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Notion de Champ

Un champ est la donnée, pour chaque point de I’espace, de la valeur
d’une grandeur physique. Un champ est donc une propriété de I’espace,
c’est-a-dire une grandeur physique définie en tout point d’une région
de I’espace. Sa présence modifie les propriétés de 1’espace qui
I’entoure, et I’intensité du champ est grande a proximité de la source, et
diminue rapidement lorsqu’on s’en écarte.
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Notion de Champ

Champ scalaire

Un champ est dit scalaire lorsqu’il concerne une grandeur physique
décrite uniquement par sa valeur. On utilise par exemple des champs
scalaire en météorologie lorsque qu’on veut décrire les valeur de
pression ou de température sur une certaine zone géographique (champ
de température/champs de pression).

On appelle équipotentielle, une ligne (ou une surface) sur laquelle le
champ a la méme valeur.
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Les champs vectoriels

Champ vectoriel

» On parle de champ vectorielle lorsqu’a tout point de 1’espace on
associe un vecteur (champ électrique, magnétique, gravitationnel).
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Les champs vectoriels

» Chaque vecteur a un sens et une intensité. Il va donc y avoir deux
facons de procéder pour représenter les champs vectoriels :

1. On s’interesse a I’intensité du 2. On s’interesse a la direction et
champ et on trace les lignes au sens du champ et on trace
équipotentielles les lignes de champ (on part

d’un point de I’espace et on
suit la direction et le sens des
vecteurs en tracant une ligne
fléchée)
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Champs statiques

Champs électrostatique et magnétostatique

» Un champ électrostatique est le champ de force créé par
I’attraction et la répulsion de charges électriques immobiles (ou en
mouvement infiniment lent) dans I’espace (“électricité statique”).

» Un champ magnétique statique est un champ de force créé par des
distributions de courants indépendantes du temps. On parle de
courants continus ou stationnaire, d’ou le suffixe "statique".

» Ces champs statiques sont différents des champs qui varient avec
le temps, comme ceux générés par des appareils qui fonctionnent
au courant alternatif (CA).
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Champ magnétostatique

Régime stationnaire (ou permanent)

La magnétostatique est donc le régime stationnaire (ou permanent) en
électromagnétisme : % = 0. C’est aussi le régime sinusoidal de

pulsation ® et de fréquence v nulles

O=0<v=0

Contrairement a 1’électrostatique, en magnétostatique les courants
. A ~¢ -
peuvent exister: j # 0 = B # 0



Le courant électrique : Définition

Un courant électrique est tout mouvement d’ensemble de charges
électriques dans un référentiel R.

Circulation de charges — courant électrique.

Intensité électrique

Un courant électrique est caractérisé par son intensité.

Elle mesure la quantité de charge qui traverse en moyenne une surface
quelconque d’un fil conducteur par unité de temps. C’est un flux de
charge a travers une surface.

Unités : [I] = [Q]/[t] & [Q] =[1][t] = A.s=C.
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Courants volumiques

Le courant peut s’exprimer en fonction de la vitesse moyenne des

charges mobiles.

Vecteur densité volumique de courant

Le vecteur densité volumique de courant électrique est défini en tout
point de I’espace ol s’écoule la charge (la charge est répartie dans le
volume). Sa direction et son sens représentent la direction et le sens

dans lequel s’écoule la charge.
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Courants volumiques
Le courant peut s’exprimer en fonction de la vitesse moyenne des
charges mobiles.

Vecteur densité volumique de courant

Le vecteur densité volumique de courant électrique est défini en tout
point de I’espace ol s’écoule la charge (la charge est répartie dans le
volume). Sa direction et son sens représentent la direction et le sens
dans lequel s’écoule la charge.
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Le vecteur densité volumique de courant permet de décrire la
répartition du courant en tout point de 1’espace.



Vecteur densité volumique de courant

La norme du vecteur densité de courant est reliée au courant
élémentaire traversant une surface élémentaire centrée sur ce point :

dl = j.dS

L’intensité traversant la surface S est égale au flux du vecteur densité

de courant :
1~ //

Unités : ||/]| s’exprime en A.m™~
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Courants surfaciques
Une distribution surfacique est une distribution volumique dont I’une
des dimensions est tres petite devant les deux autres. Les charges se
déplacent sur une tres faible épaisseur.
Soit un élément de longueur dl. On définit 7 le vecteur normal a dl
orienté dans le méme sens que le conducteur.

On appelle © la densité surfacique de charges moblles On définit la
notion de densité surfacique de courant jsen A.m~ ! par Iintensité
élémentaire qui traverse un segment de longueur dl

dl = jeidl  js=ov  js=1lim(j.e)

e—0




Densité linéique de courant
Si la zone de I’espace ou s’écoule le courant posseéde deux dimensions
tres petites devant la troisieme, on peut considérer que le courant
s’écoule le long d’une ligne : on parle de distribution linéique de
courant (conducteurs filiformes).
Dans cette modélisation, I’intensité est alors un flux de charge a travers
un point.

Les vecteurs j, dS et d/ ont tous la méme direction. On a alors :
Vdq = vIdt = Idl = j(P)dSdl = j(P)dSdl = j(P)dt



Vecteur élément de courant
Les courants réels sont décrits comme assemblages d’éléments de

courant élémentaires.

élément de courant élément de courant élément de courant
en volume de surface filiforme
i 8

(-

i—\."olume T Zurface 5 Courbe C

Elément de courant en volume j&t —» Charges mobiles volumiques
Elément de courant de surface js8S — Charges mobiles surfaciques
Elément de courant linéique 8/ — Charges mobiles linéiques.



Vecteur élément de courant

On définit le vecteur élément de courant : cﬁ'

distribution filiforme

distribution surfacique

distribution volumique

¢
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L’élément de courant dgV correspond a des charges élémentaires dg de
densité quelconque animées d’une vitesse V .
Dans chaque cas, I’élément de courant est homogene a une intensité
électrique que multiplie une longueur :

[4][V]

= LY = Us)IL = (L)



Lignes et tubes de courant
Définition :
On définit :
» une ligne de courant comme une courbe en tout point tangente au
vecteur densité de courant j,

» Un tube de courant comme I’ensemble des lignes de courant
s’appuyant sur une courbe fermée.

lignes de courant

tube de courant

e AT 125 section
- (..‘IIEI

1™ section

tube de courant | < (51)




Régime permanent

tube de courant

s

&

2% sechion

(aal

En régime permanent statique (indépen-
dant du temps), le vecteur j est nécessaire-
ment a flux conservatif

divj=0 équation locale

le courant électrique est le méme a travers
toutes les sections d’un méme tube de cou-
rant. Cela impose a I’intensité d’étre la
méme a travers toute section d’'un méme
tube de courant (pas d’accumulation de
charge, courant continu).
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Champ magnétique : actions exercées par un aimant ou un
courant

Action d’un aimant sur une ’w
aiguille aimantée -
Approchons un aimant d’une petite \ .

aiguille aimantée placée sur un P

pivot ; celle-ci se met en rotation. Alguilia
dimantée
>>
Action d’un courant électrique sur une Pl
aiguille aimantée = =3

De méme un fil de cuivre parcouru par un >>
courant agit sur une petite aiguille

aimantée placée en-dessous du fil et a
proximité.



Détection du champ magnétique
L’aimant et le fil agissent a distance sur 1’aiguille aimantée ; il y a
interaction a distance entre 1’aimant (ou le fil) et 1’aiguille.
Définition :
Un champ magnétique régne dans une région de 1’espace si dans cette
région une aiguille aimantée est soumise a des forces magnétiques.
Une petite aiguille aimantée permet :

» de mettre en évidence 1’action a distance du champ magnétique.

» d’obtenir la direction du champ magnétique dans une petite région
de I’espace.

N
S v boussole ou aiguille aimantée

_Sj N : péle nord
S : pole sud

aimant



Sources de champ magnétique

Sources
> Le champ magnétique terrestre généré par les mouvements du
magma du noyau externe.

» Les aimants. Deux pdles de méme nom se repoussent ; deux poles
de noms différents s’attirent.

» Les courants électriques

Les charges en mouvement sont sources de champ magnetique




Exemples d’Interactions magnétiques

Interactions magnétiques entre aimants droits

/ \ \

x :; | ]
b .é;.-,_
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Exemples d’Interactions magnétiques

1 2
I 1.1t
B E{ F
Fy

1
— —l =
o w o
o 5 Bl EE gE By
q ‘E." o <= - @ T—
1 2



Les caractéristiques du champ magnétique

Lignes de champ (spectre magnétique)
Définition

» Les lignes de champ constituent le spectre magnétique de la
source produisant le champ magnétique.

22



Les caractéristiques du champ magnétique

Le champ magnétique est représenté par un vecteur

Le spectre permet de découvrir qu’il existe des directions privilégiées
du champ magnétique; si 1’on place une aiguille aimantée sur une
ligne, on s’apercoit que I’aiguille prend une position (tangente a la
ligne considérée) et un sens privilégié.

___— aiguille
aimantée

barreau aimantée

pole sud
\ M

m OE—— aiguille
aimantée

barreau aimantée

23



Les caractéristiques du champ magnétique

Le champ magnétique est représenté par un vecteur

Définition : En chaque point de 1’espace, le champ magnétique est
représenté par un vecteur champ magnétique 5 dont les propriétés
sont :

» point d’application : point de I’espace ou regne le champ
magnétique (point d’observation).

» direction : celle prise par une aiguille aimantée.
Direction tangente aux lignes de champ.

» sens : cohérent avec I’orientation de la ligne de champ. Par
convention il va du pdle sud de I’aiguille vers son pole nord (Sud
Nord de I’aiguille aimantée).

» module : il peut étre calculé ou mesuré a I’aide d’un teslametre.

L’unité du systeme international est le tesla (T), le gauss (G) est
encore parfois utilisé.



Principe de superposition
Orientation d’une aiguille aimantée

En un point de I’espace, on peut faire agir plusieurs sources de champs
magnétiques. Le vecteur champ magnétique résultant en ce point sera
la somme vectorielle des vecteurs champs magnétiques des différentes
sources magnétiques en ce point.

(a) en présence du 1% aimant (b) en présence du 2¢ aimant (c) en présence des deux aimants

25



Loi de Biot et Savart

Enoncé de la loi de Biot et Savart

La loi de Biot et Savart établit la relation du champ magnétique a ses
sources, les densités de courants électriques continus dans le vide
(régime stationnaire). Elle permet de calculer, par intégration du champ
magnétique élémentaire, le champ magnétique créé par une distribution
de courant en un point M distant de r de cette distribution.

M
B —
o) = ,10/ mdr/;PM
Pe(T)

4r PM

‘ Distribution volumique ‘

Les courants sont en volume,
confinés dans un volume T

26



Loi de Biot et Savart pour une distribution surfacique

Nappe de courant (volume d’épaisseur négligeable)

; =)
Fon -t / is(PYds A PM
4r PE(S) PM3

Les courants sont en surface, confinés sur une surface S

Distribution surfacique : nappe de courant

~

L Nappe de
S ” courant

27



Loi de Biot et Savart pour une distribution linéique

Soit un circuit filiforme (C) par-

couru par un courant d’intensité 1.

Une longueur d! de ce 01rcu1t a une

densité linéique de courant / d [ dans

le sens de parcours du courant.

Le champ magnétique élémentaire 1
créé par cet élément de courant

s’écrit :

‘\‘® %l

_>

. wo 1dl A PM

aB(m) = MY
4t PM?

©

to =4m10~" Hm™! : constante uni-
verselle ( perméabilité du vide)



Loi de Biot et Savart

— U dCANPM — 2 - -2
0 A 7
( ) 41 PM3 ’ ¢ Js S J

> le_s>u@(>)rt de ﬁ(M ) est perpendiculaire au plan défini par
(dC,PM) PN

» le sens est tel que le triedre (dC, PM, dB(M)) soit direct

» le module du champ élémentaire dB est défini par :

o dC .
dB = P sin @, en Tesla (T)
%
ol 8 désigne I'angle (IdC,PM).
Le champ total ?(M ) au point M est la superposition des champs

élémentaires, créés par chaque portion dC du conducteur :

%
B(M) = / B
conducteur

29



Regle de la main droite

Intensite'T
vecteur PM

LA REGLE DES

TROIS DOIGTS

DE LA MAIN
DROITE

=7
— to AP — o a o
BM = — —_—I —= =
dB(M) APV dC =13l = jsdS = jot

30



Invariances et symétries

Les symétries et les invariances permettent de simplifier la recherche
du champ magnétique par une distribution de courants.

31



Invariances

Comme son analogue électrostatique, le champ magnétique présente les
mémes invariances que ses sources : les densités de courants. On place
un point M qui regarde la distribution, puis on le déplace par translation
le long de la distribution ou par rotation autour d’elle. Si le point M
voit la méme distribution, il y a invariance et le champ magnétique au
point M ne dépendra pas de la coordonnée qui "produit" I’invariance.

Invariances

Si les courants sont invariants par rotation et/ou par translation, B ne
dépend pas des variables associées.



Symétries et antisymétries
D : distribution de courants, M un point en lequel on calcule le champ
magnétique B (M). ITet IT plans respectivement de symétrie et
d’antisymetrie pour D, passant par M.

» B(M)LILB(M)eIl.




Symétries et antisymétries
Un plan IT de symétrie pour les courants est un plan d’antisymétrie
pour B. est transformé en son antisymétrique par IT.

Mell= B(M) LI

/ b T
M =symn(M)= B (M )= —symn?(M)

De méme un plan d’antisymétrie 15 pour les courants est un plan de
symétrie pour 5. Ce plan change le sens de tous les courants.

Mell = B(M)ell
/ N
M =symy (M) = B (M) :symnfﬁ(M)



Symétries et antisymétries
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Fil rectiligne infini : Lignes de champ magnétiques




Champ créé par une spire circulaire : Invariances

D est observée depuis le point M, repéré par ses coordonnées
cylindriques p, ¢, et z.

Etudes des invariances

z
e Invariance par toute rotation autour de
d (Oz2)
Mp.p.z)
[ ]
([ ]
2 1 s
le systeme (D, M) sera modifié.
A £ Le champ B créé par D en M
dépend donc de p et de z, soit :
B(M) = B(z,p)

37



Etudes des invariances

L]

v, L

QL
L.
D=D

Hotation de <0
d angle g
N

(4D M) = (D Af)

L]

M
!

el

SAEV N

Translation de <0
le long de l'axe 2
Th =gy

(D3] 2 (D )

I'ranslation de <0
anwant o
A

(4D 3] # (9 2¢)
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Etude des symétries
Etude des symétries

e [es plans (Il4s) contenants 1’axe (Oz) sont des plans
d antlsymetrle des sources. B appartient 2 chacun de ces plans
donc B appartient 2 leur intersection. Par conséquent, B a une
composante axiale.

e En un point quelconque, les symétries de la distribution ne sont

donc pas suffisantes pour simplifier I’expression donnée par la loi
de Biot et Savart.

39



Champ créé par une spire c;:irculaire en un point auelconque

e Pour tous les points M du plan, B est ainsi contenu dans le plan .

e Soit M un point de I’axe. Tous les plans contenant I’axe Oz et M
sont plans d’antisymétrie pour la spire donc E(M ) est inclus dans
leur intersection, qui est I’axe Oz. D’ou :

B(M) = B(z)e; 40



Symétries et invariances pour un point de I’axe

Le point M est repéré par son abscisse OM = z(p = 0).

B(M) = B(z)é.

41



Champ créé par une spire circulaire sur son axe

Application de la loi de Biot et Savart

Découpons la spire en petits éléments d/. La contribution a B (M) d’un
petit élément de courant I d! situé en P est représentée (voir figure) et

vaut :
Ty
* IdINPM
dB(M) _HOSA BIOT-SAVART
4 PM?
- —
ol dI A (PO + OM)
4m PM>3

Pour tout point P de la spire la distance PM est identique. Utilisant le
principe de superposition et la relation de Chasles :

o2 s f ) -

BM)=——— diN (PO )+

( ) 4n PM? Pespire ( Pespire
_po 1

= — %3 G+G
4m PM? Pespire( )

(dTA 0.1\}1)



Champ créé par une spire circulaire sur son axe

. . A o NP
Dans la deuxieme intégrale, le vecteur OM est indépendant de la
variable d’intégration repérant le point P sur la spire. Ce vecteur peut
sortir du symbole intégrale et C; s’écrit alors :

= ==
G = (¢ dl> ANOM
Pespire

Dans le cas de la spire le point P fait un tour complet c’est a dire que le
point initial est confondu avec le point final Py = P, :

P=P;
o S T,
§1§ dl:yg dl=P P =0
Pespire P=P

Coordonnées polaires pour repérer le point P :

OP = Rii, et dI = Rd®iie.Soit,

Ci :;15 (ﬁmﬁ) :55 (Rai, A dliig) = R (i, A i) 55 dl
Pespire Péespire Pespire

périmetre de la spire

27
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L’intégrale sur toute la spire donne alors deux fois sa surface :
C) =2 R%ii,
Finalement le champ magnétique a pour expression :

= pol R
BM)=——
(M) =2k P ™
En utilisant le théoreme de Pythagore on a :
PM2 =R 422 = PM3 = (R*+22)"°
R B 1

s B l_’_é -3/2
RMﬁ"R3(1+Z2>N2_' R?
r

Expression en fonction de 7

[ i Zz -3/2
— - 0 —
BZ(M):B(Z):ﬁ <1+R2> Up

44



Expression en fonction de I’angle o

sin(at) = A = sin’(a) = PRTjﬁ’ d’ou :

_ ol sin® (o)

EZ(M):E(Q) R

Champ au centre O de la spire
En O Iabscisse z est nulle (ou bien I’angle o vaut t/2). On obtient :

uol

E(O) = Byii; = E”z

Direction et sens de B,(M)
La spire se comporte comme un aimant plat, chacune de ses faces
correspondant a un pole.

Lettre N Lettre S I
Face Nord Face Sud———4

@) (&

I I
45



Intensité de B(z) en fonction de la position du point M

En introduisant la nouvelle variable u = z/R, on a :

ol 2\ 2 o —3/2
B(M):B(z)zﬁ <1+> =By (1+u”)

B(M)/B(0)

0.8 r
0.6 |

04 T

02 |

|
i
i
1
i i
| i
| i
i T J
2 ~0%e’5 0 o™ 2 u=z/R

L’intensité du champ décroit relativement rapidement des qu’on

s’éloigne du centre.
46



Flux magnétique a travers une surface fermée

Le champ magnétique est a flux conservatif

Le flux de B a travers une surface fermée, ou encore, le flux de B a
travers toute surface s’appyant sur un contours orienté I est le méme :

Equation intégrale :

ﬁ.ﬁext dS =0, VS surface fermée quelconque.

Stermée

» Conséquence 1 : ? est a flux conservatif

47



Divergence du champ magnétique

L’ opérateur divergence (symbole div) est un opérateur scalair, agissant
sur un champ vectoriel A (typiquement un champ électrique ou

magnétique).
Considérons un volume 7, limité par une surface (S). La divergence
vérifie :
N7
divA =lim —,
=0T

— -
avec P est le flux de A sortant de la surface fermée (S) limitant le
volume 7. Donc, en d’autres terme, la divergence représente le flux
sortant localement par unité de volume.

48



Divergence non nulle

Interprétation physique de la divergence

Si la divergence est non nulle, elle permet de savoir a quel endroit le
champ "diverge" : par exemple, le champ é€lectrique créé par une
charge localisée en un point P n’a une divergence non nulle que dans la
région de 1’espace occupée par la charge.

1. Si la divergence est positive, 2. Si elle est négative, le flux est
le flux est sortant. entrant.

f\T/\ !/\l/\\
| «— @OP—

Pr N | — @P <
R CEAY



Divergence nulle : cas du champ magnétique
3. Si enfin elle est nulle, le flux entrant est égale au flux sortant.

- _—
N S

N AN .
1 epP |
\\‘___/,

~ e

Formulation locale de la conservation du flux magnétique

En tout point M de I’espace ot le champ B(M) est défini et
différentiable :

div? =0

ce qui constitue la traduction locale du caractere conservatif du flux de
B.



Formulation locale

Formulation locale de la conservation du flux magnétique :

Preuve
On passe de I’information intégrale sur le flux de B a la traduction
locale en applicant le théoreme de Green-Ostrogradski qui stipule que :

# B(M) .S = /// divB dr
S v(S)

Pour toute surface fermée S englobant le volume V.
B est un champ a flux conservatif :

. — f;
ﬂ B(M).dS=0 = /// divBdt=0
Stermée V(S)quelconque

équation locale : divB=0

div B = 0 restera valable dans le cas des régimes dépendant du temps.



Théoreme d’ Ampere : Notion de courant enlacé (entouré)

Soit un parcours fermé orienté I'. Pour toute surface S s’appuyant sur le
contour I'.

face «Nord » =2

face «Sud»\j



Théoreme d’ Ampere : Notion de courant enlacé (entouré)

Soit un parcours fermé orienté I'. Pour toute surface S s’appuyant sur le
contour I'.

face «Nord » =

face «Sud»\j

Le sens de rotation positif autour de 7, == sens de rotation de I'.



Théoreme d’ Ampere : Notion de courant enlacé (entouré)

Soit un parcours fermé orienté I'. Pour toute surface S s’appuyant sur le
contour I'.

face «Nord » =

face «Sud»

Le sens de rotation positif autour de 7, == sens de rotation de I'.

7i, traverse la surface S en pénétrant par la face Sud et émergeant par la
face Nord. 7 est dit "enlacé" positivement par I' = I’enlacement est
un concept algébrique.

W
[3S)



Théoreme d’ Ampere : Notion de courant enlacé (entouré)

face «Nord » ? |
+
M

A

face «Sud»

n

face «Nord » face «Sud »



Théoreme d’ Ampere : Notion de courant enlacé (entouré)

Courants filiformes — I.jacce = Y1 Ik

I : intensité traversant une surface S s’appuyant sur le contour orienté
I.

+ : courants traversant dans le sens Sud — nord

— : courants traversant dans le sens Nord — Sud.

Courants filiformes (exemple)

Le courant i; est enlacé positivement

par I'. Les courants i; et is

ne sont pas enlacés ( i est enlacé une fois
positivement et une fois négativement).
Le courant i3 est enlacé deux fois négative-
ment. L’intensité algébriquement enlacée
a donc pour valeur : iepjacee = i1 — 203




Théoreme d’ Ampere : Notion de courant enlacé (entouré)

Courants volumiques —> I.pjac6c =flux de j a travers la surface S
orientée par le champ de vecteurs 7,

Ienlacée gl // j(P) 'ﬁ+ (P) N
PeS

Courants volumiques définis par j

Le tube de courant T est totalement en-
lacé. Le tube de courant T, n’est quant a
lui que partiellement enlacé. Dans la dé-
finition du courant enlacé, la surface S;
est étendue a la section entiere du tube T
tandis que la surface S, se limite a la zone
hachurée. :

Ienlacée — // f ’_’i+ oS = // j fi+ oS
S S18S2

()

¢

~,
™




Enoncé du théoreme d’ Ampere

Enoncé du théoréme d’ Ampere

Soit, dans le vide, une distribution stationnaire de courants créant
dans tout I’espace un champ d’induction magnétique B constant. La
circulation de B le long d’une courbe imaginaire quelconque fermée
orientée I est égale au produit par la perméabilité du vide rg de
Iintensité électrique enlacée par I'.

% E . 67 = po Lentacee
I

courant enlaceé courant
positivement non enlace

face «Nord » 7
A

face «Sud»




Représentation d’une surface par un vecteur

En un point M d’une surface S, on note dS un petit élément de surface
assimilable a une partie de plan tangent en M a S. dS sera représenté
par un vecteur élémentaire dS = dS 7 ot 7 est la normale, dont

I’ orientation dépend de certaines conventions :

Surfaces fermées
surfaces fermées : la normale en M est donc orienté vers 1’extérieur
(normale sortante).

— A .
dS.; =dS @ toujours pour une surface fermée.



Représentation d’une surface par un vecteur

Surfaces fermées s’appuyant sur des contours fermés orientés :

a. Laregle de la main droite : si I’on place la main droite de telle
maniere que le sens positif va vers le bout des doigts, le pouce
droit pointe dans le sens positif pour S.

b. Soit I’obervateur d’ Ampere : placé debout sur la surface S et
voyant le vecteur 7 remonter de ses pieds vers sa téte, voit la
circulation tourner dans le sens trigonométrique direct .

;_i.‘\'_” =d .‘\:'_:.,

dsy,

ATy,
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Représentation d’une surface par un vecteur

Surfaces ouvertes
il n’y a pas d’orientation privilégiée. L orientation de 7 est arbitraire
dans ce cas.
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Cas du fil infini parcouru par un courant

Invariance par rotation d'un
angle 0

\ Invariance

par translation
suivant z

----- N[ EEM'] =B(rjuy

On cherche a déterminer 1’expression de B (M) créé par le courant
- et : > —
d’intensité I circulant dans le fil. Le point M est repéré par : HM = rii,
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Cas du fil infini parcouru par un courant

Etude des symétries :

Le courant présente la symétrie cylindrique. En coordonnées
cylindriques on a : B(M) = B(r,0,z).

Tout plan (7g) contenant le fil et le point M est un plan de symétrie
pour le courant (source du champ magnétique). Le champ magnétique
est perpendiculaire a ce plan défini par les vecteurs (ii,; i, ) et est donc
obligatoirement orthoradial :

—

B(M) = B(r,9,z) up

Etude des invariances. :

Le fil est infini. I y a donc invariance par translation le long de I’axe
Oz. Le champ ne dépend pas de z. Le fil est un axe de symétrie :ilya
invariance par rotation d’un angle © autour du fil. L’intensite du champ
ne dépend pas de 0. Par conséquent,

E(M):B(r) U 61



Cas du fil infini parcouru par un courant

Choix du contour fermé orient€ :

> les lignes de champ sont des cercles de rayon r

» sur chaque cercle, le module de B est constant

Le contour fermé a choisir est donc :

> un cercle de centre H et de rayon HM = r
Le contour est orienté comme iig. La surface du cercle est orientée
alors comme ’axe Oz : i = ii,.

Circulation de B

$yep B-dl = ¢, B(r)iio.dliig = §,,_ - B(r)dl = B(r) §,_ - dl =
2nr B(r)

Théoreme d’ Ampere
Le seul courant traversant la surface s’appuyant sur le contour est le
courant d’intensité I dans le méme sens que la normale 7 = i, :

Mol
gSMeC B.dt=po Y. Ientacse = tol = B(r)zﬂrz,uol = B(r) - E 62




Formulation locale du théoreme d’ Ampere

Rotationnel d’un champ vectoriel

. . — . . ;
L’ opérateur rotationnel (symbol rot) est un opérateur vectoriel, agissant
sur un champ vectoriel X . Il exprime la tendance qu’ont les lignes de
champ d’un champ vectoriel a tourner autour d’un point. Le champ
vérifie

dC = iok(X).d8

ou dC est la circulation élémentaire du vecteur champ ?_)sur un
contour fermé (dI') limitant une surface dS. Le vecteur rot(?) est
parallele au vecteur 7 normal au plan pour lequel dI" est maximale.
Formulation locale du théoreme d" Ampere

En tout point de I’espace ou le champ B est défini et différentiable, le
caractere non-conservatif de la circulation de B est traduit localement

par la relation :
rot B=po
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Formulation locale du théoreme d’ Ampere

Preuve : Théoreme de Stokes

Le rotationnel d’un champ de vecteurs 7 en un point a travers une
surface s’appuyant sur un contour (I') est égale a la circulation locale
du champ autour de ce point.

yg?.ﬁ 4 //Sﬁot(?).cﬁ

Ce théoréme est appelé théoreme du rotationnel (Stokes).
Substituons X a B =

yg?(M).EE 2 //Sr_o%(?)a%

L’intensité Lepiacés du courant enlacé s’exprime aussi comme

-
Ienlacés — //]‘dS
S
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Théoreme du rotationnel

Théoreme du rotationnel (Stokes-Ampere)
On déduit donc I’égalité :

//S rot(B).d8 = o //S Fab

qui doit étre satisfaite pour toute surface S s’appuyant sur I'. Par
conséquent, 1’égalité des intégrales impliquent 1’égalité des intégrants
de sorte que

iy

1ot B(M) = o j(M)
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Champ de rotationnel

Théoreme. Champ de rotationnel

On appelle champ de rotationnel tmi champ Y défini et différentiable
pouvant s’écrire sous la forme ¥ = rotX.
Les seuls champs a divergence nulle sont les champs de rotationnel,

div(rotX) = 0.

Appliquons ce résultat au champ B, dont divB =0 partout, on obtient :

Définition. Potentiel vecteur
Le champ B dérive d’un potentiel vecteur, noté A tel que, en tout point

de I’espace : N
B=rotA
Preuve
On salt que divB=0 pour tout point M de I’ espace. _
dlv(rotX ) = 0 = Jun champ vectoriel A tel que B = rotA



Propriétés de symétrie de A

Théoréme. Propriétés de symétrie de A

e Les plans de symétrie de B sont les plans d’antisymétrie de A.

e Les plans d’antisymétrie de B sont les plans de symétrie de A.
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Non-unicité de A - Notion de jauge

Sachant que AW
ﬁ(grad 0)=0

est satisfaite pour toute fonction scalaire ¢(M). Ceci impose donc que
tous les potentiels vecteurs écrits sous la forme

—/

- —
A=A —|—r—>ot(grad)

décriront le méme champ magnétostatique car :

- - A — o
B =rotA’ = rotA —I—r_>ot(grad) =B.
——

-

=0

Le potentiel vecteur magnétique est défini a un gradient pres.
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Equation de Poisson de la magnétostatique - Jauge de
Coulomb

Définition. Notion de jauge

On peut vouloir se limiter a une certaine classe de potentiels vecteurs
en leur imposant une contrainte (réaliser un choix particulier pour A).
On dit alors que I’on fait un choix de jauge. .

Dans la jauge de Coulomb, on impose la condition divA = 0.
Puisque B = r_>ot(7), on a r;Z[(?) = r_>0tr3k[(z>) = g_ggl—gidivz> AL
Comme divA =0, ona r_>0t(?) = —AA Par analogie a I’équation de
Poisson en électrostatique, on trouve :

- -
AA =—up j
et par conséquent :

Condition de Jauge de Coulomb

. divA =0
A vérifie I’équation de Poisson de la magnétostatique (équation locale)




De I’équation de Poisson, on déduit la forme de A

- Mo ?(M ) A\ .
AM)="— // dr; distributions volumiques
4n Jf). MP

2 Js (M)
AM)= Z—;)E // & dsS; distributions surfaciques
s

MP
%
1di(m
A (M) =t M) . camits filifodes
47 C MP

Proposition. A est un vecteur polair

En régime stationnaire, les symétries du potentiel vecteur A sont les
mémes que celles du courant j.



Conditions aux limites pour B

Continuité et discontinuité de B (M)
o ?(M ) est continu en M lorsque M est dans une distribution

volumique de courant,

° ?(M ) est discontinu en M lorsque M est sur une nappe de
courant surfacique,

° ?(M ) diverge en M lorsque M est sur une distribution linéique de
courant.
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Conditions aux limites pour B

Nappe de courant

Une nappe de courant est une surface (S) sur laquelle existent des
courants superficiels de densité surfacique j; (s’exprime en A.m~!).
Lorsque cette nappe sépare deux milieux magnétiques, la composante
normale du champ magnétique reste toujours continue de part et
d’autre de la surface de séparation. La composante tangentielle de
est discontinue O AP J,

Br1— Bra = uo( js Anib)

ou Br; et Br) sont les composantes de ? tangentielles a la surface. 1?5
le vecteur unitaire normal a la surface et orienté du milieux 1 vers le
milieux 2.



Conditions aux limites pour ?

Nappe de courant

milieu 1

milieu 2
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Force de Lorentz
I*T; est 'influence que produit ? sur une particule chargée en
mouvement se déplacant a une vitesse V. Des expériences sur
diverses particules chargées se déplacant dans un champ magnétique
donnent les résultats suivants :

e Le module de F}B est proportionnel a la charge g et au champ
magnétique B .

e Le module et la direction de I*T)B dépendent de la vitesse de la
particule et du module et de la direction de ?

» Quand une particule chzggée se déplace parallelement au vecteur
champ magnétique B, Fp agissant sur la particule est nulle.
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Force de Lorentz

_>
» Lorsque V fait un angle 6 #~ 0 avec ? Fp est toujours
perpendiculaire a V eta B. Donc elle est perpendiculaire au plan
défini par Vet
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Force de Lorentz :

Regle de la main droite

La direction du produit vectoriel VA ? est déterminée par la regle de
la main droite : on pointe les quatres doigts de la main droite le long de
la direction de V avec la paume tournée vers ? et les courber vers B.
Le pouce prolongé, qui est a angle droit aux doigts, points dans la
direction de V' A ﬁ
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>
b

_>
Force de Lorentz : | Fp = q.7 A

- . .. . . PN

e Fp exercée sur une charge positive est dans la direction opposée a
la direction de Fp exercée sur une charge négative se déplacant
dans le méme sens

- ) . .
e Le module de Fp est proportionnel a sin®, ou 0 est I’angle que fait
W avec la direction de B.

— 1
IFs]l = lql[| V][ B || sin®
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Force de Laplace

Si maintenant on a un conducteur parcouru par un courant I, chaque
charge mobile du conducteur va subir une force de Lorentz. Supposant
que le conducteur contient un seul type de charges mobiles, soit n
charges mobiles. La résultante F des n forces de Lorentz constitue la
force électromagnétique de Laplace s’exercant sur le conducteur
tout entier. Elle exprime la force F' a laquelle est soumis un circuit
parcouru par le courant I, en présence d’un champ magnétostatique

F = 1di A B (M)

Me(C)

Le champ ? fait I’objet de la loi de Biot et Savart.
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Conducteur cylindrique parcouru par un courant de volume
uniforme |

Ce probleme présente les mémes symétries et invariances que le fil
infini, nous recherchons donc un champ magnétique de la forme
B(M) = B(r)iip . I : intensité totale uniformément répartie dans le
volume du conducteur avec une densité de courant uniforme j = #
Le probleme differe du précédent pour 1’évaluation de I’intensité
électrique enlacée. Nous devons distinguer deux cas :

ii..

> Sile point M est a I’extérieur du fil cylindrique,

la totalité du courant est enlacé
_4 .o Nl
Lenlacge = TR J= 1

Le théoreme d’ Ampere conduit alors a la méme expression du champ
que pour un fil rectiligne filiforme. Soit, pour

. _ wol _ wojR?

79



Conducteur cylindrique parcouru par un courant de volume
uniforme 11
> Sile point M est a I’intérieur du fil cylindrique,

seule une partie du courant est enlacée :

2
o/ R
Lentacge =T j = Iﬁ

. Le théoreme d’ Ampere s’exprime alors par la relation :
210r B(r) = polentacse = o jmr*> Donc pour r < R

Mo Jr
B(r) = 5

En conclusion, nous avons ainsi démontré que le champ magnétique
varie continliment dans 1’espace conformément aux expressions :

fren mooghony

~
ip2
r>R B(r):%:“OJrR
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Conducteur cylindrique parcouru par un courant de volume
uniforme 111

Point M
a I'extérieur :
Point M

"
=NR" j=1 St
I a intérieur :

Tenlucée
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Conducteur cylindrique parcouru par un courant de surface
uniforme |

Ce probléeme présente cette fois encore les mémes symétries et
invariances que le précédent, on recherche donc un champ magnétique
de la forme B(M) = B(r)ii, Notons I I’intensité totale uniformément
répartie dans la surface du conducteur avec une densité de courant de
surface j; = ﬁ ii;. De la méme fagon, on choisit pour parcours

d’ Ampere I' le cercle passant par le point M, de rayon r, centré sur I’axe
Oz et orthogonal a cet axe. Sur ce parcours, orienté dans le sens direct,
la circulation du champ magnétique a pour expression :2rB(r).

De la méme fagon que précédemment, pour I’évaluation de I’intensité
électrique enlacée, nous devons distinguer deux cas :

> Sile point M est a I’extérieur du fil cylindrique,



Conducteur cylindrique parcouru par un courant de surface
uniforme 11

la totalité du courant est enlacé
Ienlacée : Znij =1

Le théoreme d’ Ampere conduit alors a la méme expression du champ
que pour un fil rectiligne filiforme. Soit, pour
r>R:B(r) = L — bR

— 2nr r

» Sile point M est a I’intérieur du fil cylindrique,



Conducteur cylindrique parcouru par un courant de surface
uniforme 111

aucun courant n’est enlacé :
Ienlacée =0

. Le théoreme d’ Ampere s’exprime alors par la relation :
21 rB(r) = uolentacée = 0. Donc pour r < R

B(r)=0

En conclusion, nous avons ainsi démontré que le champ magnétique
varie continiment dans 1’espace conformément aux expressions :

r<R B(r)=0
r>R B(r) g—l = kiR

0
Tr a
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Conducteur cylindrique parcouru par un courant de surface
uniforme 1V

Remarque : le champ magnétique présente une discontinuité a la
surface du cylindre égale a 1 j; . La composante du champ
magnétique tangentielle a la nappe de courant et orthogonale au
courant est discontinue a la traversée d’une surface chargée.
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Conducteur cylindrique parcouru par un courant de surface

uniforme V

B

Point M
al'extérieur :

22MR jy=i

= Lenlucée

Point M
a l'intérieur :

i =)

— "enlacée

86



Solénoide infini : Solénide 1déal I

Ce probleme est fondamentalement différent du précédent. Il s’agit
toujours d’une nappe de courant sur une surface cylindrique, mais cette
fois le courant s’enroule autour de I’axe Oz. Nous étudions ici le
probleéme correspondant a un cylindre infini. Le probleme, en plus
d’étre invariant par rotation quelconque autour de Oz est donc
également invariant par translation quelconque selon Oz.

1. Etude de symétrie

Dans cette nouvelle situation, tous les plans perpendiculaires a I’axe Oz
sont des plans de symétrie de la distribution des courant : nous en
déduisons qu’en tout point de 1’espace le champ magnétique est
orthogonal a ces plans, c¢’est-a-dire dirigé selon Oz : B= B.(r)i, . De
plus, les invariances impliquent que la composante B,(r) ne dépend
que durayonr :



Solénoide infini : Solénide 1déal 11

a
[
1

| NS e
Invariance

par rotation
d’un angle 6

Invariance par translation
suivant 7

FIGURE : Solénoide infini : symétries et invariances
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Solénoide infini : Solénide 1déal I
2. Choix du contour fermé

Le contour doit comporter des segments rectilignes paralleles a 1’axe z
(champ constant si r = constante). Pour constituer un contour fermé on
peut relier deux segments paralleles a I’axe par des segments
perpendiculaires tels que la circulation du champ sera nulle sur ces
portions.

Conclusion : prendre un cadre rectangulaire contenu dans le plan
d’anti-symétrie I14g , de longueur L parallele a I’axe, r; et rp étant les
distances a 1’axe des deux longueurs



Solénoide infini : Solénide 1déal 11

L,
< ~ > B(r;)
N o N
B(r)
EE—
> B(ry)
&
___________________________________ >

FIGURE : Contour choisi pour appliquer le théoréme d’ Ampere

3. Application du théoréme d’ Ampere
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Solénoide infini : Solénide idéal 111
Le champ B est uniforme 2 Iextérieur du solénoide.On choisit donc le
parcours d’ Ampere rectangulaire C4; (Le cadre est completement en
dehors du solénoide r, > r; > R) . Sur ce parcours, avec les
conventions algébriques du schéma, la circulation vaut :
B.(r2)l — B;(r1)l. Aucun courant n’étant enlacé (aucun courant ne
traverse la surface du cadre), cette circulation est nulle et I’on a donc
un champ uniforme a I’extérieur du solénoide :

B.(r) = Bext, Vr > R.

Une démonstration analogue avec le parcours d’ Ampere C4» montre
que B est nécessairement uniforme a I’intérieur du solénoide :

Bz(r) = Bint, Vr < R.
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Solénoide infini : Solénide 1déal IV

Cy3 le contour d’ Ampere sur la nappe de courant. Ce parcours enlace le
courant jg/ et nous en déduisons par application du théoréeme
d’Ampere :

(Bint - Bext)l = o js!

Ce résultat exprime tout simplement la discontinuité du champ
magnétique a la traversée d’une nappe de courant de surface.

On admettra qu’a I’extérieur le champ magnétique Bex; est nul. C’est
en effet la seule solution qui a un sens physique (si on est suffisamment
loin de la bobine, le champ doit étre nul) : le champ a I’extérieur est
donc nul.

Conclusion :

A I’intérieur du solénoide, pour r < Rona Eim = Byii,

A I’extérieur du solénoide, pour r > Rona Eext =0
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Solénoide infi

B(r) A | 7
I . d Lenlacée
=~ : | e
- 2] = sy 7
Cf\l ! ('Az | ! (’.U
I 1
. :
ry ra —""R
- —
Parcours Parcours Parcours i cheval
extérieur : intérieur :  sur la nappe de courant :
’cnim‘ée - 0 Ien]méu = 0 '{cn]ucéc b § Js [

ni

: Solénide 1déal V




Nappe de courant plane infinie et uniforme I

La démonstration utilise I’équation locale de Maxwell-Ampere. La
démonstration étant faite que les composantes B, et B, du champ
magnétique sont nulles et que la composante By ne dépend que de z, le
rotationnel du champ magnétique est simplement égal a la dérivée de B
par rapporta z :

B B \ B OB
B(M) :Bx(z)ﬁx — rotB = g) A 0 _ T;ﬁy
3 0
0z

De part et d’autre du plan chargé, la densité de courant j est nulle. Nous

en déduisons, d’apres I’équation locale rotlB = Uoj , que le rotationnel

du champ magnétique y est nulle en tout point et que, par conséquent,

le champ magnétique est uniforme dans chacun de ces demi espaces.
0B,

r?>t§:,uoj:> 3 —\(¢ soit B, = cst
Z
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Nappe de courant plane infinie et uniforme II
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Nappe de courant plane infinie et uniforme III
La nappe de courant est un plan de symétrie de la distribution de
courant, ce qui implique un champ magnétique dans tout 1’espace de la
forme antisymétrique :

B = +Byii, pourz > 0
B = —Bojii, pourz < 0

Enfin, I’expression de la discontinuité de la composante normale du
champ a la traversée d’une surface chargée et nous en déduisons :
B.—B_ = (+BOﬁx) U (_Boﬁx) = 2Byii, = ,qusﬁx-

Et finalement :

B= +“°2jx pourz >0
B = —Hs pourz < 0

96



ELECTROMAGNETISME

Notions d’induction

F. Ouchni

18 avril 2016



Plan

Introduction Energie magnétique

Approche expérimentale Equations de Maxwell dans le
vide

Loi de Lenz

Loi de Faraday

Auto-induction

Inductance mutuelle



Induction

Induction électromagnétique

1. Découverte par Faraday en 1831.
2. C’est I’apparition d’un courant induit dans un circuit
grace a la variation du flux d’un champ magnétique.

3. Applications technologiques : moteur électrique,
alternateurs, transformateurs, ...

Deux types d’inductions
> soit en déplacant un champ magnétique stationnaire au voisinage
d’un circuit électrique fixe
» soit en déplacant (ou déformant) un circuit électrique au voisinage
d’un champ magnétique stationnaire fixe.
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lorentz.mp4
Media File (video/mp4)


neuman.mp4
Media File (video/mp4)


lre

Expériences : 1 expérience : aimant mobile, circuit fixe

Galvanometer

FIGURE : Induction de Neumann : aimant mobile, circuit fixe



Interprétation :

Aucun courant n’est enregistré dans le galvanometre
quand I’aimant droit est stationnaire par rapport a la
boucle.

Cependant, un courant est induit dans la boucle quand
un mouvement relatif existe entre I’aimant droit et la
boucle. Particulierement le galvanometre se dévie dans
une direction comme 1’aimant s’approche de la boucle et
dans la direction opposée lorsqu’ il s’éloigne. Lorsque
I’aimant se déplace, il crée un flux magnétique qui varie
suivant la position de I’aimant : la boucle est soumise a
un flux variable. Le déplacement de I’aimant modifie
dans le temps le champ magnétique et par conséquent le
flux & travercant le circuit.

W



2° expérience : aimant fixe, circuit mobile

_. bobine en mouvement

aimant fixe
champ permanent

FIGURE : Induction de Lorentz : aimant fixe, circuit mobile



Interprétation :

Une autre cause possible de variation du flux magnétique est le
déplacement ou la déformation des circuits dans un champ magnétique
(constant) indépendant du temps. L’ apparition d’une f.é.m induite est
diie a la force de lorentz sur les électrons contenus dans les circuits,

?:q7/\?.



Loi de Lenz :

Pour chaque cas, I’expérience montre que le phénomene d’induction
s’oppose aux causes qui lui ont donné naissance.

Les phénomeénes d’induction s’opposent par leur(s) effet(s) aux
causes qui leur ont donné naissance.



Loi de Faraday

Dans un circuit, c’est la f.€.m. qui permet de mettre en mouvement les
charges électriques et d’obtenir un courant électrique. La f.€.m est
homogene a une tension, elle s’exprime donc en Volt (V).

Le sens du courant, qui dépend du déplacement de I’aimant, est obtenu
en utilisant la loi de Lenz ou la convention de signe f.é.m. relie la force
électromotrice e source du courant induit au flux du champ magnétique
a travers le circuit dans lequel apparait ce courant induit :

do
S dr
avec ¢ = . Sl_f.ﬁdS. Si S est la surface orientée définie par le circuit
dans lequel se développe le courant induit, et 7i
sont vecteur normal qui oriente le circuit.
Dans cette loi, le signe moins traduit la loi de Lenz.
L’orientation du circuit donne son orientation a la fem et au courant
induit.

9



Loi de Faraday I

De la lere expérience :

e= —%. On définit un champ locale induit E-, qui n’est pas un champ
électromoteur (absence de force magnétique), qui n’est pas un gradient
non plus, et qui est tel que :

d 9B
e= ygﬁlﬁ = —//?.WWS = //.ﬁdS car S est fixe
r dt JJs g ot

En utilisant le théoreme de Stokes-Ampere dans le premier membre

//S(ﬁmﬁi).ﬁds 9B 7ds

ot
Cette égalité devant étre valable pour toute surface, indépendamment
de sa géométrie et sa position, donc les deux membres des intégrands
sont égaux

a§+r_o%?,-=6>:r3ﬁi=a§



Loi de Faraday II

C’est la relation de Maxwell-Faraday qui traduit le couplage
électromagnétique. Le champ E; n’est pas un gradient car son
rotationnel est non nul. En exprimant le champ magnétique en fonction
du potentiel vecteur, ? = rotX ona:

%Eiﬁ:_a/ﬁ.gfs:_a/m
r or Jg or Js

et par conséquent :

-
%(ﬁi—l— a—A)El) =0
r ot

%
Ei = —aa—? constitue I’expression de Neumann du champ induit.

C/)
*e\
{0
&
o
e



Loi de Faraday III

Dans la situation la plus générale ot un champ électrostatique est
également appliqué, le champ électrique résultant s’écrit :

%
F—?ﬁ?i——ﬁiV—aa‘?



Loi de Faraday I

De la 2éme expérience :

Lorsque la bobine est mise en mouvement a la vitesse V. la
composante de la force ? le long de la bobine est susceptible de faire
circuler les électrons (les mettre en mouvement) avec la méme vitesse
7, donnant lieu 2 un courant induit. L'é énergie potentielle (travall
élémentaire) recue par les électrons sur un élément de la bobine dl est

SW=F.dl

L’énergie totale qui leur permet de faire un tour de circuit est obtenue
en intégrant sur tout le contour C de la bobine. Elle est égale a la
circulation de F le long du circuit (bobine)

W:yg?.ﬁ:q?é(7/\ﬁ)cjl):qe



Loi de Faraday II

La f.é.m. e correspond a la circulation du champ électromoteur de
Lorentz (qui n’est pas un gradient)

%
E =VAB
sur le circuit I" étudié selon la formule
%
A §1§E—,>,,.dl
r

L’existence de courants induits est liée au caractére non conservatif de
la circulation du champ électromoteur : ils existent si et seulement si la
fem totale d’une maille est non nulle.



Auto-induction : Inductance propre I

Un circuit filiforme orienté I parcouru par un courant variable
d’intensité i(t) crée un champ magnétique propre B ,(M,1).

Le flux de ce champ a travers le circuit I lui-mé&me est le flux propre :

®,(1) = / N B ,(M,1).dSy

ou X est une surface orientée s’appuyant sur I' On définit I’inductance
propre (ou la self-inductance) L du circuit par

@, (1) = Li(r)

» L’inductance propre s’exprime en henry (H). Ona L > 0.

» L’inductance propre ne dépend que de la géométrie du circuit et
de la perméabilité du milieu (ug pour le vide et les milieux non
magnétiques).



Auto-induction : Inductance propre II

Inducteur

On appelle inducteur un élément de circuit ayant une
auto-inductance non négligeable ; il s’agit en général
d’une bobine. Dans un schéma, I’'inducteur se représente

par le symbole : 6666

16



Phénomene d’auto-induction 1

Une intensité i(z) variable entraine 1’apparition d’une f.é.m. induite,
appelée f.€.m. d’auto-induction, donnée par la loi de Faraday, soit dans
un circuit fixe et rigide :

do, di
= —— = —L —_
‘p dr dr

Ainsi, I’effet d’auto-induction est tout a fait conforme a la loi de Lenz :
le circuit parcouru par le courant initial ijpjgia (£) = i(¢)créé un champ
magnétique qui créé un courant induit dans ce méme circuit.

D’apres la loi de Lenz, ce courant induit s’oppose a la cause qui lui a
donné naissance : ce courant induit est dans le sens inverse du courant
initial qui s’établit dans le circuit :

e Si finitial () augmente, e, < 0, le courant induit a le sens contraire
de (1),



Phénomene d’auto-induction 11

e si iipitial (1) diminue, e, > 0, le courant induit a le méme sens que

i(1),

Linitial Linitial

Linit iﬁ'tl

B A
Bi'i‘l“{‘ Biuduit- créé

induit

N’oublions pas que le courant induit n’existe que lorsqu’il y a variation
du champ magnétique. En régime permanent, ce courant n’existe plus
mais en régime variable, il va "freiner" I’établissement du courant dans
le circuit.



Phénomene d’auto-induction 111

» Le phénomene d’auto-induction est important quand les
fréquences sont élevées, ou quand le circuit comporte un grand
nombre de spires. On le néglige dans le cas d’un simple circuit
alimenté par un générateur de basses fréquences (GBF).

Vidéo : retard a I’allumage du a 1’auto-induction dans une bobine


http://youtu.be/isllsO6aqrc

Inductance mutuelle

Deux circuits filiformes (C)) et (C,) sont parcourus par des courants
d’intensités I et I,.

Le champ magnétique ?2 créé par (C,), donné par la loi de Biot et
Savart, est proportionnel a /.

Le flux ®,_,; de B ; a travers le contour fermé (Cj) orienté par le sens
positif du courant /; est proportionnel a I, :

D) .y =My 1L,  etdeméme: D ., =M

M;_,1 et M;_,, constituent les coefficients d’induction mutuelle des
deux circuits.
> M, . et M|_,, sont symétriques : My, =M, =M

» M, . et M|_,> ne sont pas nécessairement positifs comme les
inductances propres L et L;.

> M, et M|_,, sont des termes qui dépendent de la géométrie des
circuits (C) et (Ca).

[3*]



Couplage entre les deux circuits

On considere deux circuits filiformes (C;) et (C2) en couplage mutuel.
En désignant par ®; et ¥, les flux totaux traversant respectivement les
circuits (C) et (C2) tenant compte de leurs flux propres; on a, en
I’absence d’autres sources de champs magnétiques :

¢, = Li+MhL
D, = ML+Lh



Couplage entre les deux circuits

Lorsqu’un élément de circuit d’inductance L est parcouru par un
courant variable i(t), il recoit de I’énergie a un taux :
P g e L'd i
=ei S{hi
Pour calculer le travail requis pour faire croitre le courant dans un
inducteur de zéro a i, on calcule le travail infinitésimal effectué pendant
un temps dt, pour faire passer le courantdeiai+di :

dW =Pdt =Lidi

Pour trouver le travail total, on intégre 1’expression ci-dessus de zéro a
la valeur finale du courant :

i
/ / 1
W:/dW:/Lidi = —Li?
0 2

Ce travail correspond a I’énergie U emmagasinée a I’intérieur de
I’inducteur transportant un courant i, en posant U = 0, lorsque i =0 :

N 51 ”



Equations de Maxwell dans le vide

En régime permanent :

0 ? est a circulation conservative,

@227@¢ﬁﬁ
le? 0& # ? d_> ? est a flux conservatif,

rot? o ] & 5]5 a’ 0lentace = Ho // J c??theoremed > Ampere,
dlvf — <:> # E) d_>

NS}
W



Champ électromagnétique en régime variable
Généralisation des équations locales au régime variable :

a?
rotﬁ Equation de Maxwell-Faraday,

le? =0 Equation de flux magnétique se généralise au régime variable

0
rot? o ] + D) ,u07 + .11080? Equation de Maxwell-Ampere

div? _P Equation de Maxwell-Gauss se généralise au régime variabl

Ainsi, en régime non permanent, les sources du champ magnétique sont
de deux natures : les courants « réels » et le courant de déplacement jp
qui provient de la dépendance temporelle du champ é€lectrique.




Cours d’électrocinétique
Régime sinusoidal

F. Ouchni



Introduction

Dans cette premiere partie du chapitre d’électrocinétique, Nous allons
définir les grandeurs électriques en régime variable (les tension et
intensité varient au cours du temps), on introduira la notation complexe
qui est un outil d’aide a la résolution des équations. Il sera alors temps
de parler des résonances du circuit RLC.

[\



Les réseaux linéaires : Définitions

» Dipdle
Nous appelons dipdle un élément électrique capable ou non de
fournir de I’énergie, communiquant avec I’extérieur seulement par
deux bornes. A tout instant, le courant entrant par une borne est
égal au courant sortant par 1’autre. La résistance R, le
condensateur, et la bobine sont des exemples de dipdles.

» Noeud

w



Grandeurs €lectriques en régimes sinusoidaux

Ecriture mathématique et caractéristiques d’une grandeur
sinusoidale

Les circuits que nous allons étudier serons soumis a une tension
sinusoidale. Graphiquement, on peut dessiner cette fonction ainsi.

X(04  |o=1




Ecriture mathématique et caractéristiques d’une grandeur
sinusoidale

Comment écrit-on mathématiquement ce type de signal ?

11 a la forme suivante :

x(t) = Xy cos(ot +0) (1)

X, : amplitude du signal ;
o : pulsation en rad.s~! ;
¢ : phase a I’origine des dates en rad.

En effet, sur la figure, le signal vérifie x(t =0) =Oeton a
T
nécessairement ¢ = 5

On peut de la méme facon utiliser une fonction sinus pour décrire un
signal sinusoidal.

Si on écrit x(t) = X, sin(®¢ 4 ¢) alors pour la figure, ¢ = 0.

9]



Notation complexe d’un signal périodique
Rappels mathématiques

» Un nombre complexe écrit dans sa forme cartésienne a pour
expression :
z=a+jb 2)

Avec a la partie réelle et b la partie imaginaire, et j le nombre
complexe vérifiant j> = —1.

» Le module de z noté |z| a pour expression : |z| = Va2 + b2

> a ]
> Son argument 0 est défini par : cos® = ﬂ etsin® = ’—|
Z Z

» Un nombre complexe écrit sous sa forme polaire a pour
expression :
z=r(cos0+ jsin@) = re’® 3)

avec r = |z = V/a*> + b? son module et 6 son argument.

6



Définitions I

Soit un signal sinusoidal d’expression mathématique
x(t) = X, cos(wt + @), on lui associe une grandeur complexe :

X(t) = Xppe! (910 = X, /¥ e/ 4)
On pourra également définir une amplitude complexe :
X =X,/ donc  X(r) =Xe/™ 3)

On travaillera donc en notation complexe mais il sera facile de revenir
au signal réel :

» Retour au signal réel complet grace a la partie réelle du complexe

x(t) = Re(x(1)) (6)



Définitions 11

» Retour a ’amplitude du signal réel grace au module de
I’amplitude complexe ou du signal complexe :

Xn = |X| = [x(2)| 7

> Retour a la phase initiale grace a I’argument de 1I’amplitude
complexe :

0 =Arg(X) (8)
Ainsi, toutes les informations dont nous avons besoin pour
reconstituer le signal réel sont contenues dans I’amplitude
complexe.



Quelques impédances élémentaires [

» Résistance

C’est le seul cas pour lequel la loi d’Ohm est vérifiée en valeur
instantanée. On peut écrire en effet u(t) = Ri(t), soit : Vo = Rlj.
I’'impédance est donc égale a R, elle est réelle : une résistance
n’introduit pas de déphasage entre tension et courant.

» Capacité

L’intensité i(r) qui traverse un condensateur C, la tension u(?) a ses
bornes et la charge ¢(¢) qu’il porte sont liées par les relations : ¢ = Cu
eti—= %, soiti:C%.

Si la tension s’écrit u(t) = Uy cos(t), on obtient alors

i(t) = —CwUpsin(wt) = +CwlUycos(wr + 7).

En notation complexe, ceci s’écrit

i=C4E =C(jw)a, soit i = jcimf: Zi

9



Quelques impédances élémentaires 11

1 —Jj_ 1
Z=——¢x e .
Cw p(—jm/2) = Cw ]Cw
On en déduit donc la relation entre les amplitudes du courant et de la
tension : Iy = CwUj. De plus, I’argument de Z est ==, donc la tension
u(t) esten retard sur le courant i(7). On peut aussi écrire :

Oy — 0y = =E, avec ici : ¢ = 0, ce qui redonne ¢; = % : dans un
condensateur, le courant est en quadrature avance sur la tension a ses
bornes.

» Inductance

10



Quelques impédances élémentaires 111

Pour une bobine, la relation entre u(z) et i(¢) s’écrit :

— L=
"=

En notation complexe % = U, exp(jor) et i = I,,exp(jwt). Donc :

A « Li 3 L .0) -
=L =L(jo)
= jLwi=Zi loi d’ohm complexe pour la bobine
L’impédance de la bobine est
Z=jLw

On en déduit donc la relation entre les amplitudes du courant et de la
tension : Uy = Lwly. De plus, I’argument de Z est Z, donc la tension



Quelques impédances élémentaires IV

u(t) esten avance sur le courant i(7). On peut aussi écrire :
Ou —¢; = T, avec ici : ¢y = 0, ce qui redonne ¢; = " : dans une
bobine, le courant est en retard de mt/2 sur la tension é ses bornes.
Conclusion : Pour un dipdle linéaire, il est toujours possible d’écrire
(en notation complexes) :
=Zi
; ou également, apres simplification par

Un=Zl,
qui est la loi d’ohm complexe.
» Pour une bobine :Z = jL®;
» Pour une condensateur : Z = 1/jCwo; ;

» Pour une résistance : Z = R.



Régime sinusoidal permanent

TABLE : Régime sinusoidal permanent

Symbole Nom Unité
u=u(t) valeur instantanée de la tension | volt (V)
Unax =U valeur maximale de la tension | volt (V)
Umnoy =0 valeur moyenne de la tension volt (V)

Ut = Uy%x valeur efficace de la tension volt (V)

t temps secondes (s)
ot + 0, phase de u a I’instant t radian (rad)
Oy phase initiale (az =0 ) de u radian (rad)
T (avec ®T =21 ) | période seconde (s)
f= % fréquence hertz (Hz)
o =2nf pulsation radian par seconde |




Représentationde Fresnel

Objectifs :

Construire et exploiter une représentation vectorielle de tensions et de
courants d’un circuit électrique linéaire en régime sinusoidal
permanent.

TABLE : Transposition vectorielle

Grandeur sinusoidale ] Vecteur associé ‘
Valeur instantanée :

u=u(t) = Uv2cos(ot +0,)
Valeur efficace : U = Uegt
Phase initiale (at =0) : ¢,

Vecteur : U
Norme : |U|
Angle polaire : ¢,

T




Loi d’Ohm transposée au calcul vectoriel

—

U = [U;,] est le vecteur associé a la tension sinusoidale u, I = [I;¢]
le vecteur associé au courant sinusoidal i, Z I’'impédance en ohms du
dipdle.

Représentation de Fresnel : Valeurs efficaces :
i pee Se:d”ec’ Déphasage
=2t T -+
% ! (,D:(?.U}:&‘"—Q’,'

FIGURE : Loi d’Ohm transposée au calcul vectoriel



Dipdles linéaires élémentaires

Impédance 2 Représentation
Déphasage (rad) de Fresnel
& U
= iR R - N $ =y
£ = —— {ZH In & Ug In
] Pyt /% i @@ o
8 R ¢n=(Ta, Ug) =0
o
)
8 - 2. AN .
L > I v | SR
B <~ @ = (T, U) = = rad 20
U " —
@ G [~
g N | NNVe. =14k e
} N iy (9, 2
[&] <—N o=z, Ug)= — rad
G ¥




Lois des nceuds et des mailles
Elles restent valables a condition de les transposer au calcul vectoriel.
Loi des nceuds (deux formulations)

> La somme des courants qui
arrivent a un neceud est égale a

la somme des courants qui en
partent.

L+L=5E.

» La somme algébrique des
courants aboutissant a un
neceud est nulle.

Li+L-5=0.



Lois des nceuds et des mailles

Loi des mailless (deux formula-

tions)
U
e
\ |
» La somme des tensions dans =

le sens de parcours de la s us
maille est égale a la somme
des tensions en sens inverse. .

U, =U; +Us.

» La somme algébrique des
tensions dans le sens de.

U, — Uy —Us = 0.



Notation complexe : loi d’Ohm
Objectifs :

Objectifs : Etudier, par les nombres complexes, les tensions et courants
d’un circuit électrique linéaire en régime sinusoidal permanent.

TABLE : Transposition complexe :

Grandeur sinusoidale ’ Nombre complexe associé
Valeur instantanée :

u=u(t) = Uv/2cos(wt +0,)
Valeur efficace : U = Ukt
Phase initiale (a1 =0) : ¢,

U =[U;0,] = Ue/
Module : |U|=U
Argument : Arg(U) = ¢,

TTe




Loi d’Ohm généralisée
U = [U;¢,] est le nombre complexe associé  la tension sinusoidale u,

I = [I;¢;] le nombre complexe associé au courant sinusoidal i, Z
I’'impédance complexe du dipdle et ¥ son admittance complexe.

X* 28 U=Zxl
>IN <
% I=YxU

FIGURE : Loi d’Ohm généralisée

Interprétation géométrique de la loi d’Ohm généralisée
R U = ZI(valeurs efficaces)
UV=Q¥~ { Arg(U) = Arg(Z) + Arg(I)

U = ZI(valeurs efficaces)

0, = 0+ 0;(modulo2r)

[3*]



Loi d’Ohm généralisée

» L’impédance complexe peut s’écrire :
Z =[Z;0] = Ze/® = R+ jX = Zcos + jZsing ou
Z =|Z| = U/I est I'impédance.
Arg(Z) = ¢ = ¢, — ¢; (modulo 27) le déphasage entre u et i, u en
avance de phase par rapport a i si ¢ positif.
R = Re(Z) = Zcos ¢ larésistance, et X = Im(Z) = Zsin¢ la
réactance. Z, R et X s’expriment en ohms ().

» [’admittance complexe peut s’écrire :
Y=[Y;—0¢] =G+ jB=Ycosd— jYsind ou
Y =1|Y|=1/Z=1/U est’admittance, G = Re(Y) la
conductance, et B = Im(Y)la susceptance. Y, G et B s’expriment
en siemens (S) ou ohms ™!




Dipdles linéaires élémentaires

Impedance Impédance (€2) Résistance (£2)
complexe Déphasage (rad) Réactance (£2)
8 in R % - R Rr=R
£ o B Zn=R
@ s T Yr=0 Xa=0
T Ur
:E: i L Z =jlw Z=lo A =0
= LSS | § § | N— =5 I {
é (T = L x ez 4 = - rad X =Llw
Z 1 Z ! Ac=0
s i c f ot~y o= — o=
5 £ — 156 Cw 3
S {T = Co X e ¥c = — rad Cw

22



Association d’impédances en série

Deux dipdles sont en série s’ils sont traversés par le méme courant

Utot k™ Ul +UZ = Zeql_

avec | Zeqg =21+ 2>

SIiE
|

NS}
W



Association d’impédances en parallele

Deux dipdles sont en parallele s’ils ont leurs bornes communes

- L. SENNT
It0t211+12 :quU = =
Zeq

= - _ - Z]XZZ
avec | Yeq =Y+ Y2 |0u| Zeq = A
1
' N
> 11
=1L Z (W)
o Iy s
-~
T
u



Lois des nceuds et des mailles
Elles restent valables a condition de les transposer au calcul complexe. .
Loi des nceuds (deux formulations)

> La somme des courants qui
arrivent a un neceud est égale a

la somme des courants qui en
partent.

1_1 +I_2 — 1_3.

» La somme algébrique des
courants aboutissant a un
neceud est nulle.

1_1 —|—I_2—I_3 =0.



Lois des nceuds et des mailles

Loi des mailless (deux formula-

tions)
U
e
\ |
» La somme des tensions dans =

le sens de parcours de la s us
maille est égale a la somme
des tensions en sens inverse. .

Uz =1 1 —{—1_3.

» La somme algébrique des
tensions dans le sens de.

U,—U,—U;=0.

26



Regle de transposition d’une somme

La somme de deux grandeurs sinusoidales de méme nature (tensions ou
courants) et de méme fréquence f est une sinusoide de fréquence f ; le
module et la phase de cette somme sont donnés par la somme complexe
associée.

Somme de deux Somme complexe
grandeurs sinusoidales associée
u(t) = s (1) + () N U=Ui+Us

Attention, les valeurs efficaces ne s’ajoutent pas en général :

U#U+U,.



Passage de I’équation différentielle a la notation complexe

On passe de I’équation différentielle a la notation complexe en

remplacant u(¢) par U , d/dt par jo et plus généralement d* /dt* par
(joo) .
Dérivation et intégration

TABLE : Transposition complexe

Grandeur sinusoidale
Valeur instantanée :

u=u(t) =Uv2cos(t+0,) | < | U=|U;0,| =Uel®
d — —Uv2cos(0t+¢,) | < | joU = aUe/®F1/2)
YRS

[ udt = U2/ wsin(ot +0,) U~ %ej(q’"_“/z)

Jjo

] Nombre complexe associé ‘




Dipdles €lémentaires

» Résistance

ug = Rig <> Ur = Rx Ig = Zg = R= [R;0).

» Capacité

ic =C%¢ & I = Cx joUc = Zc = 5

» Inductance
up, =L% Uy = Lx jol, = Z;, = jLo =

[@, -90°

[Lw;+90°]

J:



Intérét de la notation complexe : €tude du circuit RC en

régime sinusoidal

Etude du dipdle RC : Loi des mailles

On étudie le dipole RC en régime sinusoidal : un générateur impose
aux bornes de ce dipdle la tension e(t) = E cos(®t + ¢). Appliquons la

loi des mailles :

u(t)+Ri(t) =e(r)

Puis utilisons la notation complexe :

—

u(t)+Ri(t) =e(r)

u(t)+Ri(t) = Ee/™)

ift)

) clxm

(€))

(10)
1D



Intérét de la notation complexe : €tude du circuit RC en
régime sinusoidal
Etude du dipdle RC : Loi des mailles
du(t - du(t -
Ori(r) = C% donc i(t) = C% = jCou(t) (la relation entre i(t)
et u(t) est linéaire).
L’équation (11) devient :

u(t) + jRCwu(t) = Ee/ ) (12)
A Eellon)
e M(l‘) = m (13)

31



Notation complexe : théoremes

Théoreme de Thévenin

On peut remplacer tout circuit linéaire, qui alimente par les bornes A et
B un dipdle D, par un générateur de tension idéal en série avec une
résistance RTh . La fem ETh du générateur est égale a la ddp mesurée
entre A et B quand le dipdle D est débranché. La résistance RTh est
égale a la résistance mesurée entre A et B quand le dipdle D est
débranché et que les générateurs sont remplacés par leurs résistances
internes.

Le théoreme de Thévenin est a privilégier lorsqu’on s’intéresse a
des dipoles en série.



Théoreme de Thévenin : exemple d’application I

Déterminer 1’équivalent de Thévenin du « dipdle » AB :

E, E3
—_— Ry Ry — R
R N o o G B S -
E

17¢ étape : Lorsque le dipdle AB est débranché, a vide, le courant est
nul : 7 =0. La force électromotrice totale aux bornes du dipdle
vaut alors :
Emh =E) —E; +Ej3



Théoreme de Thévenin : exemple d’application II

2¢ étape : Lorsque les générateurs E1, E, et E3 sont remplacées par
leurs résistances internes (qui sont nulles pour des générateurs de
tension idéaux), on obtient le graphe suivant :

R R R3
PO il B s A e B

La résistance équivalente de ces résistances placées en parallele

vaut
Rmh =R + Ry +Rs.
Bilan
Le graphe AB est équivalent au dip6le de Thévenin suivant :

Avec Rty =R +Ry+R3et Eywy = E| — E» + Ej3.
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Puissance et énergie en régime sinusoidal

Objectifs :
Calculer et mesurer la puissance absorbée par un circuit électrique
linéaire en régime sinusoidal permanent

Soit un dipdle passif, constitué par un ou plusieurs éléments simples.
Ce dipdle est traversé par un courant sinusoidal i(¢). Nous trouvons a
ses bornes une tension sinusoidale (). Nous pouvons définir plusieurs
types de puissances :

» La puissance instantanée
La puissance instantanée consommée par un dipdle est définie
comme le produit de la tension u () qui apparait aux bornes du
dipole par I'intensité du courant i(7) qui le parcourt. Elle
s’exprime en watt (W) : p(z) = u(r).i(z)
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Puissance et énergie en régime sinusoidal I

Nous distinguons deux cas selon le signe de p(r) :
» p(t) est positif, I’énergie est fournie aux dipoles, le dipole joue le
role d’un récepteur ;

» p(t) est négatif, le dipole renvoie de 1’énergie, le dipdle joue le
role d’un générateur.

En régime sinusoidal permanent, u(t) et i(f) se mettent sous la forme :

i(t) = Iviax cos(@r + 1) et u(r) = Unpax cos(@r + @) d’ ot

P(t) = Unpax cos(t + §3) .Injax cOs(0F + @y )

soit en utilisant la relation trigonométrique classique suivante
cos(p).cos(q) = 0,5[cos(p — q) +cos(p + ¢)] Nous trouvons
I’expression de la puissance instantanée :

un terme constant qui représente la valeur moyenne de la puissance :

’ Ueff.leffCOS(q)z) = Ueff.leffCOS(A(D) = Ueff.leffCOS(¢) ‘
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Puissance et énergie en régime sinusoidal II

et un terme sinusoidal : Uegs.ler cos(2r + A®). La pulsation de
I’expression de la puissance instantanée est deux fois la pulsation du
signal sinusoidal (2 au lieu de ®). Si le terme constant est nul, la
puissance est donc alternativement positive et négative durant une
demi-période du signal courant ou du signal tension.

Puissance active
Dans le cas général, la puissance moyenne ou puissance active
s’exprime par la relation :

Proyenne = Ueilett cos(d)

cos(¢), qui représente le rapport de Pmoyenne sur le produit Ueff Ieff
s’appelle facteur de puissance. Sa valeur est comprise entre O et 1.
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Puissance complexe

Puissance complexe

La puissance est le produit de la tension par le courant. Ce n’est pas
une grandeur linéaire. Il faut manipuler la notation complexe avec
précaution : P(¢) = u(t).i(t) ne s’identifie pas a Re[i(t).i(t)]
Notons que nous avons : i(t).i*(t) = uy, i,e/®

ou ¢ est le déphasage entre la tension et I’intensité Puissance
Puissance complexe

La puissance moyenne absorbée par un dipole en régime sinusoidal est,
en convention récepteur :
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Résonance du circuit RLC série

Le premier montage est
celui ou I'on enregistre
la tension aux bornes du
condensateur.

Dans celui-ci, on étudie
la charge g du condensa-

teur (uc — g).
c

Feoswt

FIGURE : M est repéré par ces coordonnées
cylindriques.
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Etude de la tension uc(#) aux bornes du condensateur

Equation différentielle, régime transitoire, régime permanent
Si I’on étudie classiquement le circuit de la figure ? 2, on établit
I’équation différentielle vérifiée par uc(¢) a I’aide de la loi des mailles ;

on obtient : 5
d“uc Rduc 1
—+——+—u = Ecos ot
dr> L dt 9
La solution de cette équation différentielle est la somme de la solution
de I’équation homogene (équation différentielle avec second membre

nul) et d’une solution particuliere.

On rappelle que :

» La solution de I’équation homogene correspond au régime
transitoire ;

> La solution particuliére correspond au régime permanent.



Etude de la tension uc(#) aux bornes du condensateur

On ne s’intéressera qu’a la solution particuliere (régime forcé).
Solution particuliére et notation complexe

Pour exprimer cette solution, on utilise le diviseur de tension en
notation complexe sur la figure. On a ainsi :

1
Z, i 2(t
wel) = 777,770 = LB l—LC(f)gi- RCw
C L R —|—]L(D+R J

JjCw

Toutes les informations pour caractériser le signal réel sont contenues
dans I’amplitude complexe définie par :

3 E
Ur =
€T 1-LC@*+ jRCw

Intéressons-nous a I’amplitude du signal réel et a son déphasage
(déphasage de uc(t) par rapport a e(z)) :
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Amplitude

L’amplitude de uc(z) est donnée par le module de I’amplitude

complexe :
E

Ur —
< J/(-LCw?)? 1 RCw?

On peut introduire dans cette expression les variables réduites, soit

1 . . ot ol
0y = —— la pulsation propre du circuit, on définit une grandeur sans

VLC

dimension x = — ; on utilise également le facteur de qualité :
o

1 /L
0= R\/;' Ce qui donne :




Déphasage

Pour obtenir ¢, on prend I’argument de Uc. Celui-ci vaut :
0 =Arg(Uc) = Arg < o >
1 — LC®? + jRC®
= Arg(E) —Arg(1 — LC®’ + jRC®)
= —Arg(1 — LCo®* + jRCo)

On modifie I’équation ci-dessus de la maniere suivante :
0 = —Arg(1 — LCw” + jRCw)
= —Arg(j(RCo— j(1 — LCw?))
= —Arg(j) — Arg((RCo— j(1 — LCw?))

92 RCo
2 RCo



En effet avec cette astuce et sachant que

Arg(zx 7)) = Arg(z) + Arg(), on fait apparaitre I’argument d’un
nombre complexe dont la partie réelle est positive, donc le cosinus de
I’argument de ce complexe est positif et on peut écrire ¢/ = arctan().

On peut alors introduire les variables réduites :

1 —x2
X

Q

T
o= fEJrarctan
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Etude du phénomene de résonance

Cette étude consiste a tracer, en fonction de la pulsation d’excitation ®
(ou de la fréquence) ou en fonction de notre variable réduite x = %, le
comportement de I’amplitude du signal uc(¢) et de son déphasage par
rapport a e(z).

Etude de I’amplitude
E

jo-ere(5)

Si on veut connaitre le sens de variation de U¢, on peut se référer a
celui de

) = (1= ()2
1

Rappelons I’expression de celle-ci : Uc =

Q
\/m et que la fonction , /— est croissante, Uc varie
X

de maniére inverse a f(x).

Comme U¢ =
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Etude de la fonction f(x)

Pour étudier celle-ci, il nous faut sa dérivée :
2 2 1
flx)=2x(—2x)x (1 —xz)—i—Q—); = —4x+4x3+§§ =4x <x2 -1+ 2Q2>

1
Cette dérivée s annule pour x = 0 et pour x> — 1 + 200 =

Cette deuxiéme condition implique que x =, /1 — 2%22 si et seulement
: 1 : 1
Sll—TQ2>OSOItQ>ﬁ.

0.

On distingue alors deux cas :
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Cas d’un petit facteur de qualité : O < \%

La dérivée f’(x) ne s’annule que pour x = 0, f(x) est croissante (4x
croissant et x> — 1 + 207 croissant) de |0, +oo|.

Donc la fonction d’amplitude Uc est

décroissante sur |0, +-oo].

Ces limites sont : uc
» limUc=FE ;
x—0 E A
» lim Uc=0;
X—>+oo
1 4
L’allure de cette fonction est donc
dessinée ci-contre. f
0 1

Pas de résonance en tension aux bornes
du condensateur lorsque Q < %
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Cas d’un grand facteur de qualité : Q > % I

Cette fois f’(x) possede deux racines, x =0etx=,/1— ﬁ, racine du
polyndme du second degré contenu dans f’(x).

f’(x) est du signe du polyndéme du second degré, donc du signe du "a"
de ce polyndme partout sauf entre les racines. On sait aussi que Uc

varie de facon inverse a f(x).

Du coup, on peut dresser le tableau de variation suivant :

x |0 x=4/1- TéZ o0
f’(x) - +
f(x) Décroissante Croissante
. 20°F b .
Uc Croissante  Umax = W décroissante
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Cas d’un grand facteur de qualité : Q > % IT

Il y a donc un maximum d’amplitude pour x =x, = , /1 — %Qz c’est ce
phénoméne que ’on appelle résonance en tension.

A la résonance, Uc est maximum et est supérieure a E : c’est ce
que ’on appelle la surtension.

De plus, les limites de Uc sont les mémes que pour le cas précédent.

Dessinons I’allure de I’amplitude Uc en fonction de x pour plusieurs
valeurs de facteur de qualité :
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Cas d’un grand facteur de qualit€¢ : Q > —= III

uc

Résonance de la tension
aux bornes du
condensateur en
fonction de la pulsation
et du facteur de qualité

Nous observons que :
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Cas d’un grand facteur de qualité : Q > % v

» La résonance est d’autant plus aigiie (pic étroit) que le facteur de
qualité est grand ;

» Plus ce facteur est grand, plus la pulsation de résonance tend vers
la pulsation propre du circuit (puisque x = m% tend vers 1) en
restant toujours inférieure a elle ;

» La surtension est d’autant plus grande que le facteur de qualité est
grand.
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