est un sous-espace vectoriel
de E’. En particulier f(E) est un sous espace vectoriel de E’ appelé image de f et noté Imf.

Démonstration

On sait que f(F) est un sous groupe de E’, il suffit donc de vérifier la stabilité pour 'opéra-
tion externe. Soit A e K et f(v)e f(F),ona Af(V)=f(Av)e f(F).

Remarque 4

On peut montrer que 'image réciproque d'un s.e.v F’ de E' estuns.e.vde E.

Proposition 6

Soit f € L(E,E'), Kerf ={x € E : f(x)=0} est un sous espace vectoriel de E, appelé noyau
de f.

Démonstration

Il suffit de vérifier la stabilité pour 'opération externe. SiAelK etx € E,ona f(Ax) = Af(x) =
A0 =0 et par suite Ax € kerf.
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Proposition 7

f est injective si et seulement si Kerf = {0}

Exemple 12

1. SoitE=E;09E9.OnalmPi=E{et KerP1=E,.
2. Soit D : K[X] — K[X] I'application dérivation. On a KerD =K et ImD = K[X]

3. Soit f : K3 — K2 I’application définie par f(x,y,z)=(2x+y,y—2).On a :
Kerf ={(x,y,2) e K®: y=—-2x et z = y} = {(x,—2x,-2x) : x € K}. Kerf est la droite
vectorielle engendré par (1,-2,—2).
Imf = {(x’,y/’) € K2: 3(x,y,2) e K3: &' =2x+y, ety = y—2z}. Soit (x/,y') € K2. En
-y

posant x = xT,y =y',2 =0, on vérifie que f(x,y,z) = (x',y'), donc f esr surjective,

dott Imf =K2.

Proposition 8

Soit f € L(E,E') et (v1,...,v,) un systéme de vecteurs de E.

1. Si f est injective et le systeme (vq,...,v,) est libre dans E, alors le systéme
(f(v1),...,f(vy)) est libre dans E'.Si f est injective et A une partie libre de E
alors f (A) est libre dans E’'.

2. Si f est surjective et le systeme (v1,...,v,) est générateur de E, alors le systéme
(f(vy),..., f(vy,)) est générateur de E’ .Plus généralement, si f est surjective et A une
partie génératrice de E , alors f (A) engendre E’

En particulier si f est bijective, 'image d'une base de E est une base de E’.

Démonstration
1=n i=n

1) Supposons que Z Aif(v;)=0avec Aq,...,A, € IK. Comme f est linéaire, f(Z A;v;)=0,d’ou
i=1 i=1

1=n
Z A;v; =0 compte tenu de I'injection de f. L'indépendence du syseme (v1,...,,) entraine

=1
A1 =...= 1, =0.S0it A une partie libre de E , alors d’aprés ce qui précéde I'image par f de
toute partie finie de A est libre dans E’, par suite f (A) est libre. 2) Soit y € E’, il existe

1=n
donc x € E tel que f(x) = y. Or on peut écrire x = Z A;v; ou les A; € K.
=1
i=n l
Z /lif (Ui).
=1

1=

i=n
Il Sen suit que y = f (x) = f ()_ A;v;) =
i=1

2.2, Structure des endomorphismes

E,E',E" sont des espaces vectoriels sur K.
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Proposition 9

1. Z(E,E') muni des lois (f + g)(x) = f(x) + g(x) et (Af)x) = Af(x), (f,g € L(E,E'),L €
IK,x € E) est un espace vectoriel sur K

2. Sife 4E,E"), ge L(E',E"), alors gof € L(E,E")
3. Pour tout f,he L(E,E'), g,k L(E'\E"),AeK :
(a) go(f+h)=gof+goh.
(b) (g+k)of=gof+kof.
(¢) go(Af)=Agof.

4. Si f est bijective, alors f~! est linéaire.

Démonstration

Y(E,E') est un espace vectoriel, voir exemple 3 du par.1 chap 2. On a go f(Ax + uy) =

glf Az + py)l = gIAf(x) + pf (] = Ag(F () + pg(f(y) = Ag o F)(x) + (g o £)(y). Tl suffit de
vérifier que f~1(Ay) = Af ~1(y) puisqu'on a déja vérifié que f ! est un homomorphisme de
groupes. Posons y = f(x), alors f{(Af () = fTH(f(Ax) = Ax = Af ~1(y)

Anneau £L(E) - Groupe GI(E).

Théoréme 4

L'ensemble Z(F) des endomorphismes de E muni des opérations (f,g) — f+g et (f,g) —
f o g a une structure d’anneau unitaire.

Démonstration

D’apres ce qui précéde, (£ (E),+) est un groupe commutatif et la composition des endomor-
phismes est associative et distributive par rapport a 'addition.

Théoréme 5

L'ensemble des automorphismes d’un espace vectoriel E est pour la composition des appli-
cations un groupe, appelé groupe linéaire de E et noté GI(E).

Algebre £ (E)- Application : Les projecteurs

Théoreme 6

L'ensemble Z(E) muni des opérations
-1(f,.8)—f+8,

- 2, f)—Af,

- 3(f,.8)—fog
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a une structure d’espace vectoriel pour les lois 1 et 2 et de plus A(fog)=(Af)og=fo(1g),
on dit que Z(E) a une structure d’algebre sur K.

Soit E un espace vectoriel sur K, E1, E9 deux sous-espaces vecrtoriels tels que E =E{® E5. On
définit I'application Pg, : E — E; qui associe a x = x1 + x2, le vecteur x1(x; € E1,x2 € E3g).
On a les propriétés suivantes :

1. Pg, estlinéaire, KerPg, =E3 et ImPg, = E;.

2. (Pg,)?=Pg,, Pg,+Pg,=1dg.

3. Pg,oPg, =Pg,oPg,=0et

4. E=KerPg, ©ImPg, et E =KerPg,® ImPg,.

Définition 14

Un endomorphisme p de E est appelé projecteur si pop = p.




Chapitre 3

ESPACES VECTORIELS DE
DIMENSION FINIE

1. Généralités

Définition 15

1. On appelle espace vectoriel de dimension finie tout espace vectoriel engendré par un
systéeme fini de vecteurs. Dans le cas contraire on dit que I’espace vectoriel est de
dimension infinie.

2. Un systeme (u1,...,u,) de vecteurs d’'un K-espace vectoriel E est dit base de E si
(u1,...,uy,) est libre et générateur E.

Exemple 13
1. Une base de K" est (1,0,0,...,0), (0,1,0,...,0),..., (0,0,0,...,1); elle est dite base cano-
nique de K”.

2. Les polynomes 1, X, X 2 ..., X" forment une base de I'espace vectoriel K,[X] des poly-
nomes de degré inférieur ou égal a n.

3. Si E et F sont deux espaces vectoriels de bases respectives (e1,...,e,) et (f1,...,fm),
alors E x F admet pour base (e1,0r), ...,(e5,0r),(0x, f1), ...C0&, fm).

Remarque 5

Il ne faudrait pas croire que tous les espaces vectoriels sur un corps K soient de dimension
finie. Lexemple le plus simple est K[X], en effet supposons que K[X] est engendré par
Pi,..P,. Si n est le plus haut degré des polynémes P1,...P,, le polynome X”*! ne peut
s’écrire comme combibaison linéaire des vecteurs P1,...,P,. Il s’en suit que K[X ] ne peut pas
étre engendré par un nombre fini de polynémes.

Le lemme suivant est fondamental. Il nous permettera de montrer que toutes les bases d'un
[K-espace vectoriel sont constituées du méme nombre de vecteurs. Ce nombre s’appellera dimen-
sion de I'espace.
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Lemme 1

Soit £ un [K-espace vectoriel engendré par le systeme (eq,...,e,) et soit (f1, ..., /) un systéme
de vecteurs de E. Si m > n, alors (f1,...,fm) est lié.

Démonstration

La démonstration se fait par récurrence sur n. Soit m > n.
Cette propriété est vraie pour n =1, car si (f1, f2) sont deux vecteurs d’'un espace vectoriel
engendré par e, il existe 1; et Ag tels que :

f1=2A1e1 et fo=Age;.

Si les deux coefficients sont nuls, alors le systeme est lié. Sinon, on a A1af1 —A1f2 =0 et le
systeme est lié.

On suppose la propriété vraie pour n — 1 et on la montre pour n. Soit (f1,..., /) un systéme
de vecteurs d’'un espace vectoriel engendré par (eq,...,e,), avec m > n. On peut écrire

Vi=1,...m fi=aje1+g;, aveca; €K et g;€<eq,...e, >.

Si tous les a; sont nuls, alors les vecteurs f; €< eq,...,e, > pour tout i = 1,...,m. D’apres
I’hypothese de récurrence, le systeme (f1,...,f) est lié.
Sinon, I'un des a; est non nul, par exemple a1. Dans ce cason a :

aife—asfi€<eq,...,en>,..,a1fm—amfi€<esg,..,ep,>.

Or m —1>n—1 donc ’hypothése de récurrence s’applique : ils sont liés. Par suite il existe
des coefficients A; non tous nuls tels que :

Aa(a1fe—asf1)+...+ An(@1fm —amf1)=0.

Il s’ensuit que
—(Agag + ...+ )Lmam)fl + /12a1f2 +...+ )Lmalfm =0.

Comme 'un des coefficients 1;a1 # 0, le systeme (f1,..., f) est lié, ce qui achéve la démons-
tration.

Théoreme 7
1. Tout K-espace vectoriel de dimension finie admet au moins une base. Plus précisé-
ment, tout systeme générateur fini contient au moins une base.

2. Toutes les bases d’'un K-espace vectoriel E ont le méme nombre de vecteurs. Ce
nombre s’appelle la dimension de E et se note dimE.

Démonstration

- Existence d’une base. Si (eq,...e;) engendre E et si ce systeme est libre, il forme une base.
S’il est lié, I'un des vecteurs, par exemple e, est combinaison linéaire des autres vecteurs.
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Il n’est pas difficile de voir que, dans ce cas, le systeme (eq,...e,,—1) engendre E. On itére
le procédé jusqu’a obtenir un systéme générateur libre. Cette méthode est constructive.

- Soient (eq,...ey) et (f1,..., fm) deux bases de E. Alors on a d’apres le lemme fondamental
(e1,...ep) est générateur de E et (f1,..., fm) est libre dans E, donc m <n, (e1,...e,) est libre
et (f1,..., fm) est générateur, donc n < m.

Théoréme 8

Soient E un [K-espace vectoriel de dimension finie n.
1. Tout systeme libre de E ayant n vecteurs est une base.
2. Tout systeme générateur de E ayant n vecteurs est une base de E.

3. Soit F c E un sous-espace vectoriel de E. Alors F' est de dimension finie, dimF <

dimkFE et il y a égalité si et seulement si F = E

Démonstration

- Soit (eq,...,e,) un systeme libre de E, montrons qu’il est générateur de E. Soit x € E, le
systeme (x,e1q,...,e,) est lié d’apres le lemme fondamental. Il existe donc un systéeme de
scalaires non tous nuls (1,11,...,1,) tel que :

Ax+MAer+...+ e, =0.

Le scalaire A est forcément non nul, car sinon 11 =... = 1,, = 0 compte tenu de la liberté
du systeme (eq,...,e,). Par suite on peut écrire :

x=-A"1A1e1+...+ A7 A,e,).

Donc (ey,...e,) engendre E.

- Soit (eq,...,e,) un systéeme générateur de E, montrons qu’il est libre dans E. Si le systéme
(eq1,...,e,) est lié, alors 'un des vecteurs est combinaison linéaire des autres vecteurs;
soit par exemple e;. Dans ce cas le systeme (eg,...e;) est générateur de E, ce qui est
contradictoire en tenant compte du lemme fondamental, car une base de E qui contient
forcément n éléments serait liée.

— Parmi tous les systéemes libres de F', on en choisit un maximal et on le note (f1,...fn).
Le nombre des vecteurs de ce systéme est nécessairement inférieur a dim E, d’apres
le lemme fondamental. Ce systéeme est forcément générateur, car si x € F, le systeme
(x,f1,...[m) est lié puisque (f1,...f) est libre maximal, et donc x peut s’écrire comme
combinaison linéaire des vecteurs du systéme (f1,..., f,») comme dans 1).

Si F est un sous-espace vérifiant dimFE = dimF, alors F = E, puisqu’une base de F étant
un systeme libre de E, possédant n vecteurs est aussi une base de E en vertu de 1).

Un autre moyen de former une base dans un K-espace vectoriel est le suivant; c’est le théoréme
de la base incomplete.
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Théoréme 9

Soit E un espace vectoriel de base (eq,...,e,) et soit (f1,...,fm) un systé me libre. Alors il
existe n —m vecteurs parmi les vecteurs ey,...,e, tels que le systeme constitué de ces n —m
vecteurs et des vecteurs f1,...,/n forme une base de E.

Démonstration

On voit que si m < n, alors il existe un des vecteurs e; tel que (f1,...fm,e;) soit libre. Sinon,
pour tout i = 1,...,n, tous les systemes (f1,...fm,e;) seront liés et les vecteurs eq,...,e, seront
combinaisons linéaires des vecteurs f1,...f, et donc le systeme (f71,..., /) sera générateur
de E, ce qui est impossible. En posant f,,.1 = e¢;, on itére le procédé jusqu’'a obtenir n
vecteurs libres f;. Ils forment alors une base. Cette méthode est constructive.

Exemple 14

Dans R*, on prend la base canonique (e1,e9,e3,e4) et le systéme libre suivant : f1 =e;+2es9
et fo = —e1 +eg. Le compléter en une base de de R*. On a :

- (f1,f2,e1) est 1ié

- (f1,[2,e2) est lié

- (f1,f2,e3) est libre

- (f1,f2,es3,e4) est libre.

Ces quatres vecteurs forment une base de R*.

2. Rang d’un systeme fini de vecteurs

Soit E un espace vectoriel sur K, de dimension n et, soit S = (u1,...,u,) un systeme de p vecteurs
de E (p <n).

Définition 16

Soit E un espace vectoriel sur K, de dimension n et, soit S = (u1,...,u,) un systéme de
p vecteurs de E (p < n). On appelle rang du systeme de vecteus S = (u1,...,u,) et on
note, par rg(S), la dimension du sous-espace vectoriel engendré par ce systeme i.e rg(S) =
rg(uy,...,up)=dimVect(ui,...,up).

Exemple 15
Dans K*, considérons le systéme des trois vecteurs :
u1=(1,0,0,0), ue =(0,1,0,0), x3 =(1,1,0,0).

I1 est clair que le systéme (u1,us) est libre dans K* et que x5 = u1 + us. Par conséquent, le
sous-espace F' engendré par (u1,u9,x3) est aussi engendré par le systéeme libre (z1,u39) et
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par suite le rang de F est 2.

Proposition 10

Le rang d’un systéme de vecteurs est le nombre maximum de vecteurs libres que I’ on peut
extraire de ce systéme.

2.1. Somme vectorielle

Proposition 11

Soit E est un [K-espace vectoriel de dimension finie. Tout sous-espace vectoriel F de E
admet au moins un supplémentaire G ; de plus tous les supplémentaires ont pour dimension
dimE —-dimF.

Démonstration

Si(eq,...,e,) est une base de E et (f1,...f,) une base de F, le théoréeme de la base incompléte
nous permet de compléter la base de F' par n —m vecteurs pour former une base de E. Ces
n —m vecteurs engendrent un sous-espace vectoriel G qui sera supplémentaire de F'.

Proposition 12

Soient F' et G deux sous-espaces vectoriels de dimension finie d'un espace vectoriel E. Alors
F + G est de dimension finie et on a :

dim(F +G) =dimF +dim G —dim(F N G).

Démonstration

Soit (e1,...,ep,) une base de F NG, que 'on complete en une base (e1,...,ep, f1,...,f¢) de F' et
(e1,....p,&1,...,8r) de G. On vérifiera alors que (e1,...,ep, f1,...,f¢,81,-..,&r) est une base de
F+@G.

Corollaire 1

Soient F' et G deux sous-espaces vectoriels de dimension finie d'un espace vectoriel E.Alors
E est somme directe de F etde G sietseulementsi dimF +dimG =dimE et
FnG={0}.

2.2. Applications linéaires en dimension finie.

Proposition 13

Soit E,E’ deux espaces vectoriels ,E étant de dimension finie. Soit f une application
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linéaire de E dans E'. Alors Imf est un sous-espace vectoriel de dimension finie de E’. Sa
dimension est appelée le rang de f (rg(f)=dimImf).

Démonstration

Soit (eq,...,e,) une base de E.Alors le systéme image (f (e1),...,f (e,)) engendre Imf ,qui
est par conséquent de dimension finie avec dimImf <n.

Théoréme 10

Deux espaces vectoriels de dimension finie sont isomorphes si et seulement si, ils ont la

méme dimension.

Démonstration

— Si f :E — E' est un isomorphisme, alors d’aprés la proposition précédente 'image d’'une

base de E est une base de E’, donc E et E’ ont 1a méme dimension.

<= Supposons que dimE =dimE' et soit (e1,...,e,) une base de E et (e, ...e},) une base de
i=n i=n

E'. Soit f: E — E' définie par f()_Ae;) = ) Ajel. Il est facile de voir que f est linéaire
i=1 i=1

bijective.

Corollaire 2

Soit E un espace vectoriel de dimension finie sur K, alors E est isomorphe a K si et seule-
ment si dimFE =n.

Théoréme 11

Théoréeme de la dimension. Soient E et E’ deux espaces vectoriels de dimension finie et
feLE,E"), alors dimE =dim(Kerf)+dimImf).

Démonstration

Supposons que dimE = n, dim(Kerf) = r et montrons que dim(Imf) = n —r. Soit
(w1,...,w,) une base de Kerf et complétons la pour obtenir une base de E, en l'occu-
rence (w1,...wW;,V1,...0y—r). montrons que B = (f(v1),...f(V,—)) est une base de Imf. %

i=n-r
engendre Imf en effet f(x) = f(arw1+...+ a,w, + A1+ ... + Ap—pUp—p) = Z Aif(v;). %
i=1
i=n-r i=n-r i=n-r '
est libre puisque si Z Aif(v;) =0, alors f( Z ;0;)=0 et donc Z Aivie Kerf. 1l s’en
=1 =1 =1
i=n-r iL:r l l
suit que Y Ajv; =) Aif(;)
i=1 i=1
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Corollaire 3

feL(E,E, E et E' étant de méme dimension, alors les propriétés suivantes sont équiva-
lentes :

1. f est injective.

2. f est surjective.

3. f est bijective.

Démonstration

Il suffit de montrer que 1) < 2). De I’'égalité dimE =dim(Kerf)+dim(Imf), résulte [
injective < Kerf ={0} < dimE =dim(Imf) < dimE' =dim(Imf) < E'=Imf <
f surjective

Remarque 6

1. Ce résultat est faux en dimension infinie. Lapplication dérivation D : K[X] — K[X]
qui & un polyndme P fait correspondre P’ est surjective mais non injective.

2. Une application linéaire f est parfaitement définie si 'on connait 'image des vecteurs
d’une base, car d’apres la linéarité de f on a :
flx) = f(X;Z] xiei) = X:Z] xif (e;), donc si on connait f(ey),...,f(en), f est connue en
tout vecteur de E.

Théoreme 12

Soient E et E’ deux K-espace vectoriels. Si dimE =n et dimE’' =m, alors dim £ (E,E’) =
nm.

Démonstration

Soit (eq,...e,,) une base de E et (v1,...,v,) une base de E’. Soit u € L(E,E') et x € E. Il existe
un unique n-uplet (x1,...x,) € K" tel que x = Zi’f xje;. Pour tout i = 1,...,n, on peut écrire

iI=m .
u(e;)= 25‘:1 a;jv; avec «;; € K. Par suiteon a :

i=n i=n i=n  j=m
u(x) =u(Y xie;) =) xiule;) =) xi( ) ;v
=1

i=1 i=1  j=1

On pose u;j(e;)=v; et u;j(er) =0 pour k # i, les applictions u;; sont linéaires et on a :

=n i=n j=m =nj=m =nj=m
u(x) = sz(z a;ju;je;)) = Z(Z a;juij(x;e;)) = Z Z a;juij(x;e;)= Z Z a;juij(x).
i=1 j= i=1j=1 i=1 =1

Il s’en suit que u = Zéi’lL(Zj:z'ln a;ju;j et les u;; engendrent £&(E,E’). Vérifions que les
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u;; forment un systeme libre. Supposons que }; ja;;u;; = 0. Pour & = 1,...,n, on a
Yijaijuijler) = Zj:'ln ap;jv; = 0. Par suite a;; =0 pour tout j=1,..metk=1,...,n.




Chapitre 4

MATRICES

1. Généralités

Définition 17

Soient n,m € N. Une matrice A, a coefficients dans un corps commutatif K est un tableau
qui se présente sous la forme suivante :

ailr . . . Q1m

ast . . . Qa9m
A=

anl . . . anm

Il s’agit d’'une matrice & m colonnes et a n lignes.Les coefficients a;; € IK, i désigne la
ligne, j celui de la colonne.

Notation :Lamatrice A senote A= (@i)1< ;< ni<j<m
L'ensemble des matrices & m colonnes et a n lignes, a coefficients dans K, est noté ., ,,(K).
Si K =R (respectivement K = C), la matrice est dite réelle (respectivement complexe). Si n =m,
la matrice A est dite carrée d’ordre n. Sim =1, A est dite matrice unicolonne.

Exemple 16

Sin=m etque a;;=1,pourtouti,a;;=0, sii#j ,lamatrice A estappelée la matrice
identité et se note I,,.

Sin=m etque a;;=A;, pourtouti,a;;=0, sii#j ,lamatrice estdite diagonale.

Sin=m et que a;; =0 pour i < j, on dit que A est triangulaire inférieure.

Opérations sur les matrices
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1. L’addition :
Soient A,B € Mpnm(K) avec A = (aij)ls isnil<j<m >’ B = (bij)ls isnil<j<m
somme de A et B ,notée A+B =C, est définie par :c¢;; =a;;+b;;.

.La matrice

2. Produit externe :
Si A €K, le produit 1.A est défini par : A.(a;;) = (Aa;j)
3. Produit de matrices :
Soient A € M, m(K),B € My p(K).La matrice produit ,notée A.B = C, est définie par :

m
cij= Z @by ;.0n alors C € 4, p(K).
k=1

Remarque 7

Le produit A.B est défini si le nombre de colonnes de A est égal au nombre de lignes
de B.

4. Transposée d’'une matrice :
Soit A € My, n(K).Lamatrice transposée de A,notée tA,appartenant a M 1 (K), est
définie par :
‘A =(b;j) avecb;j=aj; . A titre d’exemple :

1 2
t14—1_47
2 7 9 |

Nous avons les propriétés suivantes :

- "(A+B)='A+!B;

- {QA)=MAA

- {(A.B)='B.!A (dans le cas ou le produit est bien défini).

Proposition 14

Lespace .4, »(KK) muni de I'addition et de la loi externe est un K-espace vectoriel.

(M, (K),+,%,.) est une algebre non commutative sur K.

2. Applications linéaires et matrices

2.1. Matrices associées a une application linéaire

Soient E et E' deux espaces vectoriels sur K, de dimension m et n respectivement, et f : E — E’
une application linéaire. Choisissons (e, ...,e,;) une base de E et (e, ...,e},) une base de E’, les
images par f des vecteurs eq,...e,;, se décomposent sur la base (e’l, slh)

fler)=aiie] +agies+... +anie),

fle2) =aize] +agges + ... +angel,

flem) =aime] +agne, +... +anme),
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Définition 18

On appelle matrice de f dans les bases B =(ey,...,en),%8'= (e],...,e,,) la matrice notée
M(f )@ 2 appartenant a ./, ,(IK) dont les colonnes sont les composantes des vecteurs
f(e1),f(e2),...,f(en,) dans la base (e, ...,e},) :

a1 a2 ... Q@1 ... Qilp
a1 Q@22 ... @2; ... Q2p
A= ou A= (ai,j) 1<i<n ou (ai,j)'
a1 @j2 ... Qij ... Qjp 1sjsp
Qn1 QAp2 ... Qnj ... Gupp

I1 est clair que la matrice associée a f dépend du choix des bases de E et de E'.

Exemple 17

1. Soit E de dimension finie et idg : E — E 'application qui a x associe x. On considere
une base (e;, i=1,...,n)de E. On a

1 0 0 0
1 0 0

I
e 1 0
0 0 0 1

matrice unité de 4, (K).

2. Soit E = K? et P; : K? — K2 I'application linéaire qui & (x, y) associe (x,0). Considérons

10
la base canonique (e,ez) de K2. On a Pi(e1) =e; , P1(eg) =0 et M(Pq),., = (O O)

3. Soit (e1,e9,e3) la base canonique de K3 et (e’l,e’2) la base canonique de K2. Considé-
rons Papplication linéaire f : K3 — K2 qui a (x, y,z) associe (x—y,z—y). On a :

1 -1 0
M ' = .
(N ,» (0 1 1')
4. Soit D : K4[X]— K3[X] application linéaire qui & p(X) associe p'(X). On a
01000
00200
MDiza=\y o o 3 of
0 00O 4

(1,X,...X% et (1,X,..,X3) étant les bases canoniques respectivement de K4[X] et de
K3lX].
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Proposition 15

Soient E et E’ deux K-espaces vectoriels de dimension m et n respectivement, (e;,1=1,...m)
et (e’j, J=1,..,n) des bases de E et E'. Alors l'aplication M : L(E,E’) — My m(K) qui & f
associe M(f ) o est un isomorphisme d’espaces vectoriels. En particulier dim £(E,E') =
mn.

Démonstration

Il est facile de vérifier la linéarité de M. Soit f € KerM, donc M(f )z g = 0 et par suite
fler)=f(eg)=...f(en)=0dou f =0 et M est injective.
Elle est aussi surjective, car si

a1 412 ... Q@1 ... Q1p

a1 agzz ... az; ... QAg2p
A=

a1 a;j2 ... Qijj; ... Qijp

an71 an’z oo an,‘] cee an,p

on construit / en posant :
f(el) = alle’l +a218,2 + ... +an1e’n
f(€2) = alge’l +a226’2 + ... +an2e’n.

flem) =aime] +agmel, +...+apmer,.
Pour x € E, x = x1e1 +...x,e, avec x; € K. On pose f(x) =x1f(e1)+... = x,f(ey). On vérifie
que f est linéaire et que M(f )z .z =A.

Soient E,F,G trois [K-espaces vectoreils, f € L(E,F), g€ L(F,G). Soient X = (e1,...,en), € =
(e’l,...,e'n) et 2 =(e"1,...,e"p) des bases respectives de E,F',G. Posons :

M« %(f) = (ar;) matrice de type (n,m)

Mg¢(g) = (b;) matrice de type (p,n)

M« (g o f)=(c;j) matrice de type (n,m)

OnaalorsVj=1,..m :

gofle))=g(fle) =Xyt arjel) = Xyt arjgoer Tyt anj(EiZy biker) =

k=p = " = k:p "
Y1 2io] arjbire”i 221X, ) birakjle”

Proposition 16

Avec les notations précédentes on a : Mgg(gof)=Mge(g)Mvyau(f).

Matrice de l'inverse d’une application linéaire
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Proposition 17

Soient E et E’ deux espaces vecroriels de méme dimension et de bases respectives % et %'.
f € L(E,E') est bijective si et seulement si M(f)g g est inversible. De plus M(f Dga =
M(f)g 2 '

Démonstration

Comme fof ' =idg et flof =idg, M(f ' of)g=M(fof Vg = M(idg) = M(idy) et
par suite M(f " DM(f) = M(f)M(f 1) =1, ou n=dimE, par suite M(f~1) = M(f)~L.

matrice colonne

Soit E un espace vectoriel, 8 = (eq,...e;) une base de E. Chaque vecteur x € E s’écrit x =
x1e1+...+x,e,. On peut ainsi associer a chaque vecteur x € E une matrice du type (n,1) suivante
X1
X2

X =| " |. Une matrice de ce type s’appelle une matrice colonne. Une matrice colonne peut étre

Xn
interprétée comme matrice de I'application linéaire X : K — E qui & chaque A € K associe Ax.
On a X = M1 %(X) ot1 (1) est la base canonique K.

Proposition 18

Soient E,F deux espaces vectoriels munis respectivement des bases % = (eq,...,e,), € =
(e’l, ...,e;,) et f € L(E,F). Soient Y la matrice colonne associé a f(x) dans la base € et X la
matrice colonne de x dans la base 8.0nayY =Mg ¢.X

Démonstration

Nous pouvons utiliser la proposition précédente. On a :
VAeK . fFox(A)=FXW) =Ff(Ax) = Af(x) = F(x)(A) cad foX = f(X) et par passage aux
matricesonaY =My . X

2.2. Changement de bases

Soient % = (e1,...,e,) et B’ =(e,...,e},) deux bases d’'un espace vectoriel E.

Définition 19

On appelle matrice de passage de la base 28 a la base %', la matrice P, carrée d’ordre n,
dont la jéme colonne est formée des coordonnées du vecteur e’j dans la base 8. Autrement
dit si e/, =Y!Z} pije; (j=1,..,n), alors:
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P11 P12 ... Pin
P21 P22 ... DP2n
P=(pij)=
Pn1 DPn2 ... DPnn-
Exemple 18
Si E est un espace vectoriel de base (e1,e2) et (e],e;) avec e = 3e1 + ey et e;, = —2e + beg,
3 -2
alors la matrice de passage de la base (e1,e2) a la base (e’l,e'z) est P = 1 5 )

I nterprétation. Pour tout indice j, la jéme colonne de P est ’expression du vecteur e'j

dans la base %. P est donc la matrice de I'application identitée de E dans E quand on munit
au départ E de la base %’ et a 'arrivée de la base 8. Autrement dit P = Mg 5 (idg).

Théoréme 13

Soient % et %' deux bases de E, P la matrice de passage de & a %’ et P’ la matrice de
passage de &' 4 B. Alors PP' =P'P =1 et ainsi P""1 = P.

Démonstration

Considérons le diagramme : (E,%8') — (E,%) — (E,%'). Comme id oid = id, en passant
aux matrices on obtient Mg/(id) =Mz g Mgz cad I = PP' =P'P.

Action sur les coordonnées

Proposition 19

Soient x € E, & et %' deux bases de E et P 1la matrice de passage DE % a %8’. Soient X la
matrice colonne de x dans 2 et X’ 1a matrice colonne de x dans la base 8. On a X = PX'’
et ainsi X' = P71X.

Démonstration

Découle immédiatement de ’égalité id(x) = x ou id : (E,%B') — (E,%') et de la proposition
précédente.

Exemple 19

Soit K? muni de deux bases, la base canonique (e1,es) et la base (e, e},) définie par e =
2e1 +eg et e, = 3e1 +2eg. Soit x = 2e; + 3eg, calculons les composantes de x dans la base
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2 3

pl=
1 2)’

(e,e;).OnaP =

2 -3 2 -31(2) -5
), X'Z( )( ): 4 , et ainsi &’ = —5e’| +4e;,

Proposition 20

Soient E et E' deux espaces vectoriels de dimension finie et f € Z(E,E’). Soient %, € deux
bases de E et %', €' deux bases de E’. Notons A = M(f ). A' = M(f )¢, P la matrice
de passage de 2 “a € et @ la matrice de passage de ' 4 €'. On a alors A'=Q 1AP.

Démonstration

Considérons le diagramme :
(E,8B) f (E',%')

| |

(E,6) f (E',€)

On a fOidE = idE, Of, et donc M(f)cg!ch(idE)cggg = M(idE,)qg/@/M(f)@/ggr cad A'P_1 =
QA ou encore A'=Q 1AP.

Corollaire 4

Soit f € £(E) et %8, B’ deux bases de E. Notons A = M(f)g , A’ = M(f),, et P la matrice de
passage de B a4 %'.Onaalors A’ =P 1AP.

Définition 20

Deux matrices A,A’ € 4,(IKIK) sont dites semblables s’il existe une matrice P € .#,,(IKIK)
inversible telle que P"1AP = A/,

Exemple 20

Soit f 'endomorphisme de K? qui dans la base canonique (e1,e2) est représenté par la
3

0 _2 . Déterminons la matrice A’ qui représente f dans la base

ol )6 )

matrice A = M(f)e, = (

(e, e}) avec e =(0,-1) et el, =(1,1).0naA’ =P *AP =

2.3. Rang d’'une Matrice

Définition 21

Soit A € My m(K), A =[c1,...,c;m] o Ton a noté c; le vecteur colonne d’indice j (c; € K"). On

appelle rang de A le rang du systéme constitué des vecteurs colonnes de A.
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Lemme 2

Soient E,F,G des espaces vectoreils de dimension finie, f € L(E,F), g € £(G,E).On a les
résultats suivants

- Si g est surjective, alors rang(f )=rang(fog),

- Si f estinjective, alors rang(g)=rang(fog).

Démonstration

a) rang(f)=dimf(E)=dimf (g(G))=dim(fog)(E)=rang(fog).

b) Soit (g(v1),...,€(v,)) une base de Img . Le systeme (f(g(v1)),..., f(g(v,))) est libre puisque
f est injective et il est générateur de Im(fog)car si y € Im(fog), on peut écrire y =
(fog)x) =flgx)] —f(z a;g(v;)) = Zalf [g(v;)],donc (f (g(v1)),...,f (g(v,))) est une base

=1
de Im(fog),dou rang(g )=rang(fog).

Proposition 21

Soit f € £(E,E’). Soient % et %' deux bases quelconques de E et E’ respectivement et
A =M(f)y 4. On aalors rangf =rangA. Ainsi deux matrices qui représentent la méme
application’linéaire en des bases différentes ont méme rang, en particulier deux matrices
semblables ont méme rang.

Démonstration

Ona :A=[f (e1),....f (en)],ou LB =(eq,...,e,).Par définition nous avons :
rangA =dimvect (f (eq1),...,f (ep)) =dimImf =rangf.

Définition 22

Deux matrices A,B € 4, »(K) sont dites équivalentes s’il existe P € #,(K) et @ € 4, (K)
inversibles telles que B=Q AP .1l s’agit d’'une relation d’équivalence sur M m(K) .

Lemme 3

Soit A € My m(K) Alors A estderang r=1 sietseulementsi A estéquivalente ala
matrice <, définie par blocs :

ou I, désigne la matrice identité d’ordre r.
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Démonstration

Soit A = (ai;) € Mnm(K) , de rang r. Considérons l'application linéaire ¢ : K™ — K"  as-
sociée a la matrice A et définie par : ¢(e;) = Zj:'ll ajie;. ,J1<i<m, ou (e;)1<;<m (respec-

tivement (e’,) , ) estla base canonique de K™ (respectivement de K" ).Comme A

i/l<i <

est de rang r,on peut supposer par exemple que le systeme ((b(ei)) forme une base

Isis<sr
de Im¢p.Ecrivons alors : ¢p(er) = ij ckj(,b(ej) ,pour ke{r+1,...,m}.On définit une base
nouvelle de K" notée ( fz),en posant : f, =ej ,pourk €{l,...,r} et fr=ep —Z?i'{ Crje j,pour
ke{r+1,.,m}.Onaalors : ¢( f)=0,pour ke{r+1,..,m} Notons ¢;=¢(f;) , pour
J€{1,...,r}.Le systeme (¢ j)ls js<r étant libre, il peut étre complété en une base de K" ,notée
aussi (), j < n-Considérons la matrice de I'application dans les bases (fi)icr<m et
(¢/)1< j < n-» nOUS Obtenons :

10 0

o1 . .0
M@y, ;=] . 010 |=d

. 00 0

00 0

Les matrices A et<, sont alors équivalentes car elles représentent ’application linéaire

¢.

Théoréme 14

Soient A,B € My, ,(K). Alors A et B sont équivalentes si et seulement si rangA =rangB.

Démonstration

Supposons que A et B soient équivalentes.Il existe alors des matrices inversibles P €
MpK) et Q € My(K) tellesque : B=Q AP Notons f,g et h les applications linéaires
associées respectivement a A,P et @.Grace au lemme ,on a :

rang (h_1 Ofog) =rang(f),dou rangA = rangB.Réciproquement si rangA = rangB, le
lemme précédent permet d’affirmer que les matrices A et B sont équivalentes a la
matrice </, par conséquent elles sont équivalentes.

Théoréme 15

Soit A € ,(K). Alors A rangA =rang’A. Cela signifie que le rang d’une matrice donnée
est égal a la dimension du systéme formé des vecteurs lignes de la matrice.

Démonstration

supposons que rangA =r, donc A est équivalente a la matrice </, et par suite, il existe
P € Mp(K) et Q € 4y,(K) inversibles telles que A =@ 'J,P. Donc ‘A =!P'J, {(Q!) =
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(P17 1g. 4Q1Y), car J, estsymétrique, dout ‘A estéquivalentea A etdonc rang’A =
rangA =r.

2.4. Détermination pratique du rang d’une matrice.

Soit A € My m(K).
i) On supprime toute ligne (ou colonne)qui est nulle ou qui est colinéaire a une autre.
ii) En permutant les lignes ou les colonnes, on obtient une matrice de la forme :

a1 . . . Qim

ast . . . Qaom
A=

an]_ . . . anm

avec a1; non nul et de préférence valant 1.
iii) Pour tout i € [2,n] , on remplace la ligne L; par L; — %Ll , 0N se ramene a une matrice :

air . . . Q1m
!/
o . . . a,,,
I _
A=
!
0 Cnm
) ai
soit A} =
0 B

ou B est une matrice du type (n—1,m —1).
iv) On applique les étapes i) aiii) a la matrice B.En répétant au besoin la méthode indiquée ,
nous obtenons une matrice échelonnée :

C11 . . . Cim
0 co29. . . a'2m
C =
crr
. 0 0
0 0O . O 0

ou les coefficients ¢;; sont non nuls, et le rang est celui du nombre des lignes non nulles.
v) En procédant de facon analogue sur les lignes et les colonnes, on obtient une matrice équiva-
lente a A,de la forme :

I, 0
J,. =
Exemple 21
1 2 0 -1
Déterminons le rang de la matrice: A= 2 6 -3 -3
3 10 -6 -5
Les opérations élémentaires donnent :
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12 0 -1 12 0 -1
A=l 0 2 -3 -1 |,A2=|0 2 -3 -1
0 4 -6 -2 00 O O

Les deux vecteurs lignes de la matrice Ay étant linéairement indépendants, le rang de A

est égal a 2.

Calcul de l'inverse d’une matrice carrée par la méthode du pivot.

Soit A € A, (K). On considere la matrice A; € 4, 2,(K),définie par :

Ar=(a 1,)

On effectue des opérations élémentaires uniquement sur les lignes (ou uniquement sur les
colonnes) de B , de telle sorte que la matrice obtenue soit de la forme :

An=(1. C)

La matrice C correspond a l'inverse de A.

Exemple 22
1 2 -1
Soit a calculer I'inverse de la matrice A= 2 1 O
-1 1 2
1 2 -1 1 00
Onpose A;1=] 2 1 O 0 1 O |.Nousobtenons :
-1 1 2 0 0 1

A2= o -3 2 . -2120 L2—>L2—2L1,L3—>L3+L1

As=| 0 -3 2 . -2 1 0| Ls—L3+Lo
0 0 3 111
1 2 -1. 1 0 0
As=l0 -3 2 . 2 1 o L3 — 1/3L5
0 0 1 ~1/3 U3 U3
1 2 0. 23 13 13
As=| 0 -3 0 . -4/3 13 -2/3 | Ly—Ly—2L3,L;—Ly+Ls
0 0 1. -1/3 13 U3
120 . 23 13 13
Ag=| 0 1 0 . 49 -1/9 29 | Ly—(-1/3)Lg
001. -1/3 U3 U3
100 . -29 59 -19
A7=l 0 10 . 49 -19 29 Li—Li-2Ls
001 . -1/3 13 U3




MATRICES

-2/9 5/9 -1/9
dou A1=| 49 -1/9 2/9
-1/3 13 1/3




Chapitre 5

DETERMINANTS ET APPLICATIONS

1. Définition des déterminants par récurrence

Définition 23

Soit n = 1. Pour toute matrice carrée A = (ai j) , d’ordre n, nous associons detA € [K,défini
comme suit :

Si n=1,on pose det(a)=a (avec A =(a)).

Si n > 1, en supprimant la premieére ligne et la j-ieme colonne de A,nous obtenons une
matrice carrée d’ordre n —1 notée Aq;.L'hypothése de récurrence permet alors de poser :

n .
detA=) (-1)'*/aj;detAq;
j=1

Remarque 8

la formule a été obtenue en développant le déterminant de A suivant la premiere ligne,
on peut montrer que la quantité est indépendante du choix de la ligne ou de la colonne.
- Casoun=2.

Soit A = ( Z 2 .En développant le déterminant de A suivant la premiere ligne ( ou
colonne), nous obtenons :
detA = ‘; ; =ad - be

a1l aiz2 ais
— Casoun=3. Soit A =|ags; agse ass|. Développons le déterminant de A, suivant la
as1 Q32 ass
premiere ligne :
a1l a1z ais

az1 a2
detA=| as1 agss as3 |=aii

agz1 @32

a21 Q23
agz1 as3

Q22 Q23
a3z2 @33

—a12

a3z1 a3z2 ass
=a11022033 — 011023032 — 112021033 + @12031023 + 421213032 — 413022031

Régle de Sarrus :
Cette méthode propose de calculer les déterminants d’ordre 3 de la facon suivante :
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Une fois le déterminant posé, nous placons a sa droite les 2 premieres colonnes.Ensuite,
nous calculons, en partant de gauche a droite, les trois premieres diagonales puis nous
soustrayons les trois diagonales en partant de droite a gauche.Nous obtenons :

@11 a1z aig | a1 ai2
@21 Q22 Q@23 [ A21 A22 =

a31 @32 @33 a3z1 @32
11022033 212023031 213021032 — 112021033 — 11023032 — 213022031

3 -1 -1|3 -1
1 2 0|1 2 =42+20-16+7=53

2 5 712 5
— Cas ou la matrice A est triangulaire :

ail 0 .o 0
asy asg 0 . O
A=
0
ani Qnn

Le calcul du déterminant de A se fait par récurrence sur n , nous obtenons :
detA =aqiia99as33...a,,

Définition 24

Soit E un espace vectoriel de dimension n sur K, et 8 =(eq,...,e,) une base de E. Soit

n
(v1,...,v,) un systéme de n vecteurs de E. Ecrivons v; = Z a;je; .On définit le détermi-
i1=1
nant du systeme (v j) , en posant :

det (vy,...,v,) =det (aij)

Nous verrons ultérieurement que cette quantité est indépendante de la base 2.

2. Propriétés des déterminants.

Grace a la définition 24, nous pouvons exprimer le détérminant d'une matrice d’ordre » comme
le déterminant des vecteurs colonnes composant la matrice,soit :

detA =det(cy,...,cn) , out c; désigne la j-iéme colonne de A.

Le théoréme suivant donne les premiéres propriétés des déterminants.

Théoréme 16

Avec les notations ci-dessus, nous avons :

- det(eq,...,Acg,...,cp) = Adet(cq,...,Ch,...,Cn) , VAEIK.

- det(ci,...,cr + ¢}, ... cp) = detlcy, ..., Cp, ..., cn) +det(cy, ..., ) 5 oy Cp)
ce qui signifie que l'application ¢, — det(cq,...,ct,...,cy), est linéaire, pour tout & €
{1,...,n}.

— Si deux colonnes sont égales ( ou colinéaires) , le déterminant est nul.
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Démonstration

— Raisonnons pa récurrence sur n.Le résultat est évident pour n = 2.
Aa ¢ a Ac

Ab d| | b M
Supposons la propriété vraie pour tout déterminant d’ordre <n —1.

=A(ad —be)

Posons A =[cy...cp...cy]=(aij),B=I[c1...Ack...cn] = (bij).
Ona :b;j=a;; si j#k, bir=Aa;.

n .
1)On a: det(cy,...,Acp,...,cp) = Z (—1)1+]b1jdetBlj =
j=1

n
Z (—1)1+ja1jdetBlj +
Jj=1j#k

(—1)1+k Aa;pdetAqp

La matrice By; étant dordre n—1 ,T'’hypothése de récurrence donne alors :

detB1; =AdetA;; pour tout j##k

par suite,
n .
det(ci,...,Acp,...,cn)=A Z (—1)1+Ja1j detAlj = Adet(cq,...,cy)
i=1
— De fagon analogue, nous raisonnons pa récurrence sur n.Le résultat est vraie pour n =

2.En effet :

a+a ¢ a c a ¢

b d ‘:(a+a’)d—(b+b')c:(ad—bc)+(a’d—b’c):‘ D R

Supposons la propriété vraie pour tout déterminant d’ordre <n —1.

Posons A =[c1...ck...cn]l = (a;j),B = [c1...C},...cn] = (bij),D = [c1...ch + ¢} .cn] = (dif)
!/

Ona :b;j=a;; si j#k, [r)LikZa;k et dij=a;j si j#k ,dip =ajrtay,

det(ct, o, CptChyencn)= 3 (=DM dyjdetDyp = Y. (D' ay;detDy+(-DM* (@qp+
J=1 Jj=1Lj#k

a,)det Ay,

La matrice D1; étant dordre n—1 ,T’hypothése de récurrence donne alors :

detDlj = detAlj + detBlj

d’ou :

n n
det(cq,...,cp + C;Q,...,Cn) = Z (—1)1+ja1j detAlj + Z (—1)1+jb1j detBlj
=1 =1

=det(c1,...,Cp,.0rCn) + dei?(cl,...,c;e,...,cn) ’
- Raisonnons pa récurrence sur n.Le résultat est évident pour n = 2.
a a
b b
Supposons la propriété vraie pour tout déterminant d’ordre <n —1.

=ab—ab=0

Résolvonsd’abord le cas ou les deux colonnes sont adjacentes :
Soit A =[c1...c...c,].Supposons que les colonnes ¢; et c;,1 sont égales.Par définition

ona:
n

detA = Z (—1)1+ja1jdetA1j+(—1)1+la11 detAq; +(—1)1+l+1a11+1 detAq741
=107, j#l+1
Pour tout j #l,et j # 1 +1, la matrice A;; est dordre n—1 et contient deux colonnes

égales,donc d’apres 'hypothese de récurrence son déterminant est nul. D’autre part, on
a: ay=ay+1 et Ayp=Aq;.1, ce assure que le déterminant de A est nul.
Montrons le lemme suivant :
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Lemme 4

Si dans un déterminant donné,on permute deux colonnes adjacentes, la valeur du
déterminant est multipliée par -1.

Démonstration

D’apres le résultat précédent on a :

!/ !/ —
det(ci,...,c1+¢; y,c1+ ¢ 1-Cn) =0
puisque deux colonnes adjacentes sont égales.
Ensuite,grace a la linéarité du déterminant par rapport aux colonnes d’indices rerspec-
tivement ! et /+1 , nous obtenons :

!/ !/

det(ci,...,c1,¢1,...,¢p) + deter, ..., €, 1,€; 1 Cn) +
det(cy,...,c1,¢), 15 Cn) +detlcy, ..., ¢}, 1, €150, Cn) =0
Les deux premiers termes de 'expression ci-dessus sont nuls, puiqu’il s’agit de déter-
minants contenant deux colonnes adjacentes égales, ce qui donne le résultat du lemme.

Suite de la preuve du théoréme :

Soit un déterminant d’ordre n,comprenant deux colonnes cj et ¢; égales avec [ >k+1.En
échangeant les colonnes cp et cp.1,puis ¢ et cp.9 et ainsi de suite nous obtenons grace
au lemme 4, un déterminant avec deux colonnes adjacentes :

det(ci,...,ChyeersClyunnyCp) = (—l)l_k_ldet(cl, s CEyCLy ey Cp) = 0,

Le lemme admet 'extension suivante :

Corollaire 5

Si dans un déterminant donné,on permute deux colonnes , la valeur du déterminant est
multiplié par —1

Démonstration

reprenant les notations précédentes et en permutant la colonne c; et les colonnes précé-
dentes jusqu’a la colonne d’indice %2 nous obtenons :
det(c1, .o, ChyernsClyenyen) = (=121 det(cq, ... Cly ey ChyreyCn) = —AE(CTyvey €Ly oney Chyeres Cny)

Exemple 23
Soit a calculer le déterminant suivant :
1 000
2 040
-1 019
1 35 7

Apres permutation des colonnes 2 et 3 puis 3 et 4 nous obtenons :
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1 000 1 000
2 040 _ 2 400 —4x9x3 =108
-1 019 -1 190
1 3 5 7 1 57 3

Le théoreme suivant donne un critére pour vérifier qu'un systeme de vecteurs est libre.

Théoréme 17

Soit E un espace vectoriel de dimension n sur IK et (vy,...,v,) un systéme de vecteurs
de E Alors (vq,...,v;) estune base de E si et seulement si det (vq,...,v,) #0.

Démonstration

Supposons que le systeme (v1,...,v,) ne soit pas une base de E ,alors il est nécessairement
lié .Supposons par exemple, que le vecteur v; soit une combinaison linéaire des autres
vecteurs, c’est a dire :

n
V1= ) v,

1=2
Nous avons alors :

n n
det (vq,...,v,) =det (Z a;v;,...,Up) = Z det (v;,va,...,0,)=0
i=2 =2
puisque tous les déterminants figurant dans cette expression sont nuls car contenant cha-

cun deux colonnes égales.
Réciproquement supposons que le systeme (vy,...,v,) soit une base de E.Soit 2 =(ey,...,e,)
la base canonique de E.Tout vecteur e; s’exprime en fonction de la base (vq,...,v,).Nous

avons :
n
e; = Z Bijv;.Le calcul du déterminant,géce a la linéarité par rapport a la premiére colonne,
j=1
donne :
n
det (eq,e9,...,e,) = Z B1j,det (vj,,ez,...,en)

Jji1=1
En procédant de méme avec les vecteurs eo,..., et e, , et en simplifiant les déterminants

contenant au moins 2 colonnes égales ,on a :
n n
det (eq,e9,...,e,) = Z Z,Bljzdet (vj,,Vjq,...,Vj,) avec jp #j; pour k #1.

jl,jZ;-n;jn =1l=1
Tout n-uplet (j1,Jj2,..-,Jn) avec ji # j; pour k #[, se déduit par permutation du r-uplet

(1,2,...,n).11 existe alors un scalaire A:
det (eq,e9,...,e,) = Adet (v1,...,v,) =1
Donc det (vy,...,v,) Z0.

Le théoréme suivant donne une formule explicite du déterminant d'une matrice,a 'aide des
permutations du groupe symétrique :

Théoréme 18

Soit A =(a; ;) une matrice carrée dordre n ,on a:

detA = Z €(0)g(1)1-86(2)2---Co(n)n

oge S,
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ou S, désigne le groupe symétrique d’ordre n et e(o) la signature de la permutation o.

Exemple 24
— On prend n = 2.Le groupe symétrique So est constitué de deux éléments :
12 ¢ 12
g1 = 9 =
1711 2727 2 1

avec €(01)=1,e(09)=-1.
L'application de la formule du théoréme 2.5 , donne :

a1l a2 | _
=0a11022 — Q21012
az1r a2

— On prend n = 3.Déterminer les éléments du groupe symétrique S3 ainsi que leurs signa-

tures.En déduire I'expression du déterminant d’ordre 3.

Théoréme 19

Soit A = (a; ;) une matrice carrée d’ordre n,on a :
det(!A) =detA

ou !A désigne la matrice transposée de A.

Démonstration

Posons A = (b i j) Par définition on a : b; j = a;;.La formule du théoreme 18, appliquée a
B, donne :
detCA)= Y €(0)bo)1-bo@2--bommn = ) €(0)a16(1)-820(2)---Cna(n)

oe S, g€ Sy
Pour tout i €{1,...,n}, soit p; tel que o(p;)=i.0na: ap,s(p;) = as-1(;);> c€ qui donne, grace

a la commutativité du produit des scalaires :

det(tA): Z 8(0)a0—1(1)1.a0—1(2)2...a0—1(n)n

ge Sy,

1

Comme £(0) =¢(071), et en posant 7 = 0~ 1,nous obtenons :

det(fA) = Z e(T)ar(1)1-07(2)2.--Qr(n)n = det A

TE S,

Le théoreme 19 permet d’étendre aux lignes les propriétes des colonnes.C’est ’'objet du prochain
corollaire :

Corollaire 6

Soit A = (ai j) une matrice carrée d’ordre n.A s’écrit A =
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On a les propriétes suivantes :

- Le déterminant est linéaire par rapport a chaque ligne.

- Si dans un déterminant donné on échange deux lignes, la valeur du déterminant change
de signe.

— Si dans un déterminant donné deux lignes sont égales (ou colinéaires),le déterminant est
nul.

— Plus généralement, le déterminant d’'une matrice est non nul si seulement si le systéme
des vecteurs lignes (L1,...,L,) est une base de IK".

Le théoreme suivant affirme que le déterminant du produit de deux matrices carrées est égal
au produit des déterminants des matrices :

Théoréme 20

Soient A et B deux matrices carrées d’ordre n, on a le résultat :

det(A.B) =detA.detB

Corollaire 7

Une matrice carrée d’odre n est inversible si et seulement si son déterminant est non nul.

Démonstration

Soit A une matrice inversible.On a alors :A.A~1 =1, .Par suite :
det(A.A7l)=detA.detA "l =detl, =1,
donc detA est non nul,et'on a :
“1_ _1
detA™" = 5=
Réciproquement,supposons que detA soit non nul et notons A =[ci...cy...cy].

Comme det(cy,...,c,,...,cn) # 0,le systéme (c1,...,c;,...,c,) est libre (th.2.4).
n

Posons: f (x)=A.x, x€IK"Ona: Ax= inci. Alors x € kerf si et seulement si
=1

n
:Z xjc; =0.Ce qui implique que x; =0,i=1,..,n
i=1
puisque le systeme (€1,.+5Cp5eeCn) e€SE libre.Donc f est injective et par suite A est

inversible.

Corollaire 8

Si A et A’ sont deux matrices semblables, alors detA =detA’.

Démonstration

Ona :A'=P1AP  doudetA' =detP !.detA.detP =detl,.detA = detA.
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Définition 25

Soit E un espace vectoriel de dimension finie muni d'une base (e;) et f un endomorphisme
de E .On appelle déterminant de f le déterminant de la matrice de f dans la base (e;) :
detf =detM (f e,

Exemple 25

Soit 6 € [0, [ ,calculons le déterminant de 'endomorphisme f de R? associé a la rotation
d’angle 6.0n a :
f (1,0) =(cos®,sinf) : f (0,1) =(—sinb,cosb)

donc :
cosfd —sinf
M =
(e, ( sinf cosf )
d’ou :
60 —sinf
detf = C(_)S g cos26 +sin?6 =1
sinf cosf

3. Aplications des déterminants

3.1. Calcul des déterminants par les cofacteurs

Définition 26

Soit A =(a;;) une matrice carrée d’ordre n, on appelle cofacteur de 'élément a; j le
scalaire défini par :

cof (aij) = (—].)i+jdetAij

ou A; j la matrice d’'ordre n-1,obtenue en supprimant la j-iéme colonne et la i-ieme ligne.

Le théoreme suivant donne le calcul du déterminant en développant suivant la j-iéme colonne
ou de i-ieme ligne :

Théoréme 21

Soit A =(a; j) ,on a les formules :

detA = Z (—1)k+jak jcof (ag ;)

k=1
n .
detA=) (~1)**"a;rcof (air)
k=1
Exemple 26
1 -5 7
Soit a calculer le déterminant de la matrice A=| 3 2 2
1 40

Développons suivant la derniére colonne :
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3 2
-4

1 -5
1 3

detA =7 -2 =-98-16=-114

Le théoréme suivant donne une formule permettant le calcul de I'inverse d'une matrice a 'aide
des cofacteurs :
La proposition suivante permet d’effectuer des opérations élémentaires sur les déterminants :

Proposition 22

Le déterminant d’une matrice reste inchangé si ’on ajoute a une colonne ( respectivement
une ligne) donnée ,une combinaison linéaire des autres colonnes (respectivement des autres
lignes).

Démonstration

Le résultat découle des théorémes 16 et 19

Exemple 27
1 210
0 3 11
Soit 3 Iculer A=
oit a calculer 105 9
2 1 30
Nous remplacgons les lignes L3 et Lypar L3+L; et Ly—2L; , nous obtenons :
1 2 10
0 3 11 ) N .
A= 0 2 6 2 En développant par rapport a la premiere colonne, on a :
0 -3 10
3 11 0 21
A=| 2 6 2| RemplaconsL| par Li+L; ,ona: A=| 2 6 2 puis la colonne
-3 10 -3 10
C;, par la colonne Cj —2C%, on a alors,en développant suivant la premiere ligne :
0 01
A= 2 2 2|=8
-3 10

Le théoréme suivant donne I’expression de I'inverse d'une matrice a I'aide des cofacteurs :

Théoréme 22

Soit A =(a; ;) une matrice carrée invesible,alors on a :
_ t

Al= de};A com(A)

avec com(A)=(b; ;) ou b;;=cof (a;})
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Exemple 28

a ¢

Soit a calculer I'inverse de la matrice carrée d’ordre 2, A = ( b d

) .On a grace a la formule
ci-dessus on a :

_ d -c
Al:adibc(_b a )

3.2. Calcul du rang d’une matrice

Définition 27

On appelle mineur d’ordre r d'une matrice A le déterminant 6 d'une matrice carrée d’ordre
r extraite de A.On appelle bordant du mineur § tout déterminant d’ordre r + 1 contenant
le déterminant §.

Exemple 29
3 14 0
0 2 3 -2
Soit la matrice A= -1 3 5 1 |.Déterminer tous les bordants la sous matrice A1 =
0 2 3 1
-3 2 2 4

[ %)

Théoréme 23

Le rang d’'une matrice A est r si et seulement si 'on peut en extraire un mineur 6 d’ordre
r non nul et que les bordants de ¢ soient nuls.

Exemple 30
1 2 6
Déterminer le rang de la matrice 1 3 8
1 1
g 2 3 10
-2 4 4




