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Matrice d’une app linéaire

E et F deux K-espaces vectoriels de dimension finie

B = (e1, . . . , ep) une base de E

B′ = (f1, . . . , fn) une base de F

f : E → F une application linéaire

1 f est déterminée de façon unique par l’image d’une base de E ,
donc par les vecteurs f (e1), f (e2), . . . , f (ep)

2 f (ej) se décompose de manière unique dans la base B′

3 Il existe a1,j , a2,j , . . . , an,j ∈ K tels que

f (ej) = a1,j f1 + a2,j f2 + · · ·+ an,j fn =

 a1,j
a2,j

...
an,j


B′
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f : E → F app lin B = (e1, ..., ep) base de E , B′ = (f1, ..., fn) base

de F donc f (ej) = a1,j f1 + a2,j f2 + ...+ an,j fn =

 a1,j
a2,j

...
an,j


B′

Définition

La matrice de f par rapport aux bases B et B′ est la matrice
(ai ,j) ∈ Mn,p(K)

MatB,B′(f ) =


f (e1) . . . f (ej) . . . f (ep)

f1 a11 a1j . . . a1p

f2 a21 a2j . . . a2p
...

...
...

...
...

fn an1 anj . . . anp



La j-ème colonne est constituée des coordonnées du vecteur f (ej)
dans la base B′ = (f1, f2, . . . , fn). Les vecteurs colonnes sont
l’image par f des vecteurs de la base de départ B, exprimée dans la
base d’arrivée B′.
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Exemples

f : R3 −→ R2

(x1, x2, x3) 7−→ (x1 + x2 − x3, x1 − 2x2 + 3x3)

f :
(

x1
x2
x3

)
7→
( x1+x2−x3
x1−2x2+3x3

)
Soit B = (e1, e2, e3) la base canonique de R3

Soit B′ = (f1, f2) la base canonique de R2

e1 =
(

1
0
0

)
e2 =

(
0
1
0

)
e3 =

(
0
0
1

)
f1 = ( 1

0 ) f2 = ( 0
1 )

Quelle est la matrice de f dans les bases B et B′ ?
f (e1) = f (1, 0, 0) = (1, 1) = f1 + f2

f (e2) = f (0, 1, 0) = (1,−2) = f1 − 2f2

f (e3) = f (0, 0, 1) = (−1, 3) = −f1 + 3f2

MatB,B′(f ) =

( f (e1) f (e2) f (e3)

f1 1 1 −1
f2 1 −2 3

)
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Exemples

Même application linéaire :

f : R3 −→ R2

(x1, x2, x3) 7−→ (x1 + x2 − x3, x1 − 2x2 + 3x3)

ε1 =
(

1
1
0

)
ε2 =

(
1
0
1

)
ε3 =

(
0
1
1

)
φ1 = ( 1

0 ) φ2 = ( 1
1 )

Nouvelle base de départ B0 = (ε1, ε2, ε3)

Nouvelle base d’arrivée B′0 = (φ1, φ2)

Quelle est la matrice de f dans les bases B0 et B′0 ?

f (ε1) = f (1, 1, 0) = (2,−1) = 3φ1 − φ2

f (ε2) = f (1, 0, 1) = (0, 4) = −4φ1 + 4φ2

f (ε3) = f (0, 1, 1) = (0, 1) = −φ1 + φ2

MatB0,B′0(f ) =

( f (ε1) f (ε2) f (ε3)

φ1 3 −4 −1
φ2 −1 4 1

)
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Opérations sur les applications linéaires et les matrices

Soient f , g : E → F deux applications linéaires

Soit B une base de E

Soit B′ une base de F

Proposition

MatB,B′(f + g) = MatB,B′(f ) + MatB,B′(g)

MatB,B′(λf ) = λMatB,B′(f )

A = MatB,B′(f ) B = MatB,B′(g)

C = MatB,B′(f + g) D = MatB,B′(λf )

Alors C = A + B D = λA
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Soient f : E → F et g : F → G deux applications linéaires

Soient B une base de E , B′ une base de F et B′′ une base de
G

Proposition

MatB,B′′(g ◦ f ) = MatB′,B′′(g)×MatB,B′(f )

A = MatB,B′(f ) B = MatB′,B′′(g) C = MatB,B′′(g ◦ f )

Alors C = B × A

Hanine Abdelouahab Cours d’algèbre 3



Exemples

f : R2 → R3

A = MatB,B′(f ) =

1 0
1 1
0 2

 ∈ M3,2

g : R3 → R2 B = MatB′,B′′(g) =

(
2 −1 0
3 1 2

)
∈ M2,3

g ◦ f : R2 → R2

MatB,B′′(g ◦ f ) = C = B × A =

(
2 −1 0
3 1 2

)
×

1 0
1 1
0 2

 =(
1 −1
4 5

)
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Matrice d’un endomorphisme

f : E → E est un endomorphisme

Deux bases distinctes pour l’espace vectoriel E : MatB,B′(f )

Même base B au départ et à l’arrivée : MatB(f )

Exemples

identité Id : E → E, Id(x) = x MatB(Id) = In

homothétie hλ : E → E, hλ(x) = λ · x MatB(hλ) = λIn

symétrie centrale s : E → E, s(x) = −x MatB(s) = −In
rotation

rθ : R2 −→ R2

rotation d’angle θ, centrée à l’origine
R2 muni de la base canonique B
rθ(x , y) = (x cos θ − y sin θ, x sin θ + y cos θ)

MatB(rθ) =

(
cos θ − sin θ
sin θ cos θ

)
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Corollaire

Soient f : E → E une application linéaire et B une base de E
Quel que soit p ∈ N

MatB(f p) =
(
MatB(f )

)p

La matrice associée à f p = f ◦ f ◦ · · · ◦ f est Ap = A× A× · · · × A
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Un isomorphisme f : E → F est une application linéaire bijective

Théorème

Soient E et F deux espaces vectoriels de même dimension finie

Soit f : E → F une application linéaire

Soient B une base de E, B′ une base de F

Soit A = MatB,B′(f )

1 f est bijective si et seulement si la matrice A est inversible

2 Si f : E → F est bijective, alors la matrice de f −1 : F → E
est la matrice A−1

MatB′,B(f −1) =

(
MatB,B′(f )

)−1
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f : E → E

Même base B au départ et à l’arrivée

A = MatB(f )

Corollaire

f est bijective si et seulement si A est inversible

Si f est bijective, alors la matrice associée à f −1 dans la base
B est A−1

MatB(f −1) =
(
MatB(f )

)−1

Hanine Abdelouahab Cours d’algèbre 3



Exemples

Soient r : R2 → R2 la rotation d’angle π
6 (centrée à l’origine)

A = MatB(r) =

(
cos θ − sin θ
sin θ cos θ

)
=

(√
3

2 −1
2

1
2

√
3

2

)

Soit s la réflexion par rapport à (y = x) :

B = MatB(s) =

(
0 1
1 0

)
MatB(s ◦ r) = B × A =

(
1
2

√
3

2√
3

2 −1
2

)

MatB
(
(s ◦ r)−1

)
= (BA)−1 =

(
1
2

√
3

2√
3

2 −1
2

)−1

=(
1
2

√
3

2√
3

2 −1
2

)
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Soit B = (e1, e2, . . . , ep) une base d’un espace vectoriel E

Pour x ∈ E , x = x1e1 + x2e2 + · · ·+ xpep

La matrice de x dans B est MatB(x) =

( x1
x2

...
xp

)
B

Proposition

f : E → F app lin, y = f (x), B base de E et B′ base de F .

A = MatB,B′(f ), X = MatB(x) =

( x1
x2

...
xp

)
B

, Y = MatB′(y) =

( y1
y2

...
yn

)
B′

Alors, si y = f (x), on a Y = AX

MatB′
(
f (x)

)
= MatB,B′(f )×MatB(x)
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Exemples

E un espace vectoriel de dimension 3 de base B = (e1, e2, e3)

Soit f : E → E avec A = MatB(f ) =

1 2 1
2 3 1
1 1 0


Quel est le noyau de f ?

x ∈ Kerf ⇐⇒ f (x) = 0E ⇐⇒ MatB
(
f (x)

)
=

0
0
0

 ⇐⇒ AX =

0
0
0



⇐⇒ A

x1

x2

x3

 =

0
0
0

 ⇐⇒
 x1 + 2x2 + x3 = 0

2x1 + 3x2 + x3 = 0
x1 + x2 = 0

Kerf =

{
x ∈ E | x1 + 2x2 + x3 = 0

et x2 + x3 = 0

}
=
{(

t
−t
t

)
B
| t ∈ K

}
= Vect

((
1
−1
1

)
B

)
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Exemples

Soit E un espace vectoriel de dimension 3 ayant une base
B = (e1, e2, e3)

Soit f : E → E avec A = MatB(f ) =

1 2 1
2 3 1
1 1 0


Quelle est l’image de f ?

Kerf est de dimension 1

Théorème du rang : dimImf = dimE − dimKerf = 2

Les deux premiers vecteurs de la matrice A étant linéairement
indépendants, ils engendrent Imf

Imf = Vect
((

1
2
1

)
B
,
(

2
3
1

)
B

)
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Matrice de passage d’une base à une autre

Soit E un espace vectoriel de dimension n

Soient B et B′ deux bases de E

Définition

La matrice de passage de la base B vers la base B′, notée PassB,B′ ,
est la matrice dont la j-ème colonne est formée des coordonnées
du j-ème vecteur de la base B′, par rapport à la base B
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Exemples

Dans R2 on considère :

e1 =

(
1
0

)
e2 =

(
1
1

)
ε1 =

(
1
2

)
ε2 =

(
5
4

)
B = (e1, e2) est une base

B′ = (ε1, ε2) est une base

Quelle est la matrice de passage de la base B vers la base B′ ?
Méthode : Il faut exprimer ε1 et ε2 en fonction de (e1, e2)

ε1 = −e1 + 2e2 =

(
−1
2

)
B

ε2 = e1 + 4e2 =

(
1
4

)
B

La matrice de passage est donc :

PassB,B′ =

(
−1 1
2 4

)

Hanine Abdelouahab Cours d’algèbre 3



Proposition

La matrice de passage PassB,B′ est la matrice associée à l’identité
IdE : (E ,B′)→ (E ,B)
PassB,B′ = MatB′,B(IdE )

Proposition

1 Une matrice de passage est inversible et
PassB′,B =

(
PassB,B′

)−1

2 Si B, B′ et B′′ sont trois bases
PassB,B′′ = PassB,B′ × PassB′,B′′
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Exemples

Soit E = R3 avec sa base canonique B

B1 =

1
1
0

 ,

 0
−1
0

 ,

 3
2
−1

 etB2 =

 1
−1
0

 ,

0
1
0

 ,

 0
0
−1


Quelle est la matrice de passage de B1 vers B2 ?

PassB,B1 =

1 0 3
1 −1 2
0 0 −1

PassB,B2 =

 1 0 0
−1 1 0
0 0 −1


PassB,B2 = PassB,B1×PassB1,B2PassB1,B2 = Pass−1

B,B1
×PassB,B2

PassB1,B2 =

1 0 3
1 −1 2
0 0 −1

−1

×

 1 0 0
−1 1 0
0 0 −1

 =1 0 −3
2 −1 −1
0 0 1


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B = (e1, e2, . . . , en) et B′ = (e ′1, e
′
2, . . . , e

′
n) deux bases de E

PassB,B′ la matrice de passage de la base B vers la base B′

Pour x ∈ E , x =
n∑

i=1

xiei , on note X =MatB(x) =

( x1
x2

...
xn

)
B

Il s’écrit aussi x =
n∑

i=1

x ′i e
′
i et on note

X ′ = MatB′(x) =

 x ′1
x ′2
...
x ′n


B′

Proposition

X = PassB,B′ × X ′

En effet : PassB,B′ est la matrice de IdE : (E ,B′)→ (E ,B)
X = MatB(x) = MatB

(
IdE (x)

)
= MatB′,B(IdE )×MatB′(x) =

PassB,B′ × X ′
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Formule de changement de base

Soit f : E → E une application linéaire

Soient B, B′ deux bases de E

Soit A = MatB(f ) la matrice de l’application f dans la base B
Soit B = MatB′(f ) la matrice de l’application f dans la base
B′

Soit P = PassB,B′ la matrice de passage de B à B′

Théorème

B = P−1AP
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Exemples

B1 =
((

1
1
0

)
,
(

0
−1
0

)
,
(

3
2
−1

))
B2 =

((
1
−1
0

)
,
(

0
1
0

)
,
(

0
0
−1

))
Soit f :R3 → R3 l’endomorphisme dont la matrice dans la base B1

est A

A = MatB1(f ) =

 1 0 −6
−2 2 −7
0 0 3

P = Pass

B1,B2=


1 0 −3
2 −1 −1
0 0 1


Que vaut la matrice de f dans la base B2, B = MatB2(f ) ?
B =P−1AP

=

1 0 3
2 −1 5
0 0 1

×
 1 0 −6
−2 2 −7
0 0 3

×
1 0 −3

2 −1 −1
0 0 1

=

1 0 0
0 2 0
0 0 3


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Soient A et B deux matrices de Mn(K)

Définition

B est semblable à la matrice A s’il existe une matrice inversible
P ∈ Mn(K) telle que B = P−1AP

La relation être semblable est une relation d’équivalence :

Proposition

réflexivité : une matrice A est semblable à elle-même

symétrie : si A est semblable à B, alors B est semblable à A

transitivité : si A est semblable à B, et B est semblable à C ,
alors A est semblable à C

Corollaire

Deux matrices semblables représentent le même endomorphisme,
mais exprimé dans des bases différentes
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Déterminant

Le déterminant est une application qui à une matrice associe un
scalaire

det : Mn(K) −→ K

Théorème et définition

Il existe une unique application de Mn(K) dans K, appelée
déterminant, telle que

(i) le déterminant est linéaire par rapport à chaque vecteur
colonne, les autres étant fixés

(ii) si A a deux colonnes identiques, alors son déterminant est nul

(iii) le déterminant de la matrice identité In vaut 1

Remarque

Une application satisfaisant (i) est appelée forme multilinéaire

Si elle satisfait (ii), on dit qu’elle est alternée

Hanine Abdelouahab Cours d’algèbre 3



On note le déterminant d’une matrice A = (aij) par

detA ou

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
Si on note Ci la i-ème colonne de A alors

detA =
∣∣C1 C2 · · · Cn

∣∣ = det(C1,C2, . . . ,Cn)
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La propriété (i) s’écrit

det(C1, . . . , λCj + µC ′j , . . . ,Cn)

= λ det(C1, . . . ,Cj , . . . ,Cn) + µ det(C1, . . . ,C
′
j , . . . ,Cn)

c’est-à-dire ∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · λa1j + µa′1j · · · a1n
...

...
...

ai1 · · · λaij + µa′ij · · · ain
...

...
...

an1 · · · λanj + µa′nj · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣

= λ

∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1j · · · a1n
...

...
...

ai1 · · · aij · · · ain
...

...
...

an1 · · · anj · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣
+ µ

∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a′1j · · · a1n
...

...
...

ai1 · · · a′ij · · · ain
...

...
...

an1 · · · a′nj · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣
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Exemple :

Comme la seconde colonne est un multiple de 5∣∣∣∣∣∣
6 5 4
7 −10 −3

12 25 −1

∣∣∣∣∣∣ = 5×

∣∣∣∣∣∣
6 1 4
7 −2 −3

12 5 −1

∣∣∣∣∣∣
Par linéarité sur la troisième colonne∣∣∣∣∣∣

3 2 4− 3
7 −5 3− 2
9 2 10− 4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
3 2 4
7 −5 3
9 2 10

∣∣∣∣∣∣−
∣∣∣∣∣∣
3 2 3
7 −5 2
9 2 4

∣∣∣∣∣∣
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Nous connaissons déjà le déterminant de deux matrices :

det 0n = 0 (par la propriété (ii))

det In = 1 (par la propriété (iii))

Proposition

Soit A = (C1,C2, . . . ,Cn) ∈ Mn(K)
Soit A′ ∈ Mn(K) obtenue par opération élémentaire sur les
colonnes :

1 Ci ← λCi avec λ 6= 0. Alors detA′ = λ detA

2 Ci ← Ci + λCj avec λ ∈ K (et j 6= i ). Alors detA′ = detA

3 Ci ↔ Cj . Alors detA′ = − detA

Corollaire

Si une colonne de A est combinaison linéaire des autres colonnes
alors detA = 0
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Proposition

Le déterminant d’une matrice triangulaire supérieure (ou
inférieure) est égal au produit des termes diagonaux

Autrement dit, pour une matrice triangulaire A = (aij)

detA =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . . . . . . . a1n

0 a22 . . . . . . . . . a2n
...

. . .
. . .

...
...

. . .
. . .

...
...

. . .
. . .

...
0 . . . . . . . . . 0 ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= a11 · a22 · · · ann

Corollaire

Le déterminant d’une matrice diagonale est égal au produit des
termes diagonaux
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Notation. Pour A ∈ Mn(K) on note Ai ,j la matrice obtenue en
supprimant la i-ème ligne et la j-ème colonne de A

Théorème

Les formules suivantes définissent par récurrence pour n ≥ 1,
l’application déterminant de Mn(K) dans K qui satisfait aux
propriétés (i), (ii), (iii)

Déterminant d’une matrice 1× 1. Si A = (a), detA = a

Formule de récurrence. Si A = (ai ,j) ∈ Mn(K), alors pour
tout i

detA = (−1)i+1ai ,1 detAi ,1 + · · ·+ (−1)i+nai ,n detAi ,n
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Exemple

Calculer detA avec A =

0 3 2
1 −6 6
5 9 1

 detA

= (−1)× det

 3 0 2
−6 1 6
9 5 1

 = (−1)× 3× det

 1 0 2
−2 1 6
3 5 1


C1 ↔ C2 C1 ← 1

3C1

= (−1)× 3× det

 1 0 0
−2 1 10
3 5 −5

 = (−1)× 3× det

 1 0 0
−2 1 0
3 5 −55


C3 ← C3 − 2C1 C3 ← C3 − 10C2

= (−1)× 3× (−55)
= 165
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Théorème

det(A× B) = detA× detB

Théorème

Une matrice carrée A est inversible si et seulement si son
déterminant est non nul. De plus si A est inversible, alors :

det
(
A−1

)
=

1

detA

Exemple :
Deux matrices semblables ont même déterminant

Soit B = P−1AP avec P ∈ GLn(K)
Par multiplicativité du déterminant
detB = det(P−1AP) = detP−1 detA detP = detA puisque
detP−1 = 1

detP

Théorème

det
(
AT
)

= detA

Remarque

Opérations élémentaires sur les lignes :

1 Li ← λLi avec λ 6= 0 : le déterminant est multiplié par λ

2 Li ← Li + λLj avec λ ∈ K (et j 6= i ) : le déterminant ne
change pas

3 Li ↔ Lj : le déterminant change de signe
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Définition

Soit A =
(
aij
)
∈ Mn(K) une matrice carrée

Aij est la matrice extraite obtenue en effaçant la ligne i et la
colonne j de A

Le nombre detAij est un mineur d’ordre n − 1 de la matrice A

Le nombre Cij = (−1)i+j detAij est le cofacteur de A relatif
au coefficient aij
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Aij = matrice obtenue en effaant la ligne i et la colonne j de A

Cij = (−1)i+j detAij cofacteur de A relatif au coefficient aij

Aij =



a1,1 . . . a1,j−1 a1,j+1 . . . a1,n
...

...
...

...
ai−1,1 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n

ai+1,1 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n
...

...
...

an,1 . . . an,j−1 an,j+1 . . . an,n



Cij = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,j−1 a1,j+1 . . . a1,n
...

...
...

...
ai−1,1 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n

ai+1,1 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n
...

...
...

an,1 . . . an,j−1 an,j+1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Cij = + detAij ou Cij = − detAij ?

A =


+ − + − . . .
− + − + . . .
+ − + − . . .
...

...
...

...



Soit A =

1 2 3
4 2 1
0 1 1

. Calculons A11,C11,A32,C32
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Développement suivant une ligne ou une colonne

Théorème

Formule de développement par rapport à la ligne i

detA =
n∑

j=1

(−1)i+jaij detAij =
n∑

j=1

aijCij

Formule de développement par rapport à la colonne j

detA =
n∑

i=1

(−1)i+jaij detAij =
n∑

i=1

aijCij
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Exemple

Retrouvons la règle de Sarrus en développement par rapport à la
première ligne∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11C11 + a12C12 + a13C13

= a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
= a11(a22a33 − a32a23)− a12(a21a33 − a31a23)

+ a13(a21a32 − a31a22)

= a11a22a33 − a11a32a23 + a12a31a23 − a12a21a33

+ a13a21a32 − a13a31a22
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A =


4 0 3 1
4 2 1 0
0 3 1 −1
1 0 2 3



detA = 0C12 + 2C22 + 3C32 + 0C42 dévelop. par rapport à C2

= +2

∣∣∣∣∣∣
4 3 1
0 1 −1
1 2 3

∣∣∣∣∣∣− 3

∣∣∣∣∣∣
4 3 1
4 1 0
1 2 3

∣∣∣∣∣∣ on développe
les déterminants 3× 3

= 2

(
+4

∣∣∣∣1 −1
2 3

∣∣∣∣− 0

∣∣∣∣3 1
2 3

∣∣∣∣+ 1

∣∣∣∣3 1
1 −1

∣∣∣∣) par rapport à C1

−3

(
−4

∣∣∣∣3 1
2 3

∣∣∣∣+ 1

∣∣∣∣4 1
1 3

∣∣∣∣− 0

∣∣∣∣4 3
1 2

∣∣∣∣) par rapport à L2

= 2
(
4× 5 + 1× (−4)

)
− 3
(
− 4× 7 + 1× 11

)
= 83
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Remarque

Par développement par rapport à une ligne on se ramène

à n déterminants (n − 1)× (n − 1)
et par récurrence à n! sous-déterminants...

Il faut que A ait beaucoup de zéros

On commence par faire apparatre des zéros par des opérations
élémentaires sur les lignes et les colonnes
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Soit A ∈ Mn(K)
La comatrice C est la matrice des cofacteurs

C = (Cij) =


C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
...

Cn1 Cn2 · · · Cnn


Théorème

Soient A une matrice inversible et C sa comatrice. On a alors

A−1 =
1

detA
CT
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Exemple

Soit A =

 1 1 0
0 1 1
1 0 1


detA = 2 =⇒ A est inversible

La comatrice C s’obtient en calculant 9 déterminants 2× 2
(sans oublier les signes +/−)

C =

 1 1 −1
−1 1 1
1 −1 1


Donc

A−1 =
1

detA
· CT =

1

2

 1 −1 1
1 1 −1
−1 1 1


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Soit un système d’équations linéaires à n équations et n
inconnues 

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . .
an1x1 + an2x2 + · · ·+ annxn = bn

Il peut s’écrire sous forme matricielle AX = B o

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 X =


x1

x2
...
xn

 B =


b1

b2
...
bn


Définissons la matrice Aj ∈ Mn(K) par

Aj =


a11 . . . a1,j−1 b1 a1,j+1 . . . a1n

a21 . . . a2,j−1 b2 a2,j+1 . . . a2n
...

...
...

...
...

an1 . . . an,j−1 bn an,j+1 . . . ann


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Théorème (Règle de Cramer)

Soit un système de n équations à n inconnues

AX = B

Supposons que detA 6= 0. Alors l’unique solution (x1, x2, . . . , xn)
du système est donnée par

x1 =
detA1

detA
x2 =

detA2

detA
. . . xn =

detAn

detA
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Exemple

Résolvons le système


x1 + 2x3 = 6
−3x1 + 4x2 + 6x3 = 30
−x1 − 2x2 + 3x3 = 8

On a A =

 1 0 2
−3 4 6
−1 −2 3

 B =

 6
30
8



A1 =

 6 0 2
30 4 6
8 −2 3

 A2 =

 1 6 2
−3 30 6
−1 8 3

 A3 =

 1 0 6
−3 4 30
−1 −2 8


detA = 44 detA1 = −40 detA2 = 72 detA3 =
152

x1 =
detA1

detA
= −10

11
x2 =

detA2

detA
=

18

11
x3 =

detA3

detA
=

38

11
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E un K-espace vectoriel de dimension n et B une base de E

v1, v2, . . . , vn vecteurs de E =⇒ base ?

On définit A ∈ Mn(K) la matrice dont la j-ème colonne est
formée des coordonnées du vecteur vj dans B

Théorème

Les vecteurs (v1, v2, . . . , vn) forment une base de E si et seulement
si detA 6= 0
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Démonstration.

(v1, v2, . . . , vn) est une base ⇐⇒ Rg(v1, v2, . . . , vn) = n
⇐⇒ RgA = n
⇐⇒ A est inversible
⇐⇒ detA 6= 0

Corollaire

Une famille de n vecteurs de Rn
a11

a21
...

an1



a12

a22
...

an2

 · · ·


a1n

a2n
...

ann


forme une base si et seulement si det (aij) 6= 0
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Exemple :

Pour quelles valeurs de a, b ∈ R les vecteurs0
a
b

 a
b
0

 b
0
a


forment une base de R3 ?

Il suffit de calculer le déterminant

∣∣∣∣∣∣
0 a b
a b 0
b 0 a

∣∣∣∣∣∣ = −a3 − b3

Conclusion :

Si a3 6= −b3 alors les trois vecteurs forment une base de R3

Si a3 = −b3 alors les trois vecteurs sont liés

Exercice : montrer que a3 = −b3 si et seulement si a = −b
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Soit A = (aij) ∈ Mn,p(K) une matrice à n lignes et p colonnes

Soit k un entier inférieur à n et à p

Définition

On appelle mineur d’ordre k le déterminant de toute matrice carrée
de taille k extraite de A

Une telle matrice est obtenue en supprimant n − k lignes et
p − k colonnes de A

A n’a pas besoin d’être une matrice carrée
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Exemple

Soit la matrice

A =

1 2 3 4
1 0 1 7
0 1 6 5


Un mineur d’ordre 1 est un coefficient de A

Un mineur d’ordre 2 est le déterminant d’une matrice 2× 2
extraite de A

Par exemple en supprimant L2, C1 et C3 on obtient

(
2 4
1 5

)
Donc un des mineurs d’ordre 2 de A est

∣∣∣∣2 4
1 5

∣∣∣∣ = 6
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Exemple

A =

1 2 3 4
1 0 1 7
0 1 6 5


Un mineur d’ordre 3 est le déterminant d’une matrice 3× 3
extraite de A

Par exemple en supprimant C2 on obtient le mineur∣∣∣∣∣∣
1 3 4
1 1 7
0 6 5

∣∣∣∣∣∣ = −28

Il n’y a pas de mineur d’ordre 4
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Définition

Le rang d’une matrice est la dimension de l’espace vectoriel
engendré par les vecteurs colonnes

Théorème

Le rang d’une matrice A ∈ Mn,p(K) est le plus grand entier r tel
qu’il existe un mineur d’ordre r extrait de A non nul

Hanine Abdelouahab Cours d’algèbre 3



Exemple

Soit α ∈ R. Calculons le rang de la matrice A ∈ M3,4(R)

A =

1 1 2 1
1 2 3 1
1 1 α 1


RgA 6= 4, puisque les colonnes sont dans R3

Calculons le mineur d’ordre 3 obtenu en supprimant C1 dans A∣∣∣∣∣∣
1 2 1
2 3 1
1 α 1

∣∣∣∣∣∣ =

∣∣∣∣3 1
α 1

∣∣∣∣− 2

∣∣∣∣2 1
α 1

∣∣∣∣+

∣∣∣∣2 1
3 1

∣∣∣∣ = α− 2

Si α 6= 2, le rang de la matrice A est 3
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Exemple

Si α = 2 A =

1 1 2 1
1 2 3 1
1 1 2 1


on vérifie que les 4 mineurs d’ordre 3 de A sont nuls∣∣∣∣∣∣

1 2 1
2 3 1
1 2 1

∣∣∣∣∣∣=

∣∣∣∣∣∣
1 2 1
1 3 1
1 2 1

∣∣∣∣∣∣=

∣∣∣∣∣∣
1 1 1
1 2 1
1 1 1

∣∣∣∣∣∣=

∣∣∣∣∣∣
1 1 2
1 2 3
1 1 2

∣∣∣∣∣∣ = 0

Donc RgA ≤ 2
En supprimant L3, C3, C4 dans A, on obtient un mineur

d’ordre 2

∣∣∣∣∣1 1
1 2

∣∣∣∣∣ = 1 6= 0

Donc si α = 2 , le rang de A est 2
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