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Notion de Champ
Un champ est la donnée, pour chaque point de l’espace, de la valeur
d’une grandeur physique. Un champ est donc une propriété de l’espace,
c’est-à-dire une grandeur physique définie en tout point d’une région
de l’espace. Sa présence modifie les propriétés de l’espace qui
l’entoure, et l’intensité du champ est grande à proximité de la source, et
diminue rapidement lorsqu’on s’en écarte.

Champ scalaire
Un champ est dit scalaire lorsqu’il concerne une grandeur physique
décrite uniquement par sa valeur. On utilise par exemple des champs
scalaire en météorologie lorsque qu’on veut décrire les valeur de
pression ou de température sur une certaine zone géographique (champ
de température/champs de pression).
On appelle équipotentielle, une ligne (ou une surface) sur laquelle le
champ a la même valeur.
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Les champs vectoriels

Champ vectoriel

I On parle de champ vectorielle lorsqu’à tout point de l’espace on
associe un vecteur (champ électrique, magnétique, gravitationnel).
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Les champs vectoriels

I Chaque vecteur a un sens et une intensité. Il va donc y avoir deux
façons de procéder pour représenter les champs vectoriels :

1. On s’interesse à l’intensité du
champ et on trace les lignes
équipotentielles

2. On s’interesse à la direction et
au sens du champ et on trace
les lignes de champ (on part
d’un point de l’espace et on
suit la direction et le sens des
vecteurs en traçant une ligne
fléchée)
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Champs statiques

Champs électrostatique et magnétostatique

I Un champ électrostatique est le champ de force créé par
l’attraction et la répulsion de charges électriques immobiles (ou en
mouvement infiniment lent) dans l’espace (“électricité statique”).

I Un champ magnétique statique est un champ de force créé par des
distributions de courants indépendantes du temps. On parle de
courants continus ou stationnaire, d’où le suffixe "statique".

I Ces champs statiques sont différents des champs qui varient avec
le temps, comme ceux générés par des appareils qui fonctionnent
au courant alternatif (CA).
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Champ magnétostatique

Régime stationnaire (ou permanent)
La magnétostatique est donc le régime stationnaire (ou permanent) en
électromagnétisme : ∂

∂t = 0. C’est aussi le régime sinusoıdal de
pulsation ω et de fréquence ν nulles

ω = 0⇔ ν = 0

Contrairement à l’électrostatique, en magnétostatique les courants
peuvent exister :

−→
j 6=−→0 ⇒−→B 6=−→0
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Le courant électrique : Définition
Un courant électrique est tout mouvement d’ensemble de charges
électriques dans un référentiel R.
Circulation de charges→ courant électrique.

Intensité électrique
Un courant électrique est caractérisé par son intensité.
Elle mesure la quantité de charge qui traverse en moyenne une surface
quelconque d’un fil conducteur par unité de temps. C’est un flux de
charge à travers une surface.
Unités : [I] = [Q]/[t] ⇔ [Q] = [I][t] = A.s = C.
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Courants volumiques
Le courant peut s’exprimer en fonction de la vitesse moyenne des
charges mobiles.

Vecteur densité volumique de courant
Le vecteur densité volumique de courant électrique est défini en tout
point de l’espace où s’écoule la charge (la charge est répartie dans le
volume). Sa direction et son sens représentent la direction et le sens
dans lequel s’écoule la charge.

~j = ρ~v

Le vecteur densité volumique de courant permet de décrire la
répartition du courant en tout point de l’espace.
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Vecteur densité volumique de courant
La norme du vecteur densité de courant est reliée au courant
élémentaire traversant une surface élémentaire centrée sur ce point :

dI = ~j .d~S

L’intensité traversant la surface S est égale au flux du vecteur densité
de courant :

I =
¨

(S)

~j(~r, t).d~S

Unités : ‖~j‖ s’exprime en A.m−2
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Courants surfaciques
Une distribution surfacique est une distribution volumique dont l’une
des dimensions est très petite devant les deux autres. Les charges se
déplacent sur une très faible épaisseur.
Soit un élément de longueur dl. On définit~n le vecteur normal à dl
orienté dans le même sens que le conducteur.

On appelle σ la densité surfacique de charges mobiles. On définit la
notion de densité surfacique de courant ~jS en A.m−1 par l’intensité
élémentaire qui traverse un segment de longueur dl

dI = ~jS.~ndl ~jS = σ~v ~jS = lim
e→0

(~j .e)
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Densité linéique de courant
Si la zone de l’espace où s’écoule le courant possède deux dimensions
très petites devant la troisième, on peut considérer que le courant
s’écoule le long d’une ligne : on parle de distribution linéique de
courant (conducteurs filiformes).
Dans cette modélisation, l’intensité est alors un flux de charge à travers
un point.

Les vecteurs ~j, d~S et d~l ont tous la même direction. On a alors :
~vdq =~vIdt = Id~l = j(P)dSd~l = ~j(P)dSdl = ~j(P)dτ
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Vecteur élément de courant
Les courants réels sont décrits comme assemblages d’éléments de
courant élémentaires.

Élément de courant en volume ~jδτ −→ Charges mobiles volumiques
Élément de courant de surface ~jSδS −→ Charges mobiles surfaciques
Élément de courant linéique Iδ~l −→ Charges mobiles linéiques.FSO.U
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Vecteur élément de courant
On définit le vecteur élément de courant :

−→
dC

distribution filiforme distribution surfacique distribution volumique
−→
dC Iδ~l ~jSδS ~jδτ

On a :
Idl = (jLdz)dl = jdτ = (jdz)(Ldl) = jSdS.

−→
dC = Iδ~l = ~jSδS = ~jδτ

L’élément de courant δq~v correspond à des charges élémentaires δq de
densité quelconque animées d’une vitesse~v .
Dans chaque cas, l’élément de courant est homogène à une intensité
électrique que multiplie une longueur :

[q][v] = [ j][L]3 = [ jS][L]2 = [I][L].
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Lignes et tubes de courant
Définition :
On définit :

I une ligne de courant comme une courbe en tout point tangente au
vecteur densité de courant ~j,

I Un tube de courant comme l’ensemble des lignes de courant
s’appuyant sur une courbe fermée.
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Régime permanent

En régime permanent statique (indépen-
dant du temps), le vecteur ~j est nécessaire-
ment à flux conservatif

div~j = 0 équation locale

le courant électrique est le même à travers
toutes les sections d’un même tube de cou-
rant. Cela impose à l’intensité d’être la
même à travers toute section d’un même
tube de courant (pas d’accumulation de
charge, courant continu).
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Champ magnétique : actions exercées par un aimant ou un
courant

Action d’un aimant sur une
aiguille aimantée
Approchons un aimant d’une petite
aiguille aimantée placée sur un
pivot ; celle-ci se met en rotation.

>>

Action d’un courant électrique sur une
aiguille aimantée
De même un fil de cuivre parcouru par un
courant agit sur une petite aiguille
aimantée placée en-dessous du fil et à
proximité.

>>
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Détection du champ magnétique
L’aimant et le fil agissent à distance sur l’aiguille aimantée ; il y a
interaction à distance entre l’aimant (ou le fil) et l’aiguille.

Définition :
Un champ magnétique règne dans une région de l’espace si dans cette
région une aiguille aimantée est soumise à des forces magnétiques.
Une petite aiguille aimantée permet :

I de mettre en évidence l’action à distance du champ magnétique.
I d’obtenir la direction du champ magnétique dans une petite région

de l’espace.
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Sources de champ magnétique

Sources

I Le champ magnétique terrestre généré par les mouvements du
magma du noyau externe.

I Les aimants. Deux pôles de même nom se repoussent ; deux pôles
de noms différents s’attirent.

I Les courants électriques

Les charges en mouvement sont sources de champ magnetique

19

FSO.U
M

POUJD
A.C

OM



Exemples d’Interactions magnétiques

Interactions magnétiques entre aimants droits
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Exemples d’Interactions magnétiques
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Les caractéristiques du champ magnétique
Lignes de champ (spectre magnétique)

Définition

I Les lignes de champ constituent le spectre magnétique de la
source produisant le champ magnétique.
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Les caractéristiques du champ magnétique
Le champ magnétique est représenté par un vecteur

Le spectre permet de découvrir qu’il existe des directions privilégiées
du champ magnétique ; si l’on place une aiguille aimantée sur une
ligne, on s’aperçoit que l’aiguille prend une position (tangente à la
ligne considérée) et un sens privilégié.
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Les caractéristiques du champ magnétique
Le champ magnétique est représenté par un vecteur

Définition : En chaque point de l’espace, le champ magnétique est
représenté par un vecteur champ magnétique

−→
B dont les propriétés

sont :
I point d’application : point de l’espace ou règne le champ

magnétique (point d’observation).
I direction : celle prise par une aiguille aimantée.

Direction tangente aux lignes de champ.
I sens : cohérent avec l’orientation de la ligne de champ. Par

convention il va du pôle sud de l’aiguille vers son pôle nord (Sud
Nord de l’aiguille aimantée).

I module : il peut être calculé ou mesuré à l’aide d’un teslamètre.
L’unité du système international est le tesla (T), le gauss (G) est
encore parfois utilisé.
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Principe de superposition
Orientation d’une aiguille aimantée

En un point de l’espace, on peut faire agir plusieurs sources de champs
magnétiques. Le vecteur champ magnétique résultant en ce point sera
la somme vectorielle des vecteurs champs magnétiques des différentes
sources magnétiques en ce point.
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Loi de Biot et Savart

Énoncé de la loi de Biot et Savart
La loi de Biot et Savart établit la relation du champ magnétique à ses
sources, les densités de courants électriques continus dans le vide
(régime stationnaire). Elle permet de calculer, par intégration du champ
magnétique élémentaire, le champ magnétique créé par une distribution
de courant en un point M distant de r de cette distribution.

−→
B (M) =

µ0

4π

ˆ
P∈(τ)

−−→
j(P)dτ∧−→PM

PM3

Distribution volumique

Les courants sont en volume,
confinés dans un volume τ
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Loi de Biot et Savart pour une distribution surfacique

Nappe de courant (volume d’épaisseur négligeable)

−→
B (M) =

µ0

4π

ˆ
P∈(S)

−−−→
jS(P)dS∧−→PM

PM3

Les courants sont en surface, confinés sur une surface S

Distribution surfacique : nappe de courant
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Loi de Biot et Savart pour une distribution linéique
Soit un circuit filiforme (C) par-
couru par un courant d’intensité I.
Une longueur dl de ce circuit a une
densité linéique de courant I

−→
dl dans

le sens de parcours du courant.
Le champ magnétique élémentaire
créé par cet élément de courant
s’écrit :

−→
dB(M) =

µ0

4π

I
−→
dl ∧−→PM

PM3

µ0 = 4π10−7 H.m−1 : constante uni-
verselle ( perméabilité du vide)
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Loi de Biot et Savart

−→
dB(M) =

µ0

4π

−→
dC∧−→PM

PM3 ;
−→
dC = Iδ~l = ~jSδS = ~jδτ

I le support de
−→
B (M) est perpendiculaire au plan défini par

(
−→
dC,
−→
PM)

I le sens est tel que le trièdre (
−→
dC,
−→
PM,
−→
dB(M)) soit direct

I le module du champ élémentaire
−→
dB est défini par :

dB =
µ0

4π

dC
PM2 sinθ, en Tesla (T)

où θ désigne l’angle (I
−→
dC,
−→
PM).

Le champ total
−→
B (M) au point M est la superposition des champs

élémentaires, créés par chaque portion
−→
dC du conducteur :

−→
B (M) =

ˆ
conducteur

−→
dB
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Règle de la main droite

−→
dB(M) =

µ0

4π

−→
dC∧−→PM

PM3 ;
−→
dC = Iδ~l = ~jSδS = ~jδτ
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Invariances et symétries
Les symétries et les invariances permettent de simplifier la recherche
du champ magnétique par une distribution de courants.
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Invariances
Comme son analogue électrostatique, le champ magnétique présente les
mêmes invariances que ses sources : les densités de courants. On place
un point M qui regarde la distribution, puis on le déplace par translation
le long de la distribution ou par rotation autour d’elle. Si le point M
voit la même distribution, il y a invariance et le champ magnétique au
point M ne dépendra pas de la coordonnée qui "produit" l’invariance.

Invariances

Si les courants sont invariants par rotation et/ou par translation,
−→
B ne

dépend pas des variables associées.

32

FSO.U
M

POUJD
A.C

OM



Symétries et antisymétries
D : distribution de courants, M un point en lequel on calcule le champ
magnétique

−→
B (M). Π et Π

′
plans respectivement de symétrie et

d’antisymetrie pour D, passant par M.

I
−→
B (M) ⊥ Π,

−→
B (M) ∈ Π

′
.
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Symétries et antisymétries
Un plan Π de symétrie pour les courants est un plan d’antisymétrie
pour

−→
B .
−→
B est transformé en son antisymétrique par Π.

M ∈Π⇒−→B (M)⊥Π

M
′
= symΠ(M)⇒

−→
B
′
(M

′
) =−symΠ

−→
B (M)

De même un plan d’antisymétrie Π
′
pour les courants est un plan de

symétrie pour
−→
B . Ce plan change le sens de tous les courants.

M ∈Π
′ ⇒−→B (M) ∈Π

′

M
′
= sym

Π
′ (M)⇒

−→
B
′
(M

′
) = sym

Π
′
−→
B (M)
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Symétries et antisymétries
M /∈Π M /∈Π′
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Fil rectiligne infini : Lignes de champ magnétiques
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Champ créé par une spire circulaire : Invariances
D est observée depuis le point M, repéré par ses coordonnées
cylindriques ρ, φ, et z.

Études des invariances

• Invariance par toute rotation autour de
(Oz) laisse le système (D,M) inchangé.
~B est indépendant de φ.

• Si on translate D le long de (Oz)
• Si on éloigne D du point d’observation

M

le système (D,M) sera modifié.
Le champ ~B créé par D en M
dépend donc de ρ et de z, soit :

~B(M) = ~B(z,ρ)
37
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Etudes des invariances
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Étude des symétries
Étude des symétries

• Les plans (ΠAS) contenants l’axe (Oz) sont des plans
d’antisymétrie des sources. ~B appartient à chacun de ces plans
donc ~B appartient à leur intersection. Par conséquent, ~B a une
composante axiale.

• En un point quelconque, les symétries de la distribution ne sont
donc pas suffisantes pour simplifier l’expression donnée par la loi
de Biot et Savart.
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Champ créé par une spire circulaire en un point quelconque

• Pour tous les points M du plan, ~B est ainsi contenu dans le plan .
• Soit M un point de l’axe. Tous les plans contenant l’axe Oz et M

sont plans d’antisymétrie pour la spire donc ~B(M) est inclus dans
leur intersection, qui est l’axe Oz. D’où :

~B(M) = ~B(z)~ez 40
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Symétries et invariances pour un point de l’axe

Le point M est repéré par son abscisse OM = z(ρ = 0).

~B(M) = ~B(z)~ez
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Champ créé par une spire circulaire sur son axe

Application de la loi de Biot et Savart
Découpons la spire en petits éléments dl. La contribution à ~B(M) d’un
petit élément de courant I d~l situé en P est représentée (voir figure) et
vaut :

d~B(M) =
µ0 I
4π

d~l∧−→PM
PM3 BIOT-SAVART

=
µ0 I
4π

d~l∧ (−→PO+
−−→
OM)

PM3

Pour tout point P de la spire la distance PM est identique. Utilisant le
principe de superposition et la relation de Chasles :

~B(M) =
µ0

4π

I
PM3

˛
P∈spire

(
d~l∧ (−→PO

)
+

˛
P∈spire

(
d~l∧−−→OM

)
=

µ0

4π

I
PM3

˛
P∈spire

(C1 +C2)
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Champ créé par une spire circulaire sur son axe
Dans la deuxième intégrale, le vecteur

−−→
OM est indépendant de la

variable d’intégration repérant le point P sur la spire. Ce vecteur peut
sortir du symbole intégrale et C2 s’écrit alors :

C2 =

(˛
P∈spire

d~l
)
∧−−→OM

Dans le cas de la spire le point P fait un tour complet c’est à dire que le
point initial est confondu avec le point final P1 = P2 :˛

P∈spire
d~l =

˛ P=P1

P=P1

d~l =
−−→
P1P1 =~0

Coordonnées polaires pour repérer le point P :−→
OP = R~ur et d~l = Rdθ~uθ.Soit,

C1 =

˛
P∈spire

(−→
OP∧d~l

)
=

˛
P∈spire

(R~ur ∧dl~uθ)=R(~ur ∧~uθ)

˛
P∈spire

dl︸ ︷︷ ︸
périmètre de la spire¸

P∈spire dl =
´ 2π

0 Rdθ = 2πR 43
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L’intégrale sur toute la spire donne alors deux fois sa surface :

C1 = 2π R2~uz

Finalement le champ magnétique a pour expression :

~B(M) =
µ0I
2R

R3

PM3~uz

En utilisant le théorème de Pythagore on a :
PM2 = R2 + z2 ⇒ PM3 =

(
R2 + z2

)3/2

R3

PM3 =
R3

R3
1(

1+ z2

R2

)3/2 =

(
1+

z2

R2

)−3/2

Expression en fonction de z

~Bz(M) = ~B(z) =
µ0 I
2R

(
1+

z2

R2

)−3/2

~uθ
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Expression en fonction de l’angle α

sin(α) = R
PM ⇒ sin3(α) = R3

PM3 , d’où :

~Bz(M) = ~B(α) =
µ0 I sin3(α)

2R
Champ au centre O de la spire
En O l’abscisse z est nulle (ou bien l’angle α vaut π/2). On obtient :

~B(O) = B0~uz =
µ0 I
2R

~uz

Direction et sens de ~Bz(M)
La spire se comporte comme un aimant plat, chacune de ses faces
correspondant à un pôle.
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Intensité de ~B(z) en fonction de la position du point M
En introduisant la nouvelle variable u = z/R, on a :

B(M) = B(z) =
µ0 I
2R

(
1+

z2

R2

)−3/2

= B0
(
1+u2)−3/2

L’intensité du champ décroît relativement rapidement dès qu’on
s’éloigne du centre.

46

FSO.U
M

POUJD
A.C

OM



Flux magnétique à travers une surface fermée

Le champ magnétique est à flux conservatif

Le flux de ~B à travers une surface fermée, ou encore, le flux de ~B à
travers toute surface s’appyant sur un contours orienté Γ est le même :

Équation intégrale :

"
Sfermée

−→
B .−→n ext dS = 0 , ∀ S surface fermée quelconque.

I Conséquence 1 :
−→
B est à flux conservatif
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Divergence du champ magnétique
L’opérateur divergence (symbole div) est un opérateur scalair, agissant
sur un champ vectoriel A (typiquement un champ électrique ou
magnétique).
Considérons un volume τ, limité par une surface (S). La divergence
vérifie :

div
−→
A = lim

τ→0

Φ

τ
,

avec Φ est le flux de
−→
A sortant de la surface fermée (S) limitant le

volume τ. Donc, en d’autres terme, la divergence représente le flux
sortant localement par unité de volume.
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Divergence non nulle
Interprétation physique de la divergence
Si la divergence est non nulle, elle permet de savoir à quel endroit le
champ "diverge" : par exemple, le champ électrique créé par une
charge localisée en un point P n’a une divergence non nulle que dans la
région de l’espace occupée par la charge.

1. Si la divergence est positive,
le flux est sortant.

2. Si elle est négative, le flux est
entrant.
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Divergence nulle : cas du champ magnétique
3. Si enfin elle est nulle, le flux entrant est égale au flux sortant.

Formulation locale de la conservation du flux magnétique
En tout point M de l’espace où le champ ~B(M) est défini et
différentiable :

div
−→
B = 0

ce qui constitue la traduction locale du caractère conservatif du flux de
~B.
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Formulation locale
Formulation locale de la conservation du flux magnétique :
Preuve
On passe de l’information intégrale sur le flux de ~B à la traduction
locale en applicant le théorème de Green-Ostrogradski qui stipule que :

‹
S

~B(M) .
−→
dS =

˚
V(S)

div~B dτ

Pour toute surface fermée S englobant le volume V.
~B est un champ à flux conservatif :

"
Sfermée

~B(M).
−→
dS = 0 ⇒

˚
V(S)quelconque

div~B dτ = 0

équation locale : div ~B = 0

div ~B = 0 restera valable dans le cas des régimes dépendant du temps.
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Théorème d’Ampère : Notion de courant enlacé (entouré)
Soit un parcours fermé orienté Γ. Pour toute surface S s’appuyant sur le
contour Γ.

Le sens de rotation positif autour de~n+ =⇒ sens de rotation de Γ.
~n+ traverse la surface S en pénétrant par la face Sud et émergeant par la
face Nord.~n+ est dit "enlacé" positivement par Γ =⇒ l’enlacement est
un concept algébrique.
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Théorème d’Ampère : Notion de courant enlacé (entouré)

face Nord, le parcours est orienté
par la lettre N

face Sud, le parcours est
orienté par la lettre S
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Théorème d’Ampère : Notion de courant enlacé (entouré)
Courants filiformes =⇒ Ienlacée =±∑k Ik
Ik : intensité traversant une surface S s’appuyant sur le contour orienté
Γ.
+ : courants traversant dans le sens Sud → nord
− : courants traversant dans le sens Nord→ Sud.

Courants filiformes (exemple)
Le courant i1 est enlacé positivement
par Γ. Les courants i2 et i4
ne sont pas enlacés ( i est enlacé une fois
positivement et une fois négativement).
Le courant i3 est enlacé deux fois négative-
ment. L’intensité algébriquement enlacée
a donc pour valeur : ienlacée = i1−2i3
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Théorème d’Ampère : Notion de courant enlacé (entouré)
Courants volumiques =⇒ Ienlacée =flux de ~j à travers la surface S
orientée par le champ de vecteurs~n+

Ienlacée =

¨
P∈S

~j(P) .~n+(P) δS

Courants volumiques définis par ~j
Le tube de courant T1 est totalement en-
lacé. Le tube de courant T2 n’est quant à
lui que partiellement enlacé. Dans la dé-
finition du courant enlacé, la surface S1
est étendue à la section entière du tube T1
tandis que la surface S2 se limite à la zone
hachurée. :

Ienlacée =

¨
S

~j .~n+ δS =

¨
S1⊕S2

~j .~n+ δS
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Énoncé du théorème d’Ampère

Énoncé du théorème d’Ampère
Soit, dans le vide, une distribution stationnaire de courants créant
dans tout l’espace un champ d’induction magnétique ~B constant. La
circulation de ~B le long d’une courbe imaginaire quelconque fermée
orientée Γ est égale au produit par la perméabilité du vide µ0 de
l’intensité électrique enlacée par Γ.

˛
Γ

~B .δ~l = µ0 Ienlacée
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Représentation d’une surface par un vecteur
En un point M d’une surface S, on note dS un petit élément de surface
assimilable à une partie de plan tangent en M à S. dS sera représenté
par un vecteur élémentaire

−→
dS = dS−→n où −→n est la normale, dont

l’orientation dépend de certaines conventions :

Surfaces fermées
surfaces fermées : la normale en M est donc orienté vers l’extérieur

(normale sortante).

−−→
dSext = dS.−→next toujours pour une surface fermée.
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Représentation d’une surface par un vecteur

Surfaces fermées s’appuyant sur des contours fermés orientés :

a. La règle de la main droite : si l’on place la main droite de telle
manière que le sens positif va vers le bout des doigts, le pouce
droit pointe dans le sens positif pour S.

b. Soit l’obervateur d’Ampère : placé debout sur la surface S et
voyant le vecteur −→n remonter de ses pieds vers sa tête, voit la
circulation tourner dans le sens trigonométrique direct .
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Représentation d’une surface par un vecteur

Surfaces ouvertes
il n’y a pas d’orientation privilégiée. L’orientation de −→n est arbitraire
dans ce cas.
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Cas du fil infini parcouru par un courant

On cherche à déterminer l’expression de ~B(M) créé par le courant
d’intensité I circulant dans le fil. Le point M est repéré par :

−−→
HM = r~ur
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Cas du fil infini parcouru par un courant

Étude des symétries :
Le courant présente la symétrie cylindrique. En coordonnées
cylindriques on a : ~B(M) = ~B(r,θ,z).
Tout plan (πS) contenant le fil et le point M est un plan de symétrie
pour le courant (source du champ magnétique). Le champ magnétique
est perpendiculaire à ce plan défini par les vecteurs (~ur;~uz ) et est donc
obligatoirement orthoradial :

~B(M) = B(r,θ,z)~uθ

Étude des invariances :
Le fil est infini. Il y a donc invariance par translation le long de l’axe
Oz. Le champ ne dépend pas de z. Le fil est un axe de symétrie : il y a
invariance par rotation d’un angle θ autour du fil. L’intensite du champ
ne dépend pas de θ. Par conséquent,

~B(M) = B(r)~uθ 61
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Cas du fil infini parcouru par un courant

Choix du contour fermé orienté :

I les lignes de champ sont des cercles de rayon r
I sur chaque cercle, le module de ~B est constant

Le contour fermé à choisir est donc :
I un cercle de centre H et de rayon HM = r

Le contour est orienté comme~uθ. La surface du cercle est orientée
alors comme l’axe Oz :~n =~uz.

Circulation de ~B¸
M∈C

~B.d~l =
¸

M∈C B(r)~uθ.dl~uθ =
¸

M∈C B(r)dl = B(r)
¸

M∈C dl =
2πr B(r)
Théorème d’Ampère
Le seul courant traversant la surface s’appuyant sur le contour est le
courant d’intensité I dans le même sens que la normale~n =~uz :¸

M∈C ~B.d~l = µ0 ∑ Ienlacé = µ0 I ⇒ B(r)2πr = µ0 I ⇒ B(r) =
µ0 I
2πr 62
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Formulation locale du théorème d’Ampère

Rotationnel d’un champ vectoriel
L’opérateur rotationnel (symbol −→rot) est un opérateur vectoriel, agissant
sur un champ vectoriel

−→
X . Il exprime la tendance qu’ont les lignes de

champ d’un champ vectoriel à tourner autour d’un point. Le champ
−→
X

vérifie

dC =
−→rot(
−→
X ).
−→
dS

où dC est la circulation élémentaire du vecteur champ
−→
X sur un

contour fermé (dΓ) limitant une surface dS. Le vecteur −→rot(
−→
X ) est

parallèle au vecteur −→n normal au plan pour lequel dΓ est maximale.

Formulation locale du théorème d"Ampère
En tout point de l’espace où le champ ~B est défini et différentiable, le
caractère non-conservatif de la circulation de ~B est traduit localement
par la relation :

−→rot ~B = µ0~j

.
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Formulation locale du théorème d’Ampère

Preuve : Théorème de Stokes
Le rotationnel d’un champ de vecteurs

−→
X en un point à travers une

surface s’appuyant sur un contour (Γ) est égale à la circulation locale
du champ autour de ce point.

˛
Γ

−→
X .
−→
dl =

¨
S

−→rot(
−→
X ).
−→
dS

Ce théorème est appelé théorème du rotationnel (Stokes).
Substituons ~X à ~B⇒˛

Γ

−→
B (M).

−→
dl =

¨
S

−→rot(
−→
B ).
−→
dS

L’intensité Ienlacés du courant enlacé s’exprime aussi comme

Ienlacés =

¨
S

~j.
−→
dS
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Théorème du rotationnel

Théorème du rotationnel (Stokes-Ampère)
On déduit donc l’égalité :

¨
S

−→rot(
−→
B ).
−→
dS = µ0

¨
S

~j.
−→
dS

qui doit être satisfaite pour toute surface S s’appuyant sur Γ. Par
conséquent, l’égalité des intégrales impliquent l’égalité des intégrants
de sorte que −→rot~B(M) = µ0 ~j(M)
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Champ de rotationnel
Théorème. Champ de rotationnel
On appelle champ de rotationnel tout champ~Y défini et différentiable
pouvant s’écrire sous la forme~Y =

−→rot~X .
Les seuls champs à divergence nulle sont les champs de rotationnel,

div(−→rot~X) = 0.

Appliquons ce résultat au champ ~B, dont div~B = 0 partout, on obtient :

Définition. Potentiel vecteur
Le champ ~B dérive d’un potentiel vecteur, noté ~A tel que, en tout point
de l’espace :

~B =
−→rot~A

Preuve
On sait que div~B = 0 pour tout point M de l’espace.
div(−→rot~X) = 0 ⇒ ∃ un champ vectoriel ~A tel que ~B =

−→rot~A
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Propriétés de symétrie de ~A

Théorème. Propriétés de symétrie de ~A

• Les plans de symétrie de ~B sont les plans d’antisymétrie de ~A.

• Les plans d’antisymétrie de ~B sont les plans de symétrie de ~A.
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Non-unicité de ~A - Notion de jauge
Sachant que

−→rot(
−−→
gradφ) =~0

est satisfaite pour toute fonction scalaire φ(M). Ceci impose donc que
tous les potentiels vecteurs écrits sous la forme

~A
′
= ~A+

−→rot(
−−→
grad)

décriront le même champ magnétostatique car :

~B
′
=
−→rot~A

′
=
−→rot~A+

−→rot(
−−→
grad)︸ ︷︷ ︸
=~0

= ~B.

Le potentiel vecteur magnétique est défini à un gradient près.
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Équation de Poisson de la magnétostatique - Jauge de
Coulomb

Définition. Notion de jauge
On peut vouloir se limiter à une certaine classe de potentiels vecteurs
en leur imposant une contrainte (réaliser un choix particulier pour ~A).
On dit alors que l’on fait un choix de jauge.
Dans la jauge de Coulomb, on impose la condition div

−→
A = 0.

Puisque
−→
B =

−→rot(
−→
A ), on a −→rot(

−→
B ) =

−→rot−→rot(
−→
A ) =

−−→
graddiv

−→
A −∆

−→
A

Comme div
−→
A = 0, on a −→rot(

−→
B ) =−∆

−→
A Par analogie à l’équation de

Poisson en électrostatique, on trouve :

∆
−→
A =−µ0

−→
j

et par conséquent :

Condition de Jauge de Coulomb

div→A = 0
→
A vérifie l’équation de Poisson de la magnétostatique (équation locale)

∆
−→
A +µ0

−→
j =
−→
0
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De l’équation de Poisson, on déduit la forme de ~A

−→
A (M) =

µ0

4π

˚
τ

−→
j (M)

MP
dτ; distributions volumiques

−→
A (M) =

µ0

4π

¨
S

−→
jS (M)

MP
dS; distributions surfaciques

−→
A (M) =

µ0

4π

ˆ
C

I
−→
dl(M)

MP
; circuits filiformes

Proposition. ~A est un vecteur polair
En régime stationnaire, les symétries du potentiel vecteur ~A sont les
mêmes que celles du courant ~j.FSO.U

M
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Conditions aux limites pour
−→
B

Continuité et discontinuité de
−→
B (M)

• −→B (M) est continu en M lorsque M est dans une distribution
volumique de courant,

• −→B (M) est discontinu en M lorsque M est sur une nappe de
courant surfacique,

• −→B (M) diverge en M lorsque M est sur une distribution linéique de
courant.
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Conditions aux limites pour
−→
B

Nappe de courant
Une nappe de courant est une surface (S) sur laquelle existent des
courants superficiels de densité surfacique

−→
js (s’exprime en A.m−1).

Lorsque cette nappe sépare deux milieux magnétiques, la composante
normale du champ magnétique

−→
B reste toujours continue de part et

d’autre de la surface de séparation. La composante tangentielle de
−→
B

est discontinue −→
BT 1−

−→
BT 2 = µ0(

−→
js ∧−→n12)

où
−→
BT 2 et

−→
BT 1 sont les composantes de

−→
B tangentielles à la surface. −→n12

le vecteur unitaire normal à la surface et orienté du milieux 1 vers le
milieux 2.
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Conditions aux limites pour
−→
B

Nappe de courant
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Force de Lorentz
−→
FB est l’influence que produit

−→
B sur une particule chargée en

mouvement se déplaçant à une vitesse −→v . Des expériences sur
diverses particules chargées se déplaçant dans un champ magnétique
donnent les résultats suivants :

• Le module de
−→
FB est proportionnel à la charge q et au champ

magnétique −→B .

• Le module et la direction de
−→
FB dépendent de la vitesse de la

particule et du module et de la direction de
−→
B .

I Quand une particule chargée se déplace parallèlement au vecteur
champ magnétique

−→
B ,
−→
FB agissant sur la particule est nulle.
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Force de Lorentz

I Lorsque −→v fait un angle θ 6= 0 avec
−→
B ,
−→
FB est toujours

perpendiculaire à −→v et à
−→
B . Donc elle est perpendiculaire au plan

défini par −→v et
−→
B
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Force de Lorentz :
−→
FB = q.−→v ∧−→B

Règle de la main droite
La direction du produit vectoriel −→v ∧−→B est déterminée par la règle de
la main droite : on pointe les quatres doigts de la main droite le long de
la direction de −→v avec la paume tournée vers

−→
B et les courber vers

−→
B .

Le pouce prolongé, qui est à angle droit aux doigts, points dans la
direction de −→v ∧−→B .
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Force de Lorentz :
−→
FB = q.−→v ∧−→B

• −→FB exercée sur une charge positive est dans la direction opposée à
la direction de

−→
FB exercée sur une charge négative se déplaçant

dans le même sens

• Le module de
−→
FB est proportionnel à sinθ, où θ est l’angle que fait

−→v avec la direction de
−→
B .

‖−→FB‖= |q|‖−→v ‖‖
−→
B ‖sinθ
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Force de Laplace
Si maintenant on a un conducteur parcouru par un courant I, chaque
charge mobile du conducteur va subir une force de Lorentz. Supposant
que le conducteur contient un seul type de charges mobiles, soit n
charges mobiles. La résultante

−→
F des n forces de Lorentz constitue la

force électromagnétique de Laplace s’exerçant sur le conducteur
tout entier. Elle exprime la force

−→
F à laquelle est soumis un circuit

parcouru par le courant I, en présence d’un champ magnétostatique
−→
B

−→
F =

ˆ
M∈(C)

I
−→
dl ∧−→B (M)

Le champ
−→
B fait l’objet de la loi de Biot et Savart.
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Conducteur cylindrique parcouru par un courant de volume
uniforme I

Ce problème présente les mêmes symétries et invariances que le fil
infini, nous recherchons donc un champ magnétique de la forme
~B(M) = B(r)~uθ . I : intensité totale uniformément répartie dans le
volume du conducteur avec une densité de courant uniforme ~j = I

πr2 ~uz.
Le problème diffère du précédent pour l’évaluation de l’intensité
électrique enlacée. Nous devons distinguer deux cas :

I Si le point M est à l’extérieur du fil cylindrique,

la totalité du courant est enlacé

Ienlacée = πR2 j = I

Le théorème d’Ampère conduit alors à la même expression du champ
que pour un fil rectiligne filiforme. Soit, pour
r > R : B(r) = µ0I

2πr =
µ0 jR2

2r .
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Conducteur cylindrique parcouru par un courant de volume
uniforme II

I Si le point M est à l’intérieur du fil cylindrique,

seule une partie du courant est enlacée :

Ienlacée = πr2 j = I
r2

R2

. Le théorème d’Ampère s’exprime alors par la relation :
2πr B(r) = µ0Ienlacée = µ0 jπr2 Donc pour r < R

B(r) =
µ0 jr

2

En conclusion, nous avons ainsi démontré que le champ magnétique
varie continûment dans l’espace conformément aux expressions :{

r 6 R B(r) = µ0Ir
2πR2 =

µ0 jr
2

r > R B(r) = µ0I
2πr =

µ0 jR2

r
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Conducteur cylindrique parcouru par un courant de volume
uniforme III
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Conducteur cylindrique parcouru par un courant de surface
uniforme I

Ce problème présente cette fois encore les mêmes symétries et
invariances que le précédent, on recherche donc un champ magnétique
de la forme ~B(M) = B(r)~uz Notons I l’intensité totale uniformément
répartie dans la surface du conducteur avec une densité de courant de
surface ~js = I

2πR~uz. De la même façon, on choisit pour parcours
d’Ampère Γ le cercle passant par le point M, de rayon r, centré sur l’axe
Oz et orthogonal à cet axe. Sur ce parcours, orienté dans le sens direct,
la circulation du champ magnétique a pour expression :2πrB(r).
De la même façon que précédemment, pour l’évaluation de l’intensité
électrique enlacée, nous devons distinguer deux cas :

I Si le point M est à l’extérieur du fil cylindrique,
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Conducteur cylindrique parcouru par un courant de surface
uniforme II

la totalité du courant est enlacé

Ienlacée = 2πR js = I

Le théorème d’Ampère conduit alors à la même expression du champ
que pour un fil rectiligne filiforme. Soit, pour
r > R : B(r) = µ0I

2πr =
µ0 jsR

r .

I Si le point M est à l’intérieur du fil cylindrique,
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Conducteur cylindrique parcouru par un courant de surface
uniforme III

aucun courant n’est enlacé :

Ienlacée = 0

. Le théorème d’Ampère s’exprime alors par la relation :
2πr B(r) = µ0Ienlacée = 0. Donc pour r < R

B(r) = 0

En conclusion, nous avons ainsi démontré que le champ magnétique
varie continûment dans l’espace conformément aux expressions :{

r < R B(r) = 0
r > R B(r) = µ0I

2πr =
µ0 jsR

r
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Conducteur cylindrique parcouru par un courant de surface
uniforme IV

Remarque : le champ magnétique présente une discontinuité à la
surface du cylindre égale à µ0 js . La composante du champ
magnétique tangentielle à la nappe de courant et orthogonale au
courant est discontinue à la traversée d’une surface chargée.
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Conducteur cylindrique parcouru par un courant de surface
uniforme V
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Solénoïde infini : Solénïde idéal I
Ce problème est fondamentalement différent du précédent. Il s’agit
toujours d’une nappe de courant sur une surface cylindrique, mais cette
fois le courant s’enroule autour de l’axe Oz. Nous étudions ici le
problème correspondant à un cylindre infini. Le problème, en plus
d’être invariant par rotation quelconque autour de Oz est donc
également invariant par translation quelconque selon Oz.

1. Étude de symétrie

Dans cette nouvelle situation, tous les plans perpendiculaires à l’axe Oz
sont des plans de symétrie de la distribution des courant : nous en
déduisons qu’en tout point de l’espace le champ magnétique est
orthogonal à ces plans, c’est-à-dire dirigé selon Oz : ~B = Bz(r)~uz . De
plus, les invariances impliquent que la composante Bz(r) ne dépend
que du rayon r :
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Solénoïde infini : Solénïde idéal II

FIGURE : Solénoïde infini : symétries et invariances
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Solénoïde infini : Solénïde idéal I

2. Choix du contour fermé

Le contour doit comporter des segments rectilignes parallèles à l’axe z
(champ constant si r = constante). Pour constituer un contour fermé on
peut relier deux segments parallèles à l’axe par des segments
perpendiculaires tels que la circulation du champ sera nulle sur ces
portions.
Conclusion : prendre un cadre rectangulaire contenu dans le plan
d’anti-symétrie ΠAS , de longueur L parallèle à l’axe, r1 et r2 étant les
distances à l’axe des deux longueurs
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Solénoïde infini : Solénïde idéal II

FIGURE : Contour choisi pour appliquer le théorème d’Ampère

3. Application du théorème d’Ampère
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Solénoïde infini : Solénïde idéal III
Le champ ~B est uniforme à l’extérieur du solénoïde.On choisit donc le
parcours d’Ampère rectangulaire CA1 (Le cadre est complètement en
dehors du solénoïde r2 > r1 > R) . Sur ce parcours, avec les
conventions algébriques du schéma, la circulation vaut :
Bz(r2)l−Bz(r1)l. Aucun courant n’étant enlacé (aucun courant ne
traverse la surface du cadre), cette circulation est nulle et l’on a donc
un champ uniforme à l’extérieur du solénoïde :

Bz(r) = Bext, ∀r > R.

Une démonstration analogue avec le parcours d’Ampère CA2 montre
que ~B est nécessairement uniforme à l’intérieur du solénoïde :

Bz(r) = Bint, ∀r < R.
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Solénoïde infini : Solénïde idéal IV
CA3 le contour d’Ampère sur la nappe de courant. Ce parcours enlace le
courant js l et nous en déduisons par application du théorème
d’Ampère :

(Bint−Bext)l = µ0 jsl

Ce résultat exprime tout simplement la discontinuité du champ
magnétique à la traversée d’une nappe de courant de surface.
On admettra qu’à l’extérieur le champ magnétique Bext est nul. C’est
en effet la seule solution qui a un sens physique (si on est suffisamment
loin de la bobine, le champ doit être nul) : le champ à l’extérieur est
donc nul.
Conclusion :
À l’intérieur du solénoïde, pour r < R on a ~Bint = B0~uz

À l’extérieur du solénoïde, pour r > R on a ~Bext = 0
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Solénoïde infini : Solénïde idéal V
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Nappe de courant plane infinie et uniforme I
La démonstration utilise l’équation locale de Maxwell-Ampère. La
démonstration étant faite que les composantes By et Bz du champ
magnétique sont nulles et que la composante Bx ne dépend que de z, le
rotationnel du champ magnétique est simplement égal à la dérivée de B
par rapport à z :

~B(M) = Bx(z)~ux =⇒ −→rot~B =

 0
0
∂

∂z

∧
 Bx

0
0

=
∂Bx

∂z
~uy

De part et d’autre du plan chargé, la densité de courant j est nulle. Nous
en déduisons, d’après l’équation locale −→rot~B = µ0 j , que le rotationnel
du champ magnétique y est nulle en tout point et que, par conséquent,
le champ magnétique est uniforme dans chacun de ces demi espaces.

−→rot~B = µ0 j =⇒ ∂Bx

∂z
= 0, soit Bx = cst

94

FSO.U
M

POUJD
A.C

OM



Nappe de courant plane infinie et uniforme II
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Nappe de courant plane infinie et uniforme III
La nappe de courant est un plan de symétrie de la distribution de
courant, ce qui implique un champ magnétique dans tout l’espace de la
forme antisymétrique :{

~B =+B0~ux pour z > 0
~B =−B0~ux pour z < 0

Enfin, l’expression de la discontinuité de la composante normale du
champ à la traversée d’une surface chargée et nous en déduisons :
~B+−~B− = (+B0~ux)− (−B0~ux) = 2B0~ux = µ0 js~ux.
Et finalement : {

~B =+µ0 js
2 pour z > 0

~B =−µ0 js
2 pour z < 0
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ÉLECTROMAGNÉTISME
Notions d’induction

F. Ouchni

 avril 
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Plan

Introduction

Approche expérimentale

Loi de Lenz

Loi de Faraday

Auto-induction

Inductance mutuelle

Énergie magnétique

Équations de Maxwell dans le
vide
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Induction

Induction électromagnétique

1. Découverte par Faraday en 1831.

2. C’est l’apparition d’un courant induit dans un circuit
grâce à la variation du flux d’un champ magnétique.

3. Applications technologiques : moteur électrique,
alternateurs, transformateurs, . . .

Deux types d’inductions
I soit en déplaçant un champ magnétique stationnaire au voisinage

d’un circuit électrique fixe
I soit en déplaçant (ou déformant) un circuit électrique au voisinage

d’un champ magnétique stationnaire fixe.
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Expériences : 1re expérience : aimant mobile, circuit fixe

FIGURE : Induction de Neumann : aimant mobile, circuit fixe
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Interprétation :

Aucun courant n’est enregistré dans le galvanomètre
quand l’aimant droit est stationnaire par rapport à la
boucle.

Cependant, un courant est induit dans la boucle quand
un mouvement relatif existe entre l’aimant droit et la
boucle. Particulièrement le galvanomètre se dévie dans
une direction comme l’aimant s’approche de la boucle et
dans la direction opposée lorsqu’ il s’éloigne. Lorsque
l’aimant se déplace, il crée un flux magnétique qui varie
suivant la position de l’aimant : la boucle est soumise à
un flux variable. Le déplacement de l’aimant modifie
dans le temps le champ magnétique et par conséquent le
flux Φ traverçant le circuit.
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2e expérience : aimant fixe, circuit mobile

FIGURE : Induction de Lorentz : aimant fixe, circuit mobile
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Interprétation :
Une autre cause possible de variation du flux magnétique est le
déplacement ou la déformation des circuits dans un champ magnétique
(constant) indépendant du temps. L’apparition d’une f.é.m induite est
dûe à la force de lorentz sur les électrons contenus dans les circuits,−→
F = q−→v ∧−→B .
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Loi de Lenz :
Pour chaque cas, l’expérience montre que le phénomène d’induction
s’oppose aux causes qui lui ont donné naissance.
Les phénomènes d’induction s’opposent par leur(s) effet(s) aux
causes qui leur ont donné naissance.
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Loi de Faraday
Dans un circuit, c’est la f.é.m. qui permet de mettre en mouvement les
charges électriques et d’obtenir un courant électrique. La f.é.m est
homogène à une tension, elle s’exprime donc en Volt (V).
Le sens du courant, qui dépend du déplacement de l’aimant, est obtenu
en utilisant la loi de Lenz ou la convention de signe f.é.m. relie la force
électromotrice e source du courant induit au flux du champ magnétique
à travers le circuit dans lequel apparaît ce courant induit :

e =−dΦ

dt

avec φ =
˜

S
~B.~ndS. Si S est la surface orientée définie par le circuit

dans lequel se développe le courant induit, et~n
sont vecteur normal qui oriente le circuit.
Dans cette loi, le signe moins traduit la loi de Lenz.
L’orientation du circuit donne son orientation à la fem et au courant
induit.
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Loi de Faraday I
De la 1ère expérience :
e =−dΦ

dt . On définit un champ locale induit
−→
Ei , qui n’est pas un champ

électromoteur (absence de force magnétique), qui n’est pas un gradient
non plus, et qui est tel que :

e =
˛

Γ

−→
E i.
−→
dl =− d

dt

¨
S

−→
B .−→n dS =

¨
S

∂
−→
B

∂t
.−→n dS car S est fixe

En utilisant le théorème de Stokes-Ampère dans le premier membre

¨
S
(
−→rot
−→
Ei).
−→n dS =−∂

−→
B

∂t
.−→n dS

Cette égalité devant être valable pour toute surface, indépendamment
de sa géométrie et sa position, donc les deux membres des intégrands
sont égaux

∂
−→
B

∂t
+
−→rot
−→
Ei =

−→
0 ⇒−→rot

−→
Ei =−

∂
−→
B

∂t
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Loi de Faraday II
C’est la relation de Maxwell-Faraday qui traduit le couplage
électromagnétique. Le champ

−→
Ei n’est pas un gradient car son

rotationnel est non nul. En exprimant le champ magnétique en fonction
du potentiel vecteur,

−→
B =

−→rot
−→
A , on a :

˛
Γ

−→
E i.
−→
dl =− ∂

∂t

ˆ
S

−→
B .
−→
dS=− ∂

∂t

ˆ
S

−→rot
−→
A .
−→
dS=− ∂

∂t

˛
Γ

−→
A .
−→
dl =−

˛
Γ

∂
−→
A

∂t
.
−→
dl

et par conséquent : ˛
Γ

(
−→
E i +

∂
−→
A

∂t
).
−→
dl = 0

−→
E i =− ∂

−→
A

∂t constitue l’expression de Neumann du champ induit.
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Loi de Faraday III
Dans la situation la plus générale où un champ électrostatique est
également appliqué, le champ électrique résultant s’écrit :

−→
E =

−→
E e +

−→
E i =−

−−→
gradV − ∂

−→
A

∂t
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Loi de Faraday I
De la 2ème expérience :
Lorsque la bobine est mise en mouvement à la vitesse −→v , la
composante de la force

−→
F le long de la bobine est susceptible de faire

circuler les électrons (les mettre en mouvement) avec la même vitesse
−→v , donnant lieu à un courant induit. L’énergie potentielle (travail
élémentaire) reçue par les électrons sur un élément de la bobine

−→
dl est

δW =
−→
F .
−→
dl

L’énergie totale qui leur permet de faire un tour de circuit est obtenue
en intégrant sur tout le contour C de la bobine. Elle est égale à la
circulation de

−→
F le long du circuit (bobine)

W =

˛
Γ

−→
F .
−→
dl = q

˛
Γ

(−→v ∧−→B )
−→
dl = qe
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Loi de Faraday II
La f.é.m. e correspond à la circulation du champ électromoteur de
Lorentz (qui n’est pas un gradient)

−→
Em =−→v ∧−→B

sur le circuit Γ étudié selon la formule

e =
˛

Γ

−→
Em.
−→
dl

L’existence de courants induits est liée au caractère non conservatif de
la circulation du champ électromoteur : ils existent si et seulement si la
fem totale d’une maille est non nulle.
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Auto-induction : Inductance propre I
Un circuit filiforme orienté Γ parcouru par un courant variable
d’intensité i(t) crée un champ magnétique propre

−→
B p(M, t).

Le flux de ce champ à travers le circuit Γ lui-même est le flux propre :

Φp(t) =
¨

M∈Σ

−→
B p(M, t).

−→
dSM

où Σ est une surface orientée s’appuyant sur Γ On définit l’inductance
propre (ou la self-inductance) L du circuit par

Φp(t) = Li(t)

I L’inductance propre s’exprime en henry (H). On a L > 0.

I L’inductance propre ne dépend que de la géométrie du circuit et
de la perméabilité du milieu (µ0 pour le vide et les milieux non
magnétiques).
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Auto-induction : Inductance propre II
Inducteur
On appelle inducteur un élément de circuit ayant une
auto-inductance non négligeable ; il s’agit en général
d’une bobine. Dans un schéma, l’inducteur se représente
par le symbole :
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Phénomène d’auto-induction I
Une intensité i(t) variable entraîne l’apparition d’une f.é.m. induite,
appelée f.é.m. d’auto-induction, donnée par la loi de Faraday, soit dans
un circuit fixe et rigide :

ep =−
dφp

dt
=−L

di
dt

Ainsi, l’effet d’auto-induction est tout à fait conforme à la loi de Lenz :
le circuit parcouru par le courant initial iinitial(t) = i(t)créé un champ
magnétique qui créé un courant induit dans ce même circuit.
D’après la loi de Lenz, ce courant induit s’oppose à la cause qui lui a
donné naissance : ce courant induit est dans le sens inverse du courant
initial qui s’établit dans le circuit :

• si iinitial(t) augmente, ep < 0, le courant induit a le sens contraire
de i(t),
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Phénomène d’auto-induction II
• si iinitial(t) diminue, ep > 0, le courant induit a le même sens que

i(t),

N’oublions pas que le courant induit n’existe que lorsqu’il y a variation
du champ magnétique. En régime permanent, ce courant n’existe plus
mais en régime variable, il va "freiner" l’établissement du courant dans
le circuit.
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Phénomène d’auto-induction III
I Le phénomène d’auto-induction est important quand les

fréquences sont élevées, ou quand le circuit comporte un grand
nombre de spires. On le néglige dans le cas d’un simple circuit
alimenté par un générateur de basses fréquences (GBF).

Vidéo : retard à l’allumage du à l’auto-induction dans une bobine
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Inductance mutuelle
Deux circuits filiformes (C1) et (C2) sont parcourus par des courants
d’intensités I1 et I2.
Le champ magnétique

−→
B 2 créé par (C2), donné par la loi de Biot et

Savart, est proportionnel à I2.
Le flux Φ2→1 de

−→
B 2 à travers le contour fermé (C1) orienté par le sens

positif du courant I1 est proportionnel à I2 :

Φ2→1 = M2→1I2 et de même : Φ1→2 = M1→2I1

M2→1 et M1→2 constituent les coefficients d’induction mutuelle des
deux circuits.

I M2→1 et M1→2 sont symétriques : M2→1 = M1→2 = M
I M2→1 et M1→2 ne sont pas nécessairement positifs comme les

inductances propres L1 et L2.
I M2→1 et M1→2 sont des termes qui dépendent de la géométrie des

circuits (C1) et (C2).
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Couplage entre les deux circuits
On considère deux circuits filiformes (C1) et (C2) en couplage mutuel.
En désignant par Φ1 et Φ2 les flux totaux traversant respectivement les
circuits (C1) et (C2) tenant compte de leurs flux propres ; on a, en
l’absence d’autres sources de champs magnétiques :

Φ1 = L1I1 +MI2

Φ2 = MI1 +L2I2
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Couplage entre les deux circuits
Lorsqu’un élément de circuit d’inductance L est parcouru par un
courant variable i(t), il reçoit de l’énergie à un taux :

P = ei =−Li
di
dt

Pour calculer le travail requis pour faire croître le courant dans un
inducteur de zéro à i, on calcule le travail infinitésimal effectué pendant
un temps dt, pour faire passer le courant de i à i + di :

dW = Pdt = Li di

Pour trouver le travail total, on intègre l’expression ci-dessus de zéro à
la valeur finale du courant :

W =

ˆ
dW =

ˆ i

0
Li
′
di
′
=

1
2

Li2

Ce travail correspond à l’énergie U emmagasinée à l’intérieur de
l’inducteur transportant un courant i, en posant U = 0, lorsque i = 0 :

U =
1
2

Li2

Conclusion : un circuit selfique est capable d’emmagasiner et de
restituer de l’énergie en régime variable. Cette énergie est appelée
énergie magnétique du circuit.
Dans le cas de deux circuits filiformes C1 et C2 parcourus par les
courants I1 et I2, l’énergie magnétique U du système

U =
1
2

Φ1I1 +
1
2

Φ2I2

Soit,
1
2

L1I2
1 +

1
2

L2I2
2 +MI1I2
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Équations de Maxwell dans le vide
En régime permanent :

−→rot
−→
E =

−→
0 ⇔

˛
C

−→
E .
−→
dl = 0

−→
E est à circulation conservative,

div
−→
B = 0⇔

‹
C

−→
B .
−→
dS = 0

−→
B est à flux conservatif,

−→rot
−→
B = µ0

−→
j ⇔

˛
C

−→
B .
−→
dl = µ0Ienlacé = µ0

¨
S

−→
j .
−→
dS théorème d’Ampère,

div
−→
E =

ρ

ε0
⇔
‹

S

−→
E .
−→
dS =

Qint

ε0
théorème de Gauss
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Champ électromagnétique en régime variable
Généralisation des équations locales au régime variable :

−→rot
−→
E =−∂

−→
B

∂t
Equation de Maxwell-Faraday,

div
−→
B = 0 Equation de flux magnétique se généralise au régime variable ,

−→rot
−→
B = µ0(

−→
j +
−→
j D) = µ0

−→
j +µ0ε0

∂
−→
E

∂t
Equation de Maxwell-Ampère,

div
−→
E =

ρ

ε0
Equation de Maxwell-Gauss se généralise au régime variable

Ainsi, en régime non permanent, les sources du champ magnétique sont
de deux natures : les courants « réels » et le courant de déplacement jD
qui provient de la dépendance temporelle du champ électrique.
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Cours d’électrocinétique
Régime sinusoïdal

F. Ouchni
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Introduction
Dans cette première partie du chapitre d’électrocinétique, Nous allons
définir les grandeurs électriques en régime variable (les tension et
intensité varient au cours du temps), on introduira la notation complexe
qui est un outil d’aide à la résolution des équations. Il sera alors temps
de parler des résonances du circuit RLC.
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Les réseaux linéaires : Définitions

I Dipôle
Nous appelons dipôle un élément électrique capable ou non de
fournir de l’énergie, communiquant avec l’extérieur seulement par
deux bornes. À tout instant, le courant entrant par une borne est
égal au courant sortant par l’autre. La résistance R, le
condensateur, et la bobine sont des exemples de dipôles.

I Nœud

3

FSO.U
M

POUJD
A.C

OM



Grandeurs électriques en régimes sinusoïdaux
Écriture mathématique et caractéristiques d’une grandeur
sinusoïdale
Les circuits que nous allons étudier serons soumis à une tension
sinusoïdale. Graphiquement, on peut dessiner cette fonction ainsi.
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Écriture mathématique et caractéristiques d’une grandeur
sinusoïdale

Comment écrit-on mathématiquement ce type de signal ?

Il a la forme suivante :

x(t) = Xm cos(ωt +φ) (1)
Xm : amplitude du signal ;
ω : pulsation en rad.s−1 ;
φ : phase à l’origine des dates en rad.

En effet, sur la figure, le signal vérifie x(t = 0) = 0 et on a

nécessairement φ =
π

2
.

On peut de la même façon utiliser une fonction sinus pour décrire un
signal sinusoïdal.

Si on écrit x(t) = Xm sin(ωt +φ) alors pour la figure, φ = 0. 5
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Notation complexe d’un signal périodique
Rappels mathématiques

I Un nombre complexe écrit dans sa forme cartésienne a pour
expression :

z = a+ jb (2)

Avec a la partie réelle et b la partie imaginaire, et j le nombre
complexe vérifiant j2 =−1.

I Le module de z noté |z| a pour expression : |z|=
√

a2 +b2.

I Son argument θ est défini par : cosθ =
a
|z|

et sinθ =
b
|z|

I Un nombre complexe écrit sous sa forme polaire a pour
expression :

z = r(cosθ+ j sinθ) = re jθ (3)

avec r = |z|=
√

a2 +b2 son module et θ son argument.
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Définitions I
Soit un signal sinusoïdal d’expression mathématique
x(t) = Xm cos(ωt +φ), on lui associe une grandeur complexe :

x(t) = Xme j(ωt+φ) = Xme jωte jφ (4)

On pourra également définir une amplitude complexe :

X = Xme jφ donc x(t) = Xe jωt (5)

On travaillera donc en notation complexe mais il sera facile de revenir
au signal réel :

I Retour au signal réel complet grâce à la partie réelle du complexe
:

x(t) = Re(x(t)) (6)
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Définitions II
I Retour à l’amplitude du signal réel grâce au module de

l’amplitude complexe ou du signal complexe :

Xm = |X |= |x(t)| (7)

I Retour à la phase initiale grâce à l’argument de l’amplitude
complexe :

φ = Arg(X) (8)

Ainsi, toutes les informations dont nous avons besoin pour
reconstituer le signal réel sont contenues dans l’amplitude
complexe.
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Quelques impédances élémentaires I

I Résistance

C’est le seul cas pour lequel la loi d’Ohm est vérifiée en valeur
instantanée. On peut écrire en effet u(t) = Ri(t), soit : V0 = RI0.
l’impédance est donc égale à R, elle est réelle : une résistance
n’introduit pas de déphasage entre tension et courant.

I Capacité

L’intensité i(t) qui traverse un condensateur C, la tension u(t) à ses
bornes et la charge q(t) qu’il porte sont liées par les relations : q =Cu
et i = dq

dt , soit i =C du
dt .

Si la tension s’écrit u(t) =U0 cos(ωt), on obtient alors
i(t) =−CwU0 sin(ωt) = +CwU0 cos(ωt + π

2 ).
En notation complexe, ceci s’écrit
ī =C dū

dt =C( jω)ū, soit ū = 1
jCω

ī = Z̄ī
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Quelques impédances élémentaires II

Z =
1

Cw
exp(− jπ/2) =

− j
Cw

=
1

jCw
.

On en déduit donc la relation entre les amplitudes du courant et de la
tension : I0 =CwU0. De plus, l’argument de Z est −π

2 , donc la tension
u(t) est en retard sur le courant i(t). On peut aussi écrire :
φU −φI =

−π

2 , avec ici : φ = 0, ce qui redonne φI =
π

2 : dans un
condensateur, le courant est en quadrature avance sur la tension à ses
bornes.

I Inductance
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Quelques impédances élémentaires III
Pour une bobine, la relation entre u(t) et i(t) s’écrit :

u = L
di
dt

En notation complexe u =Um exp( jωt) et i = Im exp( jωt). Donc :

u = L
di
dt

= L( jω)i

u = jLωi = Z̄i loi d’ohm complexe pour la bobine

L’impédance de la bobine est

Z̄ = jLω

On en déduit donc la relation entre les amplitudes du courant et de la
tension : U0 = LwI0. De plus, l’argument de Z est π

2 , donc la tension
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Quelques impédances élémentaires IV
u(t) est en avance sur le courant i(t). On peut aussi écrire :
φU −φI =

π

2 , avec ici : φU = 0, ce qui redonne φI =
−π

2 : dans une
bobine, le courant est en retard de π/2 sur la tension à ses bornes.
Conclusion : Pour un dipôle linéaire, il est toujours possible d’écrire
(en notation complexes) :

ū = Z̄ī

; ou également, après simplification par :

Ūm = Z̄Īm

qui est la loi d’ohm complexe.
I Pour une bobine : Z̄ = jLω ;
I Pour une condensateur : Z̄ = 1/ jCω ; ;
I Pour une résistance : Z̄ = R.
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Régime sinusoïdal permanent

TABLE : Régime sinusoïdal permanent

Symbole Nom Unité
u = u(t) valeur instantanée de la tension volt (V)
Umax =U valeur maximale de la tension volt (V)
Umoy = 0 valeur moyenne de la tension volt (V)
Ueff =

Umax√
2

valeur efficace de la tension volt (V)
t temps secondes (s)
ωt +φu phase de u à l’instant t radian (rad)
φu phase initiale (à t = 0 ) de u radian (rad)
T (avec ωT = 2π ) période seconde (s)
f = 1

T fréquence hertz (Hz)
ω = 2π f pulsation radian par seconde (rad/s)
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Représentationde Fresnel

Objectifs :
Construire et exploiter une représentation vectorielle de tensions et de
courants d’un circuit électrique linéaire en régime sinusoïdal
permanent.

TABLE : Transposition vectorielle

Grandeur sinusoïdale Vecteur associé
Valeur instantanée :
u = u(t) =U

√
2cos(ωt +φu) ↔ Vecteur : ~U

Valeur efficace : U =Ueff ↔ Norme : |~U |
Phase initiale (à t = 0 ) : φu ↔ Angle polaire : φu
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Loi d’Ohm transposée au calcul vectoriel
~U = [U ;φu] est le vecteur associé à la tension sinusoïdale u,~I = [I;φi]
le vecteur associé au courant sinusoïdal i, Z l’impédance en ohms du
dipôle.

FIGURE : Loi d’Ohm transposée au calcul vectoriel
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Dipôles linéaires élémentaires
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Lois des nœuds et des mailles
Elles restent valables à condition de les transposer au calcul vectoriel.

Loi des nœuds (deux formulations)

I La somme des courants qui
arrivent à un nœud est égale à
la somme des courants qui en
partent.

~I1 +~I2 =~I3.

I La somme algébrique des
courants aboutissant à un
nœud est nulle.

~I1 +~I2−~I3 =~0.
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Lois des nœuds et des mailles

Loi des mailless (deux formula-
tions)

I La somme des tensions dans
le sens de parcours de la
maille est égale à la somme
des tensions en sens inverse. .

~U2 = ~U1 +~U3.

I La somme algébrique des
tensions dans le sens de.

~U2−~U1−~U3 =~0.

18

FSO.U
M

POUJD
A.C

OM



Notation complexe : loi d’Ohm

Objectifs :
Objectifs : Étudier, par les nombres complexes, les tensions et courants
d’un circuit électrique linéaire en régime sinusoïdal permanent.

TABLE : Transposition complexe :

Grandeur sinusoïdale Nombre complexe associé
Valeur instantanée :
u = u(t) =U

√
2cos(ωt +φu) ↔ Ū = [U ;φu] =Ue jφu

Valeur efficace : U =Ueff ↔ Module : |Ū |=U
Phase initiale (à t = 0 ) : φu ↔ Argument : Arg(Ū) = φu
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Loi d’Ohm généralisée
Ū = [U ;φu] est le nombre complexe associé à la tension sinusoïdale u,
Ī = [I;φi] le nombre complexe associé au courant sinusoïdal i, Z̄
l’impédance complexe du dipôle et Ȳ son admittance complexe.

FIGURE : Loi d’Ohm généralisée

Interprétation géométrique de la loi d’Ohm généralisée

Ū = Z̄× Ī⇔
{

U = ZI(valeurs efficaces)
Arg(Ū) = Arg(Z̄)+Arg(Ī)

⇔{
U = ZI(valeurs efficaces)
φu = φ+φi(modulo2π)

20

FSO.U
M

POUJD
A.C

OM



Loi d’Ohm généralisée

I L’impédance complexe peut s’écrire :
Z = [Z;φ] = Ze jφ = R+ jX = Z cosφ+ jZ sinφ où
Z = |Z̄|=U/I est l’impédance.
Arg(Z) = φ = φu−φi (modulo 2π) le déphasage entre u et i, u en
avance de phase par rapport à i si φ positif.
R = Re(Z) = Z cosφ la résistance, et X = Im(Z) = Z sinφ la
réactance. Z, R et X s’expriment en ohms (Ω).

I L’admittance complexe peut s’écrire :
Ȳ = [Y ;−φ] = G+ jB = Y cosφ− jY sinφ où
Y = |Ȳ |= 1/Z = 1/U est l’admittance, G = Re(Ȳ ) la
conductance, et B = Im(Ȳ )la susceptance. Y, G et B s’expriment
en siemens (S) ou ohms−1
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Dipôles linéaires élémentaires
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Association d’impédances en série
Deux dipôles sont en série s’ils sont traversés par le même courant

Ūtot = Ū1 +Ū2 = Z̄eqĪ

avec Z̄eq = Z̄1 + Z̄2
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Association d’impédances en parallèle
Deux dipôles sont en parallèle s’ils ont leurs bornes communes

Ītot = Ī1 + Ī2 = ȲeqŪ =
Ū
Z̄eq

avec Ȳeq = Ȳ1 + Ȳ2 ou Z̄eq =
Z̄1× Z̄2

Z̄1 + Z̄2
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Lois des nœuds et des mailles
Elles restent valables à condition de les transposer au calcul complexe. .

Loi des nœuds (deux formulations)

I La somme des courants qui
arrivent à un nœud est égale à
la somme des courants qui en
partent.

Ī1 + Ī2 = Ī3.

I La somme algébrique des
courants aboutissant à un
nœud est nulle.

Ī1 + Ī2− Ī3 = 0.
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Lois des nœuds et des mailles

Loi des mailless (deux formula-
tions)

I La somme des tensions dans
le sens de parcours de la
maille est égale à la somme
des tensions en sens inverse. .

Ū2 = Ī1 + Ī3.

I La somme algébrique des
tensions dans le sens de.

Ū2−Ū1−Ū3 = 0.
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Règle de transposition d’une somme
La somme de deux grandeurs sinusoïdales de même nature (tensions ou
courants) et de même fréquence f est une sinusoïde de fréquence f ; le
module et la phase de cette somme sont donnés par la somme complexe
associée.

Attention, les valeurs efficaces ne s’ajoutent pas en général :

U 6=U1 +U2.
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Passage de l’équation différentielle à la notation complexe
On passe de l’équation différentielle à la notation complexe en
remplaçant u(t) par Ū , d/dt par jω et plus généralement dk/dtk par
( jω)k.
Dérivation et intégration

TABLE : Transposition complexe

Grandeur sinusoïdale Nombre complexe associé
Valeur instantanée :
u = u(t) =U

√
2cos(ωt +φu) ↔ Ū = |U ;φu|=Ue jφu

du
dt =−ωU

√
2cos(ωt +φu) ↔ jωŪ = ωUe j(φu+π/2)´

udt =U
√

2/ωsin(ωt +φu) ↔ Ū
jω = U

ω
e j(φu−π/2)
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Dipôles élémentaires

I Résistance
uR = RiR↔ ŪR = R× ĪR⇒ Z̄R = R = [R;0].

I Capacité
iC =C duC

dt ↔ ĪC =C× jωŪC⇒ Z̄C = 1
jCω

=
[ 1

Cω
;−90◦

]
.

I Inductance
uL = L di

dt ↔ ŪL = L× jωĪL⇒ Z̄L = jLω = [Lω;+90◦]
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Intérêt de la notation complexe : étude du circuit RC en
régime sinusoïdal
Étude du dipôle RC : Loi des mailles

On étudie le dipôle RC en régime sinusoïdal : un générateur impose
aux bornes de ce dipôle la tension e(t) = E cos(ωt +φ). Appliquons la
loi des mailles :

u(t)+Ri(t) = e(t) (9)

Puis utilisons la notation complexe :

u(t)+Ri(t) = e(t) (10)

⇐⇒ u(t)+Ri(t) = Ee j(ωt) (11)
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Intérêt de la notation complexe : étude du circuit RC en
régime sinusoïdal
Étude du dipôle RC : Loi des mailles

Or i(t) =C
du(t)

dt
donc i(t) =C

du(t)
dt

= jCωu(t) (la relation entre i(t)

et u(t) est linéaire).
L’équation (11) devient :

u(t)+ jRCωu(t) = Ee j(ωt) (12)

⇐⇒ u(t) =
Ee j(ωt)

1+ jRCω
(13)
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Notation complexe : théorèmes

Théorème de Thévenin
On peut remplacer tout circuit linéaire, qui alimente par les bornes A et
B un dipôle D, par un générateur de tension idéal en série avec une
résistance RTh . La fem ETh du générateur est égale à la ddp mesurée
entre A et B quand le dipôle D est débranché. La résistance RTh est
égale à la résistance mesurée entre A et B quand le dipôle D est
débranché et que les générateurs sont remplacés par leurs résistances
internes.

Le théorème de Thévenin est à privilégier lorsqu’on s’intéresse à
des dipôles en série.
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Théorème de Thévenin : exemple d’application I
Déterminer l’équivalent de Thévenin du « dipôle » AB :

1re étape : Lorsque le dipôle AB est débranché, à vide, le courant est
nul : I = 0. La force électromotrice totale aux bornes du dipôle
vaut alors :

ETh = E1−E2 +E3
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Théorème de Thévenin : exemple d’application II
2e étape : Lorsque les générateurs E1,E2 et E3 sont remplacées par

leurs résistances internes (qui sont nulles pour des générateurs de
tension idéaux), on obtient le graphe suivant :

La résistance équivalente de ces résistances placées en parallèle
vaut

RTh = R1 +R2 +R3.

Bilan
Le graphe AB est équivalent au dipôle de Thévenin suivant :

Avec RTh = R1 +R2 +R3 et ETh = E1−E2 +E3.
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Puissance et énergie en régime sinusoïdal

Objectifs :
Calculer et mesurer la puissance absorbée par un circuit électrique
linéaire en régime sinusoïdal permanent

Soit un dipôle passif, constitué par un ou plusieurs éléments simples.
Ce dipôle est traversé par un courant sinusoïdal i(t). Nous trouvons à
ses bornes une tension sinusoïdale u(t). Nous pouvons définir plusieurs
types de puissances :

I La puissance instantanée
La puissance instantanée consommée par un dipôle est définie
comme le produit de la tension u(t) qui apparaît aux bornes du
dipôle par l’intensité du courant i(t) qui le parcourt. Elle
s’exprime en watt (W) : p(t) = u(t).i(t)
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Puissance et énergie en régime sinusoïdal I
Nous distinguons deux cas selon le signe de p(t) :

I p(t) est positif, l’énergie est fournie aux dipôles, le dipôle joue le
rôle d’un récepteur ;

I p(t) est négatif, le dipôle renvoie de l’énergie, le dipôle joue le
rôle d’un générateur.

En régime sinusoïdal permanent, u(t) et i(t) se mettent sous la forme :
i(t) = IMax cos(ωt +φ1) et u(t) =UMax cos(ωt +φ2) d’où
p(t) =UMax cos(ωt +φ2).IMax cos(ωt +φ1)
soit en utilisant la relation trigonométrique classique suivante
cos(p).cos(q) = 0,5 [cos(p−q)+ cos(p+q)] Nous trouvons
l’expression de la puissance instantanée :
un terme constant qui représente la valeur moyenne de la puissance :
Ueff.Ieff cos(φ2) =Ueff.Ieff cos(∆φ) =Ueff.Ieff cos(φ)
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Puissance et énergie en régime sinusoïdal II
et un terme sinusoïdal : Ueff.Ieff cos(2ωt +∆φ). La pulsation de
l’expression de la puissance instantanée est deux fois la pulsation du
signal sinusoïdal (2ω au lieu de ω). Si le terme constant est nul, la
puissance est donc alternativement positive et négative durant une
demi-période du signal courant ou du signal tension.

Puissance active
Dans le cas général, la puissance moyenne ou puissance active
s’exprime par la relation :

Pmoyenne =UeffIeff cos(φ)

cos(φ), qui représente le rapport de Pmoyenne sur le produit Ueff Ieff
s’appelle facteur de puissance. Sa valeur est comprise entre 0 et 1.
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Puissance complexe

Puissance complexe
La puissance est le produit de la tension par le courant. Ce n’est pas
une grandeur linéaire. Il faut manipuler la notation complexe avec
précaution : P(t) = u(t).i(t) ne s’identifie pas à Re [ū(t).ī(t)]

Notons que nous avons : ū(t).ī∗(t) = um ime− jφ

où φ est le déphasage entre la tension et l’intensité Puissance

Puissance complexe
La puissance moyenne absorbée par un dipôle en régime sinusoîdal est,
en convention récepteur :

1
2

Re [ū(t).ī(t)]
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Résonance du circuit RLC série

Le premier montage est
celui où l’on enregistre
la tension aux bornes du
condensateur.
Dans celui-ci, on étudie
la charge q du condensa-
teur

(
uC =

q
c

)
.

FIGURE : M est repéré par ces coordonnées
cylindriques.
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Etude de la tension uC(t) aux bornes du condensateur
Équation différentielle, régime transitoire, régime permanent

Si l’on étudie classiquement le circuit de la figure ??, on établit
l’équation différentielle vérifiée par uC(t) à l’aide de la loi des mailles ;
on obtient :

d2uC

dt2 +
R
L

duC

dt
+

1
LC

uC = E cosωt

La solution de cette équation différentielle est la somme de la solution
de l’équation homogène (équation différentielle avec second membre
nul) et d’une solution particulière.

On rappelle que :
I La solution de l’équation homogène correspond au régime

transitoire ;
I La solution particulière correspond au régime permanent.
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Etude de la tension uC(t) aux bornes du condensateur
On ne s’intéressera qu’à la solution particulière (régime forcé).
Solution particulière et notation complexe
Pour exprimer cette solution, on utilise le diviseur de tension en
notation complexe sur la figure. On a ainsi :

ūC(t) =
Z̄C

Z̄C + Z̄L + Z̄R
ē(t) =

1
jCω

1
jCω

+ jLω+R
ē(t) =

ē(t)
1−LCω2 + jRCω

Toutes les informations pour caractériser le signal réel sont contenues
dans l’amplitude complexe définie par :

ŪC =
E

1−LCω2 + jRCω

Intéressons-nous à l’amplitude du signal réel et à son déphasage
(déphasage de uC(t) par rapport à e(t)) :
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Amplitude
L’amplitude de uC(t) est donnée par le module de l’amplitude
complexe :

UC =
E√

(1−LCω2)2 +R2C2ω2

On peut introduire dans cette expression les variables réduites, soit

ω0 =
1√
LC

la pulsation propre du circuit, on définit une grandeur sans

dimension x =
ω

ω0
; on utilise également le facteur de qualité :

Q =
1
R

√
L
C

. Ce qui donne :

UC =
E√

(1− x2)2 +

(
x
Q

)2
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Déphasage
Pour obtenir φ, on prend l’argument de ŪC. Celui-ci vaut :

φ = Arg(ŪC) = Arg
(

E
1−LCω2 + jRCω

)
= Arg(E)−Arg(1−LCω

2 + jRCω)

=−Arg(1−LCω
2 + jRCω)

On modifie l’équation ci-dessus de la manière suivante :

φ =−Arg(1−LCω
2 + jRCω)

=−Arg( j(RCω− j(1−LCω
2))

=−Arg( j)−Arg((RCω− j(1−LCω
2))

=−π

2
− arctan

(
−(1−LCω2)

RCω

)
⇐⇒ φ =−π

2
+ arctan

(
(1−LCω2)

RCω

)
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En effet avec cette astuce et sachant que
Arg(z× z′) = Arg(z)+Arg(z′), on fait apparaître l’argument d’un
nombre complexe dont la partie réelle est positive, donc le cosinus de
l’argument de ce complexe est positif et on peut écrire φ′ = arctan().

On peut alors introduire les variables réduites :

φ =−π

2
+ arctan

1− x2

x
Q


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Étude du phénomène de résonance
Cette étude consiste à tracer, en fonction de la pulsation d’excitation ω

(ou de la fréquence) ou en fonction de notre variable réduite x = ω

ω0
, le

comportement de l’amplitude du signal uC(t) et de son déphasage par
rapport à e(t).

Étude de l’amplitude
Rappelons l’expression de celle-ci : UC =

E√
(1− x2)2 +

(
x
Q

)2

Si on veut connaître le sens de variation de UC, on peut se référer à
celui de

f (x) = (1− x2)2 +

(
x
Q

)2

.

Comme UC =
1√
f (x)

et que la fonction√ est croissante, UC varie

de manière inverse à f (x).
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Étude de la fonction f (x)
Pour étudier celle-ci, il nous faut sa dérivée :

f ′(x)= 2×(−2x)×(1−x2)+
2x
Q2 =−4x+4x3+

2x
Q2 = 4x

(
x2−1+

1
2Q2

)

Cette dérivée s’annule pour x = 0 et pour x2−1+
1

2Q2 = 0.

Cette deuxième condition implique que x =
√

1− 1
2Q2 si et seulement

si 1− 1
2Q2 > 0 soit Q > 1√

2
.

On distingue alors deux cas :
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Cas d’un petit facteur de qualité : Q < 1√
2

La dérivée f’(x) ne s’annule que pour x = 0, f (x) est croissante (4x

croissant et x2−1+
1

2Q2 croissant) de ]0,+∞[.

Donc la fonction d’amplitude UC est
décroissante sur ]0,+∞[.

Ces limites sont :
I lim

x→0
UC = E ;

I lim
x→+∞

UC = 0 ;

L’allure de cette fonction est donc
dessinée ci-contre.
Pas de résonance en tension aux bornes
du condensateur lorsque Q < 1√

2

x

uC

1

E

1

0
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Cas d’un grand facteur de qualité : Q > 1√
2

I

Cette fois f’(x) possède deux racines, x = 0 et x =
√

1− 1
2Q2 , racine du

polynôme du second degré contenu dans f’(x).

f’(x) est du signe du polynôme du second degré, donc du signe du "a"
de ce polynôme partout sauf entre les racines. On sait aussi que UC

varie de façon inverse à f(x).

Du coup, on peut dresser le tableau de variation suivant :

x 0 x =
√

1− 1
2Q2 +∞

f’(x) - +
f(x) Décroissante Croissante

UC Croissante Umax =
2Q2E√
4Q2−1

décroissante
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Cas d’un grand facteur de qualité : Q > 1√
2

II

Il y a donc un maximum d’amplitude pour x = xr =
√

1− 1
2Q2 , c’est ce

phénomène que l’on appelle résonance en tension.

A la résonance, UC est maximum et est supérieure à E : c’est ce
que l’on appelle la surtension.
De plus, les limites de UC sont les mêmes que pour le cas précédent.

Dessinons l’allure de l’amplitude UC en fonction de x pour plusieurs
valeurs de facteur de qualité :
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Cas d’un grand facteur de qualité : Q > 1√
2

III

x

uC

1

1

0

E

Q = 3

Q = 1.5

Q = 1

Résonance de la tension
aux bornes du

condensateur en
fonction de la pulsation
et du facteur de qualité

Nous observons que :
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Cas d’un grand facteur de qualité : Q > 1√
2

IV
I La résonance est d’autant plus aigüe (pic étroit) que le facteur de

qualité est grand ;
I Plus ce facteur est grand, plus la pulsation de résonance tend vers

la pulsation propre du circuit (puisque x = ω

ω0
tend vers 1) en

restant toujours inférieure à elle ;
I La surtension est d’autant plus grande que le facteur de qualité est

grand.
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