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Chapitre 1

Représentation des nombres en
machine

1.1 Arithmétique des calculateurs et Sources
d�erreurs

Si sophistiqué qu�il soit , un calculateur ne peut fournir que des réponses
approximatives. Les approximations utilisées dépendent à la fois des con-
traintes physiques (espace mémoire, vitesse de l�horloge...) et du choix des
méthodes retenues par le concepteur du programme . (pour plus de détails
sur le fonctionnement d�un ordinateur et la terminologie de base voir par
exemple la page web htttp://www.commentcamarche.com
Le but de ce chapitre est de prendre connaissance de l�impact de ces

contraintes et de ces choix méthologiques. Dans certains cas il doit être pris
en compte dans l�analyse des résultats dont une utilisation erronée pourrait
être coûteuse.
La première contrainte est que le système numérique de l�ordinateur est

discret, c�est à dire qu�il ne comporte qu�un nombre �ni de nombres; Il en
découle que tous les calculs sont entachés d�erreurs.

1.1.1 Evaluation de l�erreur

Rappelons d�abord quelques notion de base ;
Si X est une quantité à calculer et X� la valeur calculée, on dit que :

1. X �X� est l�erreur et j E j=j X �X� j est l�erreur absolue.
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Exemple :

Si X = 2:224 et X� = 2:223 alors l�erreur absolue

j E j=j X �X� j= 2:224� 2:223 = 0:001

2. Er =
���X�X�

Xr

��� est l�erreur relative,Xr 6= 0: Xr est une valeur de référence
pour X. En général ,on prend Xr = X.

Exemple :

Si X = 2:224 etX� = 2:223 alors , si on prendXr = X, l�erreur relative

Er=

����X �X�

Xr

����= j X �X� j
j X j =

0:001

2:224
= 4 : 496 � 10�4

Cependant, si X est la valeur d�une fonction F (t) avec a � t � b; on
choisira parfois une valeur de référence globale pour toutes les valeurs
de t.

Exemple :

SI X = sin(t) avec 0 � t � �
4
; on pourra prendre

X =

p
2

2
= sup

0�t��
4

sin(t):

En général , on ne connait pas le signe de l�erreur de sorte que l�on
considère les erreurs absolues et les erreurs relatives absolues.
Les opérations élémentaires propagent des erreurs.
Dans la pratique, on considère que :

1) L�erreur absolue sur une somme est la somme des erreurs absolues.
2) L�erreur relative sur un produit ou un quotient est la somme des

ereurs relatives.
On peut estimer l�e¤et d�une erreur E sur l�argument x d�une fonction

f(x) au moyen de la dérivée de f(x). En e¤et f(x+ E) ' f(x) + Ef 0(x)

Exemple :
Calculer la valeur de (11111111)2

La valeur fournie par une petite calculatrice à cinq chi¤res est 1; 2345x1014

Mais la réponse exacte est 123456787654321.
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La machine a donc tronqué le résultat à 5 chi¤res et l�erreur absolue est
de 6 � 199.
L�erreur relative est de 0:0005% .
Cet exemple montre qu�il faut établir clairement l�objectif visé.

Cet objectif est double ;
1) Nous voulons un bon ordre de grandeur (ici 1014) et avoir le maximum

de décimales exactes,
2) Ce maximum ne peut excéder la longueur des mots permis par la

machine et dépend donc de la machine

1.1.2 La mémoire de l�ordinateur : le stockage des
nombres

La mémoire d�un ordinateur est formée d�un certain nombre d�unités adess-
ables appelées OCTETS . Un ordinateur moderne contient des millions voir
des milliards d�octets. Les nombres sont stockés dans un ordinateur comme
ENTIERS ou REELS.

Les nombres entiers :

Les nombres entiers sont ceux que l�on utilise d�habitude sauf que le plus
grand nombre représentable dépend du nombre d�octets utilisés:
-avec deux (2) octets, on peut représenter les entiers compris entre

�32768 et 32767

-avec quatre (4) octets on peut représenterr les entiers compris entre

�2147483648 et 2147483647

Les nombres réels

Dans la mémoire d�un ordinateur, les nombres réels sont représentés en no-
tation �ottante.
Cette notation a été introduite pour garder une erreur relative à peu prés

constante; quelque soit l�ordre de gandeur du nombre qu�on manipule.
En notation �ottante, un nombre a la forme:
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x = �Y � be

b est la base du système numérique utilisé
Y est la mantisse : une suite de s entier y1y2:::ys avec y1 6= 0 si x 6= 0 et

0 � yi � (b� 1)
e est l�exposant(un nombre entier relatif)
La norme choisie est celle où la mantisse est comprise entre 0 et 1 et où

le premier chi¤re après la virgule est di¤érent de zéro.
Calcul de l�erreur
Nous terminons ce chapitre en dé�nissant les notions de troncature et

d�arrondie.

Exemple :
En base 10; x = 1=15 = 0:066666666::::::
Dans le cas d�une représentation tronquée nous aurons, pour s = 5,

fl(x) = 0:66666 � 10�1:

Remarquez comment nous avons modi�é l�exposant a�n de respecter la
règle qui veut que le premier chi¤re de la mantisse ne soit pas nul .
Dans ce cas, l�erreur absolue X�fl(X) est de 6�10�7:. L�erreur relative

est de l�ordre de 10�5

Dans une représentation tronquée à s chi¤res, l�erreur relative maximale
est de l�ordre de 10�s

Dans une représentation arrondie, lorsque la première décimale négligée
est supérieure à 5, on ajoute 1 à la dernière décimale conservée.

Exemple :
x = 1=15 = 0 :066666666 :
Nous écrirons fl(x) = 0:66667� 10�1
L�erreur absolue serait alors 3:333 � 10�7et l�erreur relative serait 5 �

10�6

En général, l�erreur relative dans une représentation arrondie à s chi¤res
est de 5� 10�(s+1) soit la moitié de celle d�une représentation tronquée.
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1.2 Les régles de base du modèle

Pour e¤ectuer une opération sur deux nombres réels, on e¤ectue l�opération
sur leurs représentations �ottantes et on prend ensuite la représentation �ot-
tante du résultat.
l�addition �ottante

x� y = fl(fl(x) + fl(y))

la soustraction �ottante

x	 y = fl((x)� fl(y))

la multiplication �ottante

x
 y = fl(fl(x)� fl(y))

la division �ottante

x� y = fl(fl(x)=fl(y))

Chaque opération intermédiaire dans un calcul introduit une nouvelle
erreur d�arrrondi ou de troncature.
Dans la pratique, il faudra se souvenir du fait que deux expressions

algébriquement équivalentes peuvent fournir des résultats di¤érents et que
l�ordre des opérations peut changer les résultats.
Pour l�addition et la soustraction on ne peut e¤ectuer ces 2 opérations

que si les exposants sont les mêmes. On transforme le plus petit exposant et
donc on ne respecte plus la régle voulant que le premier chi¤re de la mantisse
ne soit pas nul.
Quelques remarques sur ce modèle:
On constate une déviation importante par rapport aux lois habituelles de

l�arithmétique.
x+ (y + z) peut être di¤érent de (x+ y) + z:

Exemple :
Pour 4 chi¤res signi�catifs ( s = 4) on a :

(1 + 0 :0005 ) + 0 :0005 = 1 :000
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car

0 :1 � 10 1+0 :5 :� 10�3= 0 :1 :� 10 1+0 :00005 :� 10 1=
0 :1 � 10 1+0 :0000 :� 10 1= 0 :1 � 10 1

et

1 + (0 :0005 + 0 :0005 ) = 1 :001

Ainsi, l�addition �ottante n�est pas associative .(TD:Sommation d�une
série à termes positifs)
On constate aussi que si y est trés petit par rapport à x, l�addition de x

et y donnera seulement x.

Exemple :
L�équation 1 + x = x a x = 0 comme unique solution. Mais dans un

système à 10 chi¤res signi�catifs, elle aura une in�nité de solutions (il su¢ t
de prendre j x j� 5� 10�11)

La distributivité de la multiplication par rapport à l�addition.

Exemple :
Considérons l�opération

122 � (333 + 695 ) = (122 � 333 ) + (122 � 695 ) = 125416

Si nous e¤ectuons ces deux calculs en arithmétique à 3 chi¤res ( s = 3)
et arrondi, nous obtenons:

122 � (333 + 695 ) = 
(122 )� 
(1028 )
= 122 � 103 � 10 1= 
(125660 ) = 126 � 10 3

(122 � 333 ) + (122 � 695 ) = 
(40626 ) + 
(84790 )
406 � 10 2+848 � 10 2= 
(406 + 848 )� 10 2= 
(1254 � 10 2) = 125 � 10 3

Donc la distributivité de la multiplication par rapport à l�addition n�est
pas respectée en arithmétique �ottante.
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1.3 Propagation des erreurs.

Une étude de la propagation des erreurs d�arrondi permattra d�expliquer ce
phénomène.
Soit à calculer ex à l�aide de son développement en série qui est convergent

pour tout x :

ex = 1 +
x

1!
+
x2

2!
+ :::

Il est evident que dans la pratique il est impossible d�e¤ectuer la somma-
tion d�une in�nité de termes. On arrêtera donc lorsque le terme général x

k

k!

devient inférieur à 10�t(on a t digits): Pour x négatif on sait que le reste de
la serie est inférieur au premier terme négligé donc à 10�t(puisque la serie
est altérnée).
Les calculs suivant sont fait sur ordinateur pour t = 14:������������

x
�10
�15
�20
�25
�30

������������

ex

4:54:10�5

3:06:10�7

2:06:10�9

1:39:10�11

9:36:10�14

������������

S
4:54:10�5

3:05:10�7

�1:55:10�7
1:87:10�5

6:25:10�4

������������
On voit que pour x � 20 les résultats obtenus sont dépourvus de sens.
L�explication de ce phénomène est la suivante: pour x = �30 les termes
de la serie vont en croissant jusqu�à x30

30!
= 8:1011 puis ils décroissent et

x107

107!
~� 9:19:10�15:
L�erreur absolue sur le terme maximal est de 8:1011:10�15 = 8:10�4: Ainsi

le résultat obtenu pour S représente uniquement l�accumulation des erreurs
d�arrondi sur les termes de plus grand module de développement en serie.

1.3.1 Conditionnement et stabilité numérique.

Le fait que certains nombres ne soient pas représentés de façon exacte dans
un ordinateur entraine que l�introduction même de donnée d�un problème en
machine modi�e quelque peu le problème initial; Il se peut que cette petite
variation des données entraine une variation importante des résultats. C�est
la notion de conditionnement d�un problème.
On dit qu�un problème est bien (ou mal) conditionné, si une petite varia-

tion des données entraine une petite (une grande) variation sur les résultats.
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Cette notion de conditionnement est liée au problème mathématique lui
même et est indépendante de la méthode utilisée pour le résoudre.
Une autre notion importante en pratique est celle de stabilité numérique.

Un problème peut être bien conditionné et la méthode utilisée pour le ré-
soudre peut être sujette à une propagation importante des erreurs numériques.
Ces notions de conditionnement d�un problème et de stabilité numérique

d�une méthode de résolution sont fondamentales en analyse numérique. Si un
problème est mal conditionné alors la solution exacte du problèmetronqué ou
arrondi à t digits pourra être très di¤érente de la solution exacte du problème
initial. Aucune methode ne pourra rien; il faudra essayer de donner une autre
formulation au problème.

1

1S. El Bernoussi, S. El Hajji et A. Sayah
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Chapitre 2

Résolution de f(x)=0

2.1 Introduction

Soit f une fonction numérique d�une variable réelle.
On cherche les racines simples de l�équation

(1) f(x) = 0

La première étape consiste à isoler les racines, c�est à dire trouver un in-
tervalle [a; b] dans lequel � est l�unique racine réelle de (1). On supposera que
f est continue et dérivable autant de fois que nécessaire dans cet intervalle.
Pour trouver cet intervalle on aura besoin de quelques calculs prélim-

inaires en utilisant soit le graphe des fonctions, soit (si la fonction f est
continue dans [a; b]) le théorème des valeurs intermédiaires en calculant f(a)
et f(b)

Si f(a) � f(b) < 0 f admet un nombre impair de racines dans
[a; b]

Si f(a) � f(b) > 0 f admet un nombre pair de racines

Exemple :
Soit. la fonction du grahe suivant :
La fonction n�est pas dé�nie pour x = ln(2) et on a f 0(x) = 1 + 2ex

(ex�2)2

donc f 0(x) > 0 pour tout x:
L�équation a donc 2 racines simples situées de chaque côté de ln(2).
On véri�e sans problème qu�une première racine appartient à [�1; 0] et

la deuxième à [1; 2]
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Figure 2.1: f(x) = x� ex

ex�2

On supposera donc désormais avoir trouvé un intervalle [a; b] où f admet
une unique racine simple et on supposera que f est dé�nie, continue, et
autant de fois continument dérivable que nécessaire.

Nous allons à présent dé�nir la notion d�algorithme.
Dé�nition : Nous appellerons algoritnme toute méthode de résolution

d�un problème donné.
Pour tout problème, nous avons des données et des résultats. Les données

sont appelées paramètres d�entrée (input) et les résultats paramètres de sortie
(output). Ils constituent l�interface de l�algorithme (ou encore la partie visible
de l�algorithme).

Dans ce chapitre, nous désignerons par fpng une suite de nombres réels .
Il y a plusieurs façons de générer les termes d�une suite. En analyse

numérique, on construit les suites à l�aide d�un procédé itératif appelé algo-
rithme.
Les algorithmes classiques que nous allons étudier sont les suivants:

i) Méthode de la bissection
ii) Méthode de Newton-Raphson
iii) Méthode de la sécante
iv) Méthode du point �xe.

Le but de ce chapitre est de trouver des approximations de la solution de
l�équation (1) avec une précision donnée et un nombre d�itérations maximum.
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A�n de comparer ces di¤érentes méthodes, nous allons introduire la no-
tion d�ordre de convergence.

2.2 Méthode de la bissection.

Considérons une fonction f(x) quelconque, continue et cherchons p tel que
f(p) = 0:

Nous supposons qu�on a localisé par tatonnement un intervalle [a; b] dans
lequel la fonction change de signe (c.à.d. f(a)� f(b) � 0) on pose c = a+b

2
; si

f(a)�f(c) � 0 on remplace b par c sinon on remplace a par c; et on continue
cette operation jusqu�à ce qu�on trouve p avec la précision demandée.

Algorithme de bissection (ou de dichotomie)
But : Donner une fonction continue f(x) et un intervalle [a; b] pour

lequel f(a) et f(b) sont de signes contraires, trouver une approximation
de la solution de f(x) = 0 dans cet intervalle; en construisant une suite
d�intervalles ([an; bn])n contenant cette racine et tets que an ou bn est le mi-
lieu de l�intervalle [an�1; bn�1].
Entrées : a; b les extrémités de l�intervalle

� la précision désirée
N0 le nombre maximal d�itérations

Sortie : la valeur approchée de la solution de f(p) = 0

Etape 0: Si f(a) = 0 imprimer la solution est a, aller à l�étape 9
Si f(b) = 0 imprimer la solution est b, aller à l�étape 9

Etape 1:
si f(b) � f(a) > 0
alors imprimer (il n�y a pas de changement de signe)
aller à l�étape 9

Etape 2: poser N = 1
Etape 3:

Tant que N � N0;faire les étapes 4 à 7
Etape4: poser p = a+b

2

Etape 5:Si f(p) = 0 ou b�a
2
� �

Alors imprimer p
aller à l�étape 9

Etape 6: poser N = N + 1

13



Etape 7: Si f(a) � f(p) > 0
alors poser a = p
sinon poser b = p

Etape 8: Imprimer aprés N0 itérations l�approximation obtenue est p et
l�erreur maximale est b�a

2

Etape 9: Fin

2.3 Méthode de Newton-Raphson:

Le principe consiste à construire une suite (xn)n; telle que xn+1 soit
l�intersection de la tangente à la courbe de f au point (xn; f(xn)) avec l�axe
horizontal.

2.521.510.5

0.75

0.5

0.25

0

­0.25

­0.5

x

y

x

y

Figure 2.2: Méthode de Newton pour f(x) = log(x); x0 = 2:

On a: �
A = (x0; f(x0)); B = (x1; 0) 2 axe(Ox)

A et B 2 D : y = ax+ b
donc �

f(x0) = ax0 + b
0 = ax1 + b

)
(

a = f 0(x0)

x1 = x0 � f(x0)
f 0(x0)

Algorithme de Newton-Raphson.
But: Trouver une solution de f(x) = 0
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Entrées: une approximation initiale p0
" (la précision désirée)
N0 (le nombre maximum d�itérations)

Sortie: valeur approchée de p ou un message d�échec
Etape1 : N = 1
Etape 2: Tant que N � N0; faire les étapes 3 à 6.
Etape 3: Poser p = p0 � f(p0)

f 0(p0)

Etape 4: Sij p� p0 j� " alors imprimer p
aller à l�étape 8.

Etape 5: Poser N = N + 1:
Etape 6: Poser p0 = p:
Etape 7: Imprimer la méthode a échoué après N itérations.
Etape 8: Fin.

2.4 Méthode de la sécante

La méthode de Newton-Raphson suppose le calcul de f 0(p) à chaque étape.
Il se peut qu�on ne dispose pas d�un programme permettant de calculer sys-
tématiquement f 0 .
L�algorithme suivant peut être considéré comme une approximation de la

méthode de Newton.
Le principe consiste à construire une suite (xn)n à l�aide de la formule

obtenue en remplaçant dans la méthode de Newton f 0(pn) par
f(pn)�f(pn�1)
pn�pn�1 :

Ainsi au lieu d�utiliser la tangente au point pn nous allons utiliser la sécante
passant par les points d�abscisses pn et pn�1 pour en déduire pn+1. Ce dernier
est obtenu comme intersection de la sécante passant par les points d�abscisse
pn et pn�1 et de l�axe des abscisses.
L�équation de la sécante s�écrit :
s(x) = f(pn) + (x� pn)f(pn)�f(pn�1)pn�pn�1
Si s(pn+1) = 0 , on en déduit:

pn+1 = pn � f(pn) pn�pn�1
f(pn)�f(pn�1)

Algorithme de la sécante:

But:Trouver une solution de f(x) = 0
Entrées: deux approximations initiales p0 et p1

15
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Figure 2.3: f(x) = x3 � 1

" (la précision désirée)
N0 (le nombre maximum d�itérations)

Sortie:la valeur approchée de p ou un message d�échec
Etape 1: poser N = 1

q0 = f(p0)
q1 = f(p1)

Etape 2: Tant que N � N0 + 1;faire les étapes 3 à 6
Etape 3: poser p = p1 � q1 (p1�p0)q1�q0
Etape 4: Si j p� p1 j� " alors imprimer p

aller à l�étape 8
Etape 5: Poser N = N + 1
Etape 6: Poser p0 = p1

q0 = q1
p1 = p
q1 = f(p)

Etape 7: Imprimer la méthode a échoué aprés N0 itérations
Etape 8: Fin.

2.5 Méthode du point �xe

Nous pouvons observer que la méthode de Newton peut s�interpréter comme
pn+1 = g(pn) où

16



g(x) = x� ( f(x)
f 0(x)): Maintenant , si la fonction g(x) est continue et si

l�algorithme converge (c.à.d. pn ! p); on tire de pn+1 = g(pn) que p satisfait
l�équation p = g(p) ; on dit que p est un point �xe de g.
On peut toujours transformer un problème du type f(x) = 0 en un prob-

lème de la forme x = g(x) et ce d�une in�nité de façons.
Par exemple
x2 � 2 = 0
ou x = 2=x
ou x = x2 + x� 2
ou x = �(x2 � 2) + x
Il faut toutefois noter que ce type de transformations introduisent des

solutions �parasites�.
Par exemple : résoudre 1=x = a ou encore x = 2x� ax2
On voit que 0 est racine de la deuxième équation mais pas de la première.

Algorithme du point �xe
But: trouver une solution de g(x) = x
Entrées: une approximation initiale p0

"(la précision désirée)

N0 le nombre maximale d�itérations
Sortie: valeur approchée de p ou un message d�échec
Etape 1: poser N = 1
Etape 2: Tant que N � N0;faire les étapes 3 à 6

Etape 3: poser p = g(p0)
Etape 4: Si j p� p0 j� "

alors imprimer p
aller à l�étape 8

Etape 5: poser n = n+ 1
Etape 6: poser p0 = p

Etape 7: Imprimer (la méthode a échoué aprrès N0 itérations)
Etape 8 : Fin.

17



2.6 Convergence et ordre de convergence.

Dé�nition: Soit D une partie de R et F une application de D dans D: On
dit que la fonction F est contractante si

8x; y 2 D ;9k 2 [0; 1[ tel que

j F (x)� F (y) j� k j x� y j :

k est le coé¢ cient de contraction ou de Lipschitz de F:
Théorème: Considérons le segment S = [p0 � a; p0 + a] � D; si F est

contractante sur S et si j F (p0) � p0 j� (1� k) a; alors l�itération pn+1 =
F (pn) de point initial p0 ; converge vers l�unique point �xe p 2 S de F:

Théorème: Convergence locale.
Si F est di¤érentiable au voisinage d�un point �xe p et si j F 0(p) j< 1

alors :
9V voisinage de p tels que p0 2 V et pn+1 = F (pn) converge vers p:

18



2.6.1 Interprétation graphique.

0.750.6250.50.375

0.75

0.625

0.5

0.375

x

y

x

y

Figure 2.4: F (x) = �x3 + 5
4
x; jF 0(x)j < 1; convergence.

On voit graphiquement que j F 0(p) j< 1; et par conséquent les itérations
convergent vers le point �xe. p est un point �xe attractif. Par contre si
j F 0(p) j> 1 pas de convergence vers le point �xe, p est un point �xe répulsif.

2017.51512.5107.55

20

15

10

5

x

y

x

y

F (x) = x
5
4 � x; jF 0(16)j > 1; l�itération diverge.

Remarque: Un point �xe répulsif pour une méthode devient attractif
pour une autre.
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2.6.2 Ordre de convergence.

La convergence de l�itération pn+1 = F (pn) vers le point �xe peut se
faire plus ou moins vite.
Dé�nition : Considérons une suite fpng convergeant vers p et posons

en = pn � p:
On dit dans le cas où

n��� en
en�1

���o converge, que la suite pn converge linéaire-
ment vers p ou encore que la méthode est du premier ordre.
Si on a

n��� en
(en�1)k

���o converge, alors la convergence est dite d�ordre k:
Exemple :
La méthode de Newton pour résoudre l�équation f(x) = 0 est une méth-

ode de type point �xe avec F (x) = x � f(x)
f 0(x) : Si x

� est racine simple de
f(x) = 0; alors f 0(x�) 6= 0 et il existe un voisinage V de x� tel que pour tout
p0 2 V; la suite (pn)n converge vers x� et l�ordre de convergence est 2.
(en e¤et F 0(x) = 1 � (f 0(x))2�f(x)�f 00(x)

(f 0(x))2 ) F 0(x�) = 0: Ainsi d�aprés
le théorème précédent la méthode de Newton converge. Pour déterminer
l�ordre de convergence on utilise la formule de Tylors en x� : F (x) = F (x�)+
F 0(x�)(x� x�) + F 00(�x) (x�x

�)2

2
):

2.7 Exercices
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Série f(x) = 0

Exercices 1
Résoudre à l�aide de la méthode de bisection tanx�x = 0 dans l�intervalle

[4; 4:7].

Exercice 2
On considère l�équation
(1) ex � 4x = 0
1) Déterminer le nombre et la position approximative des racines de (1)

situées dans .x � 0
2) Utiliser l�algorithme de bissection pour déterminer la plus petite de

ces racines à " près.(par exemple 10�7)
3) Sans faire d�itérations, déterminer combien vous devriez en faire pour

calculer la plus grande racine à l�aide de la bissection avec une précision de
10�8, si l�intervalle de départ est [2; 2; 5]

Exercice 3
Écrire un algorithme pour calculer par la méthode de Newton la racine

K-ième d�un nombre.

Quelle est la valeur de s =
q
2 +

p
2 +
p
2 + :::::?

Suggestion: écrire .pn+1=G(pn),p0=0 Quel est l�ordre de convergence ?

Exercice 4
Écrire 3 méthodes itératives pour la résolution de x3�x�1 =0 et véri�er

expérimentalement leur convergence avec x0 = 1; 5. Trouver à 10�6près la
racine comprise entre 1 et 2. Connaissant la valeur de cette racine, calculer
l�ordre de convergence de vos 3 méthodes. Ce résultat coincide-t-il avec
l�expérience?

Exercice 5
Résoudre x2-1=0 en utilisant la méthode de la sécante avec x0 = �3 et

x1 = 5=3. Qu�arrivera-t-il si on choisit et x0 = 5=3 et x1 = �3? Expliquez.
1

1S. El Bernoussi, S. El Hajji et A. Sayah
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Chapitre 3

Algèbre linéaire

3.1 Introduction

Un sytème linèaire s�écrit sous la forme :

(1) Ax = b

où A est une matrice nxn à coe¢ cients réels, b 2 Rn et x 2 Rn:
La résolution de grands systèmes linéaires (et non linéaires) est pratique

courante de nos jours. Elle apparait dans tous les domaines où l�on s�intéresse
à la résolution numérique d�équations aux dérivées partielles.
Il existe plusieurs packages (linpack, eispack, ..), logiciels (Maple et Mat-

lab) et programmes (http://www.netlib.com, numerical recipes, NAG, IMSL,
...) de base pour le résoudre.
Le choix de la méthode dépend fortement du type (forme) de la matrice.

Les méthodes de résolution sont de deux types :

Les méthodes directes : Une méthode est dite directe si elle permet d�obtenir
la solution en un nombre �ni d�opérations.

Les méthodes itératives : Une méthode est dite itérative si elle permet de
construire une suite (xn)n qui converge vers la solution.

Dans ce chapitre nous allons :

1. Rapeler des notions et notations de base relatives aux systèmes linéaires
et aux matrices
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2. Etudier une méthode directe : la méthode de Gauss.

3. Etudier la décomposition (factorisation) LU:

4. Etudier des applications : Inverse de matrices,...

3.2 Rappels sur les systémes linéaires

Un système de n équations linéaires à n inconnues peut toujours s�écrire sous
la forme :

(1) Ax = b

où A est une matrice (aij) et x et b sont des vecteurs colonnes de dimension
n.
Si la matrice A est inversible alors le système linéaire (1) admet une

unique solution x = A�1b où A�1 est la matrice inverse de A:
Ainsi théoriquement le problème revient à calculer A�1?Mais en pratique

ce calcul est di¢ cile.
Il existe plusieurs méthodes classiques pour résoudre (1) sans calculer

A�1:
Pour cela on va considerer le cas simple suivant :

(1)

�
x+ 2y = 5
2x+ y = 4

i) La méthode de Cramer consiste à calculer la solution en calculant des
déterminants.

On a: x =

������ 5 2
4 1

������������ 1 2
2 1

������
= �3

�3 = 1 et y =

������ 1 5
2 4

������������ 1 2
2 1

������
= �6

�3 = 2

ii) La méthode de substitution (ou d�élimination) consiste à transformer
le systéme (1):

(1)

�
x+ 2y = 5
2x+ y = 4

)
�
x = �2y + 5
2x+ y = 4

)
�

x = �2y + 5
2(�2y + 5) + y = 4
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)
�
x = �2y + 5
3y = 6

)
�
x = �2y + 5

y = 2
)
�
x = 1
y = 2

Peut-on généraliser ces méthodes pour un systéme de n équations avec
n 2 N?
Théoriquement OUI mais en pratique cela va nécessiter beaucoup de cal-

culs et de techniques.

3.3 Méthode Gauss

La méthode de résolution la plus étudiée (et une des plus employées) s�appelle
méthode d�élimination de Gauss.
L�idée de base de cette méthode consiste à transformer le systéme linéaire

(1) en un problème que l�on sait résoudre.
Si la matrice A = D avec D une matrice diagonale, alors on sait résoudre

(1):
Mais toute matrice n�est pas diagonalisable.
Si la matrice A = U (ou L) avec U (ou T ) une matrice triangulaire

supérieure ( ou inférieure) alors on sait résoudre (1):
Problème : Comment tranformer une matrice en une matrice triangulaire

inférieure ou supérieure ?
La méthode de substitution (d�élimination) répond à cette question mais

elle n�est pas automatique.
La méthode d�élimination de Gauss a pour but de remplacer le sys-

tème (1) par un système triangulaire possédant la même solution. Son
principe s�apparente à celui de la méthode de substitution (d�élimination)
mais (comme on le verra ci dessous), il est plus simple à automatiser.
Regardons son fonctionnement sur l�exemple suivant cas n = 3:
On pose A = (aij)i;j=1;3 X = (xi)i=1;3et b = (bi)i=1;3 de telle sorte que

AX = b s�écrit sous la forme :8<:
a11x1 + a12x2 + a13x3 = b1
a21x1 + a22x2 + a23x3 = b2
a31x1 + a32x2 + a33x3 = b3

ou encore sous la forme dite augmentée

(A b) =

0@ a11 a12 a13
a21 a22 a23
a31 a32 a33

b1
b2
b3

1A
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On suppose que a11 6= 0; par élimination, on obtient :

(A1 b1) =

0@ a11 a12 a13
0 a022 a023
0 a032 a033

b1
b02
b03

1A
On va illustrer la méthode de Gauss sans passer par le sytéme augmenter

:
On a :

(1)

8<:
a11x1 + a12x2 + a13x3 = b1 (l1)
a21x1 + a22x2 + a23x3 = b2 (l2)
a31x1 + a32x2 + a33x3 = b3 (l3)

On note par (li) la i�eme équation du système précedent.
On suppose que a11 6= 0;
On pose :

(l02) = a11(l2)� a21(l01)
et

(l03) = a11(l3)� a31(l01)
Alors (1) s�écrit

(2)

8<:
a11x1 + a12x2 + a13x3 = b1 (l1)

a022x2 + a
0
23x3 = b

0
2 (l02)

a032x2 + a
0
33x3 = b

0
3 (l03)

On suppose que a022 6= 0;
On pose :

(l003) = a
0
22(l

0
3)� a032(l

00
2 )

Alors (2) s�écrit

(2)

8<:
a11x1 + a12x2 + a13x3 = b1 (l1)

a022x2 + a
0
23x3 = b

0
2 (l02)

a
00
33x3 = b

00
3 (l

00
3 )

Remarque :
i) Les termes diagonaux à chaque étape sont appelés les pivots,
ii) Si un pivot aii est nul on change de ligne (on permute) de i à n (pivotage

partiel)
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iii) Cette méthode se généralise assez facilement bien qu�il faut être pru-
dent avec le choix du pivot. En pratique, il faut éviter de prendre des pivots
"trop" petits.

Exemple : Sur l�importance du pivot
1) On considére le systéme :

(1)

�
x+ y = 2

10�4x+ y = 1

Calculer la solution exacte de ce systéme.
2) Calculer la solution pour s = 3 avec troncature des systèmes

(1)

�
x+ y = 2

10�4x+ y = 1
et (1)

�
10�4x+ y = 1
x+ y = 2

Remarque : L�algorithme de Gauss est une méthode systématique de résolu-
tion de systèmes d�équations comportant un nombre quelconque d�inconnues.

Dans le cas où tous les pivots sont non nuls i.e. aii 6= 0; l�algorithme:
Élimination de Gauss s�ecrit :

Partie 1: Réduction à la forme triangulaire (ou élimination de Gauss)
Entrée A et b
Sortie A = U (forme triangulaire), et b:
Pour j = 1; :::; (n� 1)

Pour i = j + 1; :::; n
lij  aij

ajj

Pour k = j + 1; :::; n
aik  aik � lijajk

Fin
bj  bj � lijbj

Fin
Fin
Sortie A = U (forme triangulaire), et b

Cette partie s�écrit sous la forme (algorithmique)
Étape 1 : Poser j = 1
Étape 2: Tant que j � n� 1 faire

Étape 3: Si ajj = 0 a¢ cher �pivot nul�aller à étape 14, sinon
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Étape 4: Poser i = j + 1
Étape 5: Tant que i � n faire

Étape 6: lij =
aij
ajj

Étape 7: Si lij = 0; aller à l�étape 12.
Étape 8: Poser k = j + 1
Étape 9: Tant que k � n faire

Étape 10: aik = aik � lijajk, k = k + 1; aller à l�étape 9.
Étape 11: bi = bi � lijbj ;
Étape 12: poser i = i+ 1; Aller à l�étape 5.

Étape 13: j = j + 1; Aller à l�étape 2.
Étape 14: Fin.

Remarques:Les éléments sous la diagonale principale de la nouvelle matrice
obtenue sont nuls. Comme ils n�interviennent pas dans la résolution du
système triangulaire formé, il est inutile que l�algorithme leur assigne cette
valeur nulle.

Exemple : On considère le système linéaire :8>><>>:
x+ y + 3t = 4

2x+ y � z + t = 1
3x� y � z + 2t = �3
�x+ 2y + 3z � t = 4

qui s�écrit encore:0BB@
1 1 0 3
2 1 �1 1
3 �1 �1 2
�1 2 3 �1

1CCA
0BB@
x
y
z
t

1CCA =

0BB@
4
1
�3
4

1CCA
Nous appliquons l�algorithme à notre exemple en travaillant sur la matrice

augmentée.
Nous obtenons 266664

A b
1 1 0 3 : 4
2 1 �1 1 : 1
3 �1 �1 2 : �3
�1 2 3 �1 : 4

377775
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2664
1 1 0 3 : 4
0 �1 �1 �5 : �7
0 �4 �1 �7 : �15
0 3 3 2 : 8

3775
2664
1 1 0 3 : 4
0 �1 �1 �5 : �7
0 0 3 13 : 13
0 0 0 �13 : �13

3775
Que l�on peut écrire sous la forme :8>><>>:

x+ y + 3t = 4
�y � z � 5t = �7
3z + 13t = 13
�13t = �13

,

Notons que l�étape j = 3 nous donnerait l43 = 0:
Nous avons maintenant un système triangulaire à résoudre.

Partie 2 : Remontée triangulaire
Entrée A; b avec A matrice triangulaire supérieure
Sortie x solution du sytème Ax = b

� Étape 1: xn = bn
ann

� Étape 2: Pour i = n� 1; n� 2; :::; 1 faire:

xi =
1

aii
(bi �

nX
j=i+1

aijxj)

En appliquant cet algorithme à notre exemple, nous obtenons x = (�1; 2; 0; 1).

Remarque:

1. Dans la pratique le test (3) de l�algorithme d�élimination de Gauss ne
conduit pas à l�arrêt. En fait, si le pivot est nul, on cherche, dans
la même colonne, un élément d�indice plus grand non nul, puis on
échange les lignes correspondantes. Si ceci est impossible, le système
est singulier.
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2. On est parfois amené, pour des raisons de stabilité numérique, à ef-
fectuer des échanges de lignes même si le test (3) est négatif (c�est à
dire que le pivot est non nul). Ceci conduit à des stratégies dites de
pivot que nous n�étudierons pas ici.

Exemple : Résolution du système suivant :8<:
2x+ 6y + 10z = 0
x+ 3y + 3z = 2

3x+ 14y + 28z = �8
,

0@ 2 6 10
1 3 3
3 14 28

1A0@ x
y
z

1A =

0@ 0
2
�8

1A
0@ 2 6 10 0
1 3 3 2
3 14 28 �8

1A)
0@ 2 6 10 0
0 0 �4 4
0 5 13 �8

1A)
0@ 2 6 10 0
0 5 13 �8
0 0 �4 4

1A
En utilisant la rementé on trouve:8<:

z = 4
�4 = �1

y = 1
5
(�8� 13� (�1)) = 1

x = 1
2
(�6� 1� 10� (�1)) = 2

) x� =

0@ 2
2
�1

1A
3. Méthode de Gauss avec normalisation :Elle consiste à normaliser le
pivot:

On a :

(1)

8<:
a11x1 + a12x2 + a13x3 = b1 (l1)
a21x1 + a22x2 + a23x3 = b2 (l2)
a31x1 + a32x2 + a33x3 = b3 (l3)

On note par (li) la i�eme équation du système précedent.
On suppose que a11 6= 0;
(l1) s�écrit : x1 + a12

a11
x2 +

a13
a11
x3 =

b1
a11

(l01)

Si on pose :
(l02) = (l2)� a21(l01)
et

(l03) = (l3)� a31(l01)
Alors (1) s�écrit

(2)

8<:
x1 +

a12
a11
x2 +

a13
a11
x3 =

b1
a11

(l01)

a022x2 + a
0
23x3 = b

0
2 (l02)

a032x2 + a
0
33x3 = b

0
3 (l03)
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On suppose que a022 6= 0;
(l02) s�écrit x2 + a

00
23x3 = b

00
2 (l002)

Si on pose :
(l003) = (l

0
3)� a032(l002)

si a0033 6= 0 on pose (l0003 ) x3 =
b003
a0033

Alors (2) s�écrit

(2)

8><>:
x1 +

a12
a11
x2 +

a13
a11
x3 =

b1
a11

(l01)

x2 + a
00
23x3 = b

00
2 (l002)

x3 =
b003
a0033

(l0003 )

1. Cette statégie est trés utile pour calculer l�inverse d�une matrice.

Nous pouvons nous demander s�il existe une relation entre la matrice de
départ et la matrice triangulaire obtenue. Ce lien existe.

3.4 Factorisation LU

Matriciellement la méthode de Gauss consiste à multiplier la matrice A par
la matrice L1 de telle sorte que l�on ait :

A1 = L1A

) L1 =

0@ 1 0 0
�a21
a11

1 0

�a31
a11

0 1

1A
On suppose que a022 6= 0; donc on cherche L2 de telle sorte que

A2 = L2A1 =

0@ a11 a12 a13
0 a022 a023
0 0 a0033

1A
) L2 =

0B@ 1 0 0
0 1 0

0 �a032
a022

1

1CA
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Ainsi on a : A2 = L2A1 = U et A2 est une matrice triangulaire supérieure.
De plus si on pose A0 = A alors U = A2 = L2L1A0 c�est à dire que

U = L2L1A, A = L�12 L
�1
1 U

On a L1 et L2 sont des matrices inversibles et triangulaires inférieures
donc L2 � L1 est une matrice inversible et triangulaire inférieure.
De même L = L�11 � L�12 est une matrice inversible et triangulaire in-

férieure
Donc A = LU:
Ainsi le systéme linéaire (1) AX = b s�écrit

LUX = b,
�

Ly = b avec L matrice triangulaire inférieure
UX = y avec U matrice triangulaire supérieure

En conclusion ( à admettre) la méthode de Gauss revient à décomposer la
matrice A en un produit de deux (2) matrices triangulaires l�une supérieure
U et l�autre inférieure L:
Avec :

L =

0BBBBB@
1
l21 1
l31 l32 1 0
...
ln1 � � � ln;n�1 1

1CCCCCA
où lij est dé�ni à l�étape (6) de l�algorithme d�élimination et (si l�algorithme
d�élimination n�exige pas d�échange de lignes).

Nous ne démontrerons pas cette proposition. Nous nous contenterons de la
véri�er sur notre exemple.

Exemple :0BB@
1 1 0 3
2 1 �1 1
3 �1 �1 2
�1 2 3 �1

1CCA =

0BB@
1 0 0 0
2 1 0 0
3 4 1 0
�1 �3 0 1

1CCA
0BB@
1 1 0 3
0 �1 �1 �5
0 0 3 13
0 0 0 �13

1CCA :
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Il y a une classe importante de matrices pour lesquelles l�élimination
peut toujours s�opérer sans échange de lignes (i.e. le pivot ajj n�est jamais
nul pendant l�algorithme d�élimination). Ce sont les matrices à diagonale
strictement dominante.

Dé�nition: Une matrice A est dite à diagonale strictement dominante si
pour tout i = 1; 2; ::::; n , on a :

jaiij >
nX

j=1;j 6=i

jaijj

est véri�ée.

Remarque : Si la matrice est à diagonale strictement dominante alors elle
est inversible.

3.4.1 Appplications de la Factorisation LU

Si l�on doit résoudre souvent un système où seul le membre de droite change
ou son veut calculer l�inverse d�une matrice, il y a intérêt à e¤ectuer la ré-
duction à la forme triangulaire une fois pour toutes.
En e¤et, si A = LU on peut résoudre: Ax = b en résolvant Lz = b et

Ux = z. On a :

(1) Ax = b,
�
(2) Lz = b
(3) Ux = z

Dans ce cas Ax = LUx = L(Ux) = Lz = b .
Les systèmes (2) et (3) étant triangulaires, la résolution ne nécessite que

l�exécution d�une remontée et d�une descente triangulaire.

Exemple :

A = LU =

0BB@
1 0 0 0
2 1 0 0
3 4 1 0
�1 �3 0 1

1CCA
0BB@
1 1 0 3
0 �1 �1 �5
0 0 3 13
0 0 0 �13

1CCA ; on résoud le sys-

tème Ax =

0BB@
4
1
�3
4

1CCA :
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Lz = b)

8>><>>:
z1 = 4

2z1 + z2 = 1
3z1 + 4z2 + z3 = �3
�z1 � 3z2 + z4 = 4

) z =

0BB@
4
�7
13
�13

1CCA :

Ux = z )

8>><>>:
�13x4 = �13
3x3 + 13x4 = 13

�x2 � x3 � 5x4 = �7
x1 + x2 + 3x4 = 4

) x =

0BB@
�1
2
0
1

1CCA :

3.5 Mesure des erreurs

L�utilisation d�un calculateur pour implanter les algorithmes étudiés conduira
inévitablement à des erreurs. Pour mesurer celles-ci, nous devons mesurer la
distance entre le vecteur représentant la solution exacte x = (x1; :::; xn) et le
vecteur x̂ = (x̂1; :::; x̂n) représentant la solution approchée. Nous pouvons,
pour ce faire, utiliser la "longueur" usuelle de Rn i.e.:

kxk2 = f
nX
1

x2i g
1
2

pourtant, dans la pratique on lui préfère souvent la longueur

kxk1 = max
1�i�n

jxij

Par exemple si x = (1;�7; 2; 4) alors kxk1 = 7 .

Exemple :
Si x = (1; 1; 1; 1) alors kxk1 = 1 si x̂ = (1:01; 1:1; 1; 1), on a

kx� x̂k1 = 0:1

Considérons alors le système0BB@
10 7 8 7
7 8 6 5
8 6 10 9
7 5 9 10

1CCA
0BB@
x1
x2
x3
x4

1CCA =

0BB@
32
23
33
31

1CCA
dont la solution exacte est x = (1; 1; 1; 1) .
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Si dans le membre de droite nous remplaçons b par:

b̂ = (32:06; 22:87; 33:07; 30:89)

nons obtenons
x̂ = (9:19;�12:59; 4:49;�1:09)

C�est-à-dire qu�une erreur relative de l�ordre de:

kb� b̂k1
kbk1

= 3 � 10�1

sur b a entraîné une erreur relative de l�ordre de

kx� x̂k1
kxk1

= 13:52

sur la solution.
Nous devons donc soupçonner que l�application de l�arithmétique �nie à

la résolution d�un tel système serait désastreuse. L�étude de cette question
dépasse le cadre de ce programme.

3.6 Exercices
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Série Ax = b

Exercice I -
1) On considére le systéme linéaire :

(1)

�
1 5

1:0001 5

��
x
y

�
=

�
6

6:0005

�
Déterminer la solution X de ce systéme.
2) Dans le systéme précédent, on remplace 6:0005 par 6, déterminer la

solution X� de ce nouveau systéme notée (2):
3) Calculer les erreurs relatives sur les données et sur les résultats.
4) Conclusion.

Exercice II -
Résoudre le systéme linéaire (1):

(1)

8<:
x+ 2y + 3z = 1
2x+ 6y + 10z = 0
3x+ 14y + 28z = �8

1) Par Gauss Classique
2) Par Gauss avec pivotage partiel
3) Par Gauss avec pivotage et mise à l�échelle (i.e. aii = 1).

Exercice III -
1) En arithmétique �ottante avec 2 chi¤res signi�catifs ( s = 2 (s est le

nombre de digits)) et arrondi, résoudre par élimination de Gauss, les systémes
linéaires (1) et (2).

(1)

�
0:0001x+ y = 3
x+ 2y = 5

(2)

�
x+ 2y = 5

0:0001x+ y = 3

2) Conclusion

Exercice IV -

Soit la matrice A =

0@ 30 �20 �10
�20 55 �10
�10 �10 50

1A et b =

0@ 1
5
2

1A
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1) Ecrire la matrice A sous la forme LU i.e. trouver L et U (sans pivotage)
avec L matrice triangulaire Inférieure et U triangulaire supérieur.
2) En déduire le determinant de A
3) Résoudre par Factorisation LU; le systéme linéaire AX = b

Exercice VI -

Soit la matrice A =

0@ 1 �1 2
�2 1 1
�1 2 1

1A
1) Ecrire la matrice A sous la forme LU i.e. trouver L et U avec L matrice

triangulaire Inférieure et U triangulaire supérieur.
2) Utiliser 1) pour calculer le déterminant de la matrice A.
3) Utiliser 1) pour calculer l�inverse de la matrice A:
1

1S. El Bernoussi, S. El Hajji et A. Sayah
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Chapitre 4

Interpolation polynômiale

4.1 Introduction

Nous abordons dans ce chapitre un nouveau type de problème, faisant inter-
venir la notion d�approximation d�une fonction.
Cette notion a déjà été rencontrée dans les cours d�analyse.

Exemples :
1) D�aprés la Formule de Taylor à l�ordre 5 de la fonction sin(x), on a :

8x 2 V ois(0); sin(x) ' x� x
3

3!
+
x5

5!
+ sin(6)(�)

x6

6!
où � 2 V ois(0)

On a tronqué la formule de Taylor après l�ordre N (ici 5), on obtient :
au voisinage de 0; une approximation de sin(x) par un polynôme de

degré N (ici 5).
l�erreur commise serait de l�ordre de sin(6)(�)x

6

6!
où � 2 V ois(0)

Ainsi avec ce type d�approximation, on a :

� Si N = 3, sin(0:1) = (0:1)� (0:1)3

3!
= 9: 983 3� 10�2

� Si N = 5, sin(0:1) = 0:1� (0:1)3

3!
+ (0:1)5

5!
= 9: 983 3� 10�2

Avec le logiciel Maple on a : sin(0:1) = 9: 983 3� 10�2
2) Avec les cours d�analyse I et II, on ne connait pas d�expression ex-

plicite de I =
R 1
0
e�x

2
dx

Cependant d�aprés :
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� La formule du trapèze I =
R 1
0
e�x

2
dx ' f(0)+f(1)

2
= 1+e�1

2
= 0:683 94

� La formule de Simpson : I =
R 1
0
e�x

2
dx ' 1

6

�
f(0) + 4f(1

2
) + f(1)

�
=

1
6
(1 + 4e�

1
4 + e�1) = 0:747 18

� En utilisant la méthode des trapèzes et en subdivisant (partageant) le
segment (intervalle) [0; 1] en 10 intervalles egaux, on a : I =

R 1
0
e�x

2
dx '

1
20
e�1 + 1

10

P9
i=1 e

� 1
100

i2 + 1
20
= 0:746 21

� En utilisant la méthode de Simpson et en subdivisant (partageant) le
segment (intervalle) [0; 1] en 10 intervalles égaux, on a : I =

R 1
0
e�x

2
dx '

1
30
e�1 + 1

15

P4
i=1 e

� 1
25
i2 + 2

15

P5
i=1 exp

�
�
�
1
5
i� 1

10

�2�
+ 1

30
= 0:746 82

Avec le Logiciel Maple, on a :
R 1
0
e�x

2
dx = 1

2

p
�erf (1) = 0:746 82

NB : erf () est "The Error Function". Elle est dé�nie pour tout x par :
erf(x) = 2p

�

R x
0
e�t

2
dt:

Donc l�erreur relative ( la qualité de l�approximation) dépend du type
d�approximation choisie.

On ne connait pas à ce niveau du cours l�expression explicite de l�erreur.

La notion d�approximation d�une fonction consiste à remplacer un prob-
lème donné par un problème voisin (un problème majeur en analyse numérique).
La question fondamentale serais de savoir la qualité de cette approxima-

tion i.e. la solution (du problème approché) obtenue est -elle aussi voisine
que l�on veut de la solution du problème initial.

Remarque : En pratique la fonction f est connue explicitement, ou seule-
ment par ses valeurs en quelques points.

La notion d�interpolation polynomiale est la façon la plus simple d�obtenir
une telle approximation.

Théorème : (à admettre)
Soit f une fonction continue dans [a; b] � IR, alors pour tout � > 0

donné, il existe un polynôme Pn de degré n tel que

Max
x2[a;b]

jf(x)� Pn(x)j < �
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Ce théorème ne permet pas de construire (de déterminer explicitement)
le polynôme Pn. Il existe cependant un certain nombre de techniques (algo-
rithmes) qui le permettent :

1. L�interpolation polynômiale: Elle est la plus classique et est un outil
pour la construction des méthodes d�intégration numérique ou des méth-
odes d�approximation des équations di¤érentielles.

Remarque : Pour les équations aux dérivées partielles, la méthode
des éléments �nis, un des outils de base de l�ingénierie moderne, utilise
de façon essentielle l�interpolation multi-dimensionnelle.

2. L�interpolation par les fonctions splines : Elle est plus stable que
l�interpolation polynômiale, est largement utilisée dans tous les pro-
grammes de dessin assisté par ordinateur, conception assistée par ordi-
nateur ou plus généralement de graphisme.

3. Les séries de Fourier et leur analogue discret, la transformation de
Fourier discrète : Elles sont un moyen très utile pour l�approximation
des fonctions périodiques.

Remarque : L�analyse de Fourier est à la base de nombreuses applications,
par exemple en traitement du signal.

Remarque : Une façon naturelle d�approcher les fonctions périodiques est
d�utiliser les polynômes trigonométrique.

Nous allons nous limiter à l�introduction de l�interpolation Polynômiale :
c�est la façon la plus classique et la plus simple d�approcher une fonction. Elle
consiste à déterminer un polynôme Pn(x) de degré n qui puisse remplacer
lors des applications la fonction f(x):
De plus, c�est un outil e¢ cace pour :

� Calculer, pour x donné, une approximation de f(x) en calculant Pn(x)

� Construire :

1. des méthodes d�intégration numérique

2. des méthodes de di¤érentation

3. des méthodes d�approximation des équations di¤érentielles
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4. ...

(nous reviendrons en détails sur ces points dans les chapitres suivants).

Le principe est simple, le procédé est le suivant :

� On choisit (ou on se donne) (n+ 1) points x0; x1; :::; xn .

� On calcule y0 = f(x0); :::; yn = f(xn)
ou on se donne (xi; yi); i = 0; :::; n .

� On cherche un polynôme de degré n tel que Pn(xi) = yi; i = 0; :::; n .

Remarque :
1) Les points (xi; yi)i=0;n sont appelés points d�interpolation.
2) Si la fonction f est connue seulement par ses valeurs en quelques points,

les (n+ 1) points x0; x1; :::; xn sont �xés..
3) Si on veut que Pm(xi) = f(xi) et P 0m(xi) = f 0(xi); i = 0; :::; n , on

obtient l�interpolation dite d�Hermite.

La notion d�interpolation polynomiale est la façon la plus simple d�obtenir
une telle approximation.

Nous allons montrer l�existence d�un tel polynôme Pn(x) = anxn+ :::+a0
en le construisant e¤ectivement.
Il existe plusieurs techniques pour calculer Pn(x). Les plus connues sont

celles de Lagrange et de Newton-Côtes. Elles produisent en �n de compte le
même résultat. Chaque méthode a ses avantages et ses inconvénients.

Nous allons en fait le faire des deux façons :

1. Une méthode directe basée sur la résolution d�un systéme linéaire

2. Une méthode itérative due à Lagrange.

Nous terminerons ce chapitre par :

1. Une brève discution sur l�erreur d�interpolation polynomiale

2. Une brève description du principe de la méthode itérée de Newton-
Côtes
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4.2 Une méthode directe basée sur la résolu-
tion d�un systéme linéaire:

� On se donne (n+ 1) points x0; x1; :::; xn .

� On calcule y0 = f(x0); :::; yn = f(xn) .

� On cherche un polynôme de degré n tel que Pn(xi) = yi; i = 0; :::; n .

Écrivons explicitement Pn(xi) = yi.

anx
n
i + an�1x

n�1
i + :::+ a1xi + a0 = yi; i = 0; :::; n

On peut réécrire ces (n+ 1) équations sous forme matricielle :0BBB@
xn0 xn�10 � � � x0 1
xn1 xn�11 � � � x1 1
...

...
. . .

...
...

xnn xn�1n � � � xn 1

1CCCA
0BBB@

an
an�1
...
a0

1CCCA =

0BBB@
y0
y1
...
yn

1CCCA
La matrice de ce système est une matrice de type Vandermonde.
On montre que son déterminant est

det =
Y
i<j

(xi � xj)

On a det 6= 0 si tous les xi sont distincts. On peut donc trouver un unique
vecteur de coe¢ cients (an; :::; a0) résolvant le problème.

Il est connu (à admettre) que les matrices du type Vandermonde devien-
nent très mal conditionnées lorsque n augmente (elle sont trés sensible aux
erreurs d�arrondies).
Dans la pratique, cette méthode n�est à utiliser que si n � 3 . Il serait à

la fois inutile et dangereux de vouloir l�utiliser pour n grand.
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4.3 Une méthode itérative : Méthode de La-
grange

4.3.1 Interpolation Linéaire :

On considère deux points (x0; y0); (x1; y1) avec :�
x0 6= x1

y0 = f(x0) et y1 = f(x1):

Pour déterminer le polynôme P1(x) de dégré 1 (d�équation : y = ax + b)
qui passe par deux points distincts (x0; y0); (x1; y1) (x0 6= x1). On peut:
1) Résoudre le système d�équations:�

ax0 + b = y0
ax1 + b = y1

d�où (
a = (y1�y0)

(x1�x0)
b = y0 � ax0 = x1y0�x0y1

x1�x0

On a :

P1(x) =
(y1 � y0)
(x1 � x0)

x+ (
x1y0 � x0y1
x1 � x0

)

et

P1(x0) = y0 et P1(x1) = y1

2) Poser

L0(x) =
x� x1
x0 � x1

L1(x) =
x� x0
x1 � x0

On a:

Lk(xi) =

�
0 si i 6= k
1 si i = k
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Ainsi,

P1(x) = y0L0(x) + y1L1(x)

= y0
(x� x1)
(x0 � x1)

+ y1(
x� x0
x1 � x0

)

=
(y1 � y0)
(x1 � x0)

x+ (
x1y0 � x0y1
x1 � x0

)

On a :

P1(x0) = y0 et P1(x1) = y1

car

Lk(xi) =

�
0 si i 6= k
1 si i = k

Ces deux procédés déterminent évidemment le même polynôme de dégré
1 (la même droite).
Si maintenant, on veut déterminer le polynome de degré 2 qui passe par

trois (3) points distincts alors:
i) la première expression de P1(x) est inadéquate (il faut refaire les

calculs)
ii) la dexième expression se prête assez facilement à une généralisa-

tion par récurrence.
Exemple :
Déterminer le polynôme d�interpolation P1(x) de degré 1 tel que
P1(xi) = f(xi), i = 0; 1
avec yi = f(xi) i = 0; 1 , (x0; y0) = (0; 1); (x1; y1) = (2; 5)
On a déterminé le polynôme d�interpolation qui passe par les 2 points :

(0; 1) et (2; 5)
D�aprés la méthode de Lagrange,

P1(x) = y0L0(x) + y1L1(x)

= y0
(x� x1)
(x0 � x1)

+ y1(
x� x0
x1 � x0

)

= 1
(x� 2)
(0� 2) + 5

(x� 0)
(2� 0)

= 2x+ 1
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4.3.2 Interpolation parabolique

On considére trois points (x0; y0); (x1; y1) et (x2; y2) avec :�
x0 6= x1 ,et x0 6= x2 et x1 6= x2

y0 = f(x0), y1 = f(x1) et y2 = f(x2):

Pour déterminer le polynôme P2(x) de dégré 2, d�équation y = ax2+bx+c
qui passe par trois points distincts (x0; y0); (x1; y1) et (x2; y2), il su¢ t de
poser:

L0(x) =
(x� x1)(x� x2)
(x0 � x1)(x0 � x2)

L1(x) =
(x� x0)(x� x2)
(x1 � x0)(x1 � x2)

L2(x) =
(x� x0)(x� x1)
(x2 � x0)(x2 � x1)

On a :

Lk(xi) =

�
0 si i 6= k
1 si i = k

Ainsi

P2(x) = y0L0(x) + y1L1(x) + y2L2(x)

= y0
(x� x1)(x� x2)
(x0 � x1)(x0 � x2)

+ y1
(x� x0)(x� x2)
(x1 � x0)(x1 � x2)

+ y2
(x� x0)(x� x1)
(x2 � x0)(x2 � x1)

est le polynôme d�interpolation polynômiale associé.

Exemple :
Déterminer le polynôme d�interpolation P2(x) de degré 2 tel que
P2(xi) = f(xi), i = 0; 1 et 2
avec yi = f(xi) i = 0; 1 et 2 , (x0; y0) = (0; 1); (x1; y1) = (1; 2) et (x2; y2) =

(2; 5)
On a déterminé le polynôme d�interpolation qui passe par les 3 points :

(0; 1); (1; 2) et (2; 5)
D�aprés la méthode de Lagrange,
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P2(x) = y0L0(x) + y1L1(x) + y2L2(x)

= y0
(x� x1)(x� x2)
(x0 � x1)(x0 � x2)

+ y1
(x� x0)(x� x2)
(x1 � x0)(x1 � x2)

+ y2
(x� x0)(x� x1)
(x2 � x0)(x2 � x1)

= 1
(x� 1)(x� 2)
(�1)(�2) + 2

(x)(x� 2)
(1)(�1) + 5

(x)(x� 1)
(2)(1)

= x2 + 1

Remarque :
1) Pour calculer P2(x) ,on n�a pas utilisé le polynome P1(x) calculé dans

l�exemple précédent et pourtant on avait deux points communs.
2) Li(x); i = 0; 1; 2 sont des polynômes de degré 2 :
L0(x) =

(x�1)(x�2)
(�1)(�2) =

1
2
(x� 1) (x� 2) = 1

2
x2 � 3

2
x+ 1

L1(x) =
(x)(x�2)
(1)(�1) = �x (x� 2) = �x

2 + 2x

L2(x) =
(x)(x�1)
(2)(1)

= 1
2
x (x� 1) = 1

2
x2 � 1

2
x

On considére (Li(x))i=0;2 comme une base de l�interpolation polynômiale
quadratique
Dans l�intervallle [0; 2], il existe plusieurs fonctions f(x) qui passent par

les 3 points (x0; y0) = (0; 1); (x1; y1) = (1; 2) et (x2; y2) = (2; 5) mais elle ne
seront pas approchées par P2(x) = x2 + 1 de la même façon.

4.3.3 Interpolation de Lagrange

� On choisit n+ 1 points x0; x1; :::; xn .

� On calcule y0 = f(x0); :::; yn = f(xn) .

� On cherche un polynôme de degré n tel que Pn(xi) = yi; i = 0; :::; n .

On introduit les coe¢ cients d�interpolation de Lagrange.

Lk(x) =
(x� x0):::(x� xk�1)(x� xk+1):::(x� xn)
(xk � x0):::(xk � xk�1)(xk � xk+1:::(xk � xn)

Lk(x) =

j=nY
j=0 j 6=k

(x� xj)
(xk � xj)
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Lk(x) est un polynôme de degré n,

Lk(xi) =

�
0 si i 6= k
1 si i = k

Donc

P (x) = y0L0(x) + y1L1(x) + :::+ ynLn(x) =
nX
k=0

ykLk(x)

est un polynôme de degré n qui véri�e bien P (xi) = yi
Propriété : Le Polynôme d�interpolation polynômiale est unique.
En e¤et si P (x) et Q(x) sont deux polynômes d�interpolation alors :
P (x)�Q(x) est un polynôme de degré n pour lequel

P (xi)�Q(xi) = 0; i = 0; :::; n:

Ce polynôme de degré � n ayant n+ 1 racines, il est identiquement nul.

Exemple :
On suppose que f(x) = 3

p
x et que (x0; y0) = (0; 0); (x1; y1) = (1; 1) et

(x2; y2) = (8; 2)
1) Déterminer le polynôme P2(x) d�interpolation polynômiale qui passent

par les points (xi; yi)i=0;2
On a à déterminer le polynôme d�interpolation qui passe par les 3 points

: (0; 0); (1; 1) et (8; 2)
D�aprés la méthode de Lagrange,

P2(x) = y0L0(x) + y1L1(x) + y2L2(x)

= y0
(x� x1)(x� x2)
(x0 � x1)(x0 � x2)

+ y1
(x� x0)(x� x2)
(x1 � x0)(x1 � x2)

+ y2
(x� x0)(x� x1)
(x2 � x0)(x2 � x1)

= 0
(x� 1)(x� 2)
(0� 1)(0� 2) + 1

(x� 0)(x� 8)
(1� 0)(1� 8) + 2

(x� 0)(x� 1)
(8� 0)(8� 1)

P2(x) = �
3

28
x2 +

31

28
x

On a bien P2(0) = 0; P2(1) = 1 et P2(8) = � 3
28
(8)2 + 31

28
8 = 2

2) Calculer P2(x) et f(x) = 3
p
x pour x = 0:5; 0:95; 1; 1:5 et 3: Conclusion.

On a :
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x f(x) P2(x) = � 3
28
x2 + 31

28
x

0:5 0:793 7 0:526 79
0:95 0:983 05 0:955 09
1 1 1
1:5 1: 144 7 1: 419 6
3 1: 442 2 33

14
= 2: 357 1

L�interpolation polynomiale de degré 2 ne fournit de résultat acceptable
qu�au voisinage des points d�interpolation ici 1.
3) Tracer le graphe de f(x) et P2(x):Conclusion.
On voit que dans l�intervalle [2; 6] ; P2(x) fournit une mauvaise approxi-

mation de f(x):
Pour x donne, P2(x) fournira une bonne approximation de f(x) si x est

voisin de 0; 1 et 8:

Remarque :
1) En pratique, on utilise l�interpolation polynômiale avec des polynômes

de dégré n assez grand ou l�interpolation polynômiale par morceaux. Ainsi
dans l�exemple précedent, il faut augmenter le nombre de points d�interpolations.
2) Si les valeurs yk sont des valeurs expérimentales. L�interpolation poly-

nomiale est une technique peu appropriée pour de telles situations. Les
polynômes de degré élevé sont sensibles à la perturbation des données.
3) La méthode de Lagrange s�adapte mal au changement du nombre de

points (xi; yi)i. On ne peut utiliser les coe¢ cients de Lagrange si on passe
de n à (n+ 1) points:
4) Phénomène de RUNGE (fonction de Runge) : L�interpolation

polynômiale ne fournit pas une bonne approximation de la fonction f(x) =
1

1+25x2
: Si on augmente le nombre de points d�interpolation le resultat devient

plus mauvais. (A admettre).

4.4 Interpolation Itérée de Newton-Côtes

� On choisit n+ 1 points x0; x1; :::; xn .

� On calcule y0 = f(x0); :::; yn = f(xn) .

� On cherche un polynôme de degré n tel que Pn(xi) = yi; i = 0; :::; n .
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L�Interpolation Itérée de Newton-Côtes est un procédé itératif qui permet
de calculer le polynôme d�interpolation Pn(x) de dégré n basé sur (n + 1)
points (xi; yi)i=0;n à partir du polynôme d�interpolation P(n�1)(x) de dégré
(n� 1) basé sur n points (xi; yi)i=0;(n�1) , en posant :

Pn(x) = P(n�1)(x) + C(x); n � 1
avec

C(x) = an(x� x0)(x� x1):::(x� x(n�1))

an =

nX
k=0

f(xk)

(xk � x0):::(xk � x(k�1))(xk � x(k+1)):::(xk � xn)

Les coé¢ cients an sont appelés di¤érences divisées d�ordre n de la fonction
f , on note :

an = f [x0; x1; :::; xn]

� On appelle �di¤érence divisée d�ordre 0 de f en un point x�la valeur
dé�nie par

f [x] = f(x)

� Di¤érence �divisée d�ordre 1 de f en deux points x et y� la valeur

dé�nie par

f [x; y] =
f [x]� f [y]
x� y

on a

f [x; y] =
f(x)

x� y +
f(y)

y � x

� Di¤érence �divisée d�ordre 2 de f en deux points x; y et z� la valeur

dé�nie par

f [x; y; z] =
f [x; y]� f [y; z]

x� z

=
f(x)

(x� y) (x� z) +
f(y)

(y � x) (y � z) +
f(z)

(z � x) (z � y)
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et plus généralement:

f [x1; x2; :::; xn] =
nX
i=1

f(xi)
nQ
k=1
k 6=i

(xi � xk)

Remarque:
Les di¤érences divisées sont indépendants de l�ordre des points.

Quel est le lien entre f(x) et lex di¤érences divisées?
Soit x un point autre que les n+ 1 points xi; i = 1; :::; n. On a

f [x; x0] =
f(x)� f [x0]
x� x0

d0o�u

f(x) = f [x0] + (x� x0) f [x; x0]

mais comme

f [x; x0; x1] =
f [x; x0]� f [x0; x1]

x� x1
alors

f(x) = f [x0] + (x� x0) f [x0; x1]� (x� x0)(x� x1)f [x; x0; x1]

en continuant ainsi de proche en proche on obtient:

f(x) = f [x0] + (x� x0) f [x0; x1] + :::+ (x� x0) ::: (x� xn�1) f [x0; :::; xn] +
(x� x0):::(x� xn)f [x; x0; :::; xn]

on véri�e que
f(x) = Pn(x) + L(x)f [x; x0; :::; xn]

où Pn(x) est un polynôme de degré n tel que Pn(xi) = f(xi); pour i = 0; :::; n:
C�est donc le polynôme d�interpolation de Lagrange, on l�appelle le polynôme
de Newton.
Comme signalé dans l�introduction, l�interpolation polynomiale sera util-

isé comme outil d�approximation (pour la construction des méthodes d�intégration
numérique ou des méthodes de dérivation numérique ou des méthodes d�approximation
des équations di¤érentielles), il est donc fondamental de connaitre une ex-
pression de l�erreur d�interpolation.
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4.5 Erreur d�Interpolation polynomiale :

L�erreur commise lors d�une interpolation est une question fondamentale en
analyse numérique:

� elle renseigne à priori sur la nature de cette erreur

� elle fournit des informations sur les termes qui y participent

� elle permet d�avoir un ordre de grandeur de l�erreur commise.

Nous allons énoncer un résultat qui répond à ces interrogations dans le
cas où la fonction f est régulière (de classe Cp; p assez grand).
Théorème :
Soient f une fonction de classe Cn+1 dans I et , (xi)i=0;n (n + 1) points

distincts dans I avec x0 < x1 < ::: < xn
Alors pour tout x 2 [x0; xn] ; il existe � = �(x) tel que

f(x)� Pn(x) =
f (n+1)(�)

(n+ 1)!
(x� x0)(x� x1):::(x� xn) =

f (n+1)(�)

(n+ 1)!
L(x)

où

Pn(x) = y0L0(x) + y1L1(x) + :::+ ynLn(x) =
nX
k=0

ykLk(x)

avec Lk(x) =
nY

j=0 j 6=k

(x� xj)
(xk � xj)

et L(x) = (x� x0)(x� x1):::(x� xn)

Pn(x) est le polynôme d�interpolation de Lagrange.

Remarque :
1) Cette formule montre que :

i) l�erreur est nulle pour x = xi i.e. x est un point d�interpolation.
ii) l�erreur dépend de la fonction considérée ( de f (n+1)) et des points

d�interpolations (xi)i.
2) Cette formule d�erreur permet de trouver des formules d�erreur pour

l�intégration numérique et la di¤erentiabilité numérique.
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Dans le cas de l�erreur d�interpolation à partir de la forme de Newton, on
a:

f(x)� Pn(x) = L(x):f [x; x0; :::; xn]:
Comme on a la même fonction f selon les mêmes points xi pour i = 0; :::; n;
il s�agit de deux formes du même polynôme, et l�erreur d�interpolation est la
même, d�où

f(x)� Pn(x) =
f (n+1)(�)

(n+ 1)!
L(x) = L(x):f [x; x0; :::; xn]:

Exemple :
Déterminer l�erreur d�interpolation polynomiale dans le cas de l�interpolation

parabolique
On approche la fonction f(x) par la parabole passant par les points

(x0; y0) = (0; 1); (x1; y1) = (1; 2) et (x2; y2) = (2; 5):
Le polynôme d�interpolation P2(x) de degré 2 tel que P2(xi) = f(xi),

i = 0; 1 et 2
avec yi = f(xi) i = 0; 1 et 2 , (x0; y0) = (0; 1); (x1; y1) = (1; 2) et (x2; y2) =

(2; 5)
D�aprés la méthode de Lagrange,

P2(x) = y0L0(x) + y1L1(x) + y2L2(x)

= 1
(x� 1)(x� 2)
(�1)(�2) + 2

(x)(x� 2)
(1)(�1) + 5

(x)(x� 1)
(2)(1)

= x2 + 1

D�après le théorème précédent,

f(x)� P2(x) =
f (3)(�)

3!
(x� x0)(x� x1)(x� x2)

=
f (3)(�)

3!
x(x� 1)(x� 2)

Si
��f 0(3)(x)�� �M alors
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8x 2 [0; 2] , jf(x)� P2(x)j

jf(x)� P2(x)j �
M

6
jx(x� 1)(x� 2)j

� M
6
x(x� 1)(x� 2)

� 6:4 � 10�2 �M:

(le maximum de u(x) = x(x � 1)(x � 2) est atteint en x� = 3�
p
3

3
; d�où

1
6
u(x�) = 1

6
3�
p
3

3

�
3�
p
3

3
� 1
��

3�
p
3

3
� 2
�
= 0:0 641 5 � 6:4 � 10�2).

4.6 Exercices:
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Série Interpolation Numérique

Exercice I :
1) Déterminer par une méthode directe basée sur la résolution d�un sys-

téme linéaire, le polynôme d�interpolation P1(x) de degré 1 tel que P1(xi) =
f(xi), i = 0; 1 avec yi = f(xi) i = 0; 1, (x0; y0) = (�2; 4) et (x1; y1) = (2; 8)
2) Déterminer par une méthode directe basée sur la résolution d�un sys-

téme linéaire, le polynôme d�interpolation P2(x) de degré 2 tel que P2(xi) =
f(xi), i = 0; 1 et 2 avec yi = f(xi) i = 0; 1 et 2; (x0; y0) = (�2; 4); (x1; y1) =
(0; 2) et (x2; y2) = (2; 8): Conclusion.
Exercice II :
1) Déterminer par la méthode de Lagrange, le polynôme d�interpolation

P1(x) de degré 1 tel que P1(xi) = f(xi), i = 0; 1 où yi = f(xi) i = 0; 1,
(x0; y0) = (�2; 4) et (x1; y1) = (2; 8)
2) Déterminer par la méthode de Lagrange, le polynôme d�interpolation

P2(x) de degré 2 tel que P2(xi) = f(xi), i = 0; 1 et 2 où yi = f(xi) i = 0; 1
et 2; (x0; y0) = (�2; 4); (x1; y1) = (0; 2) et (x2; y2) = (2; 8)

Exercice III :
1) Déterminer par la méthode de Newton-Côtes, le polynôme d�interpolation

P1(x) de degré 1 tel que P1(xi) = f(xi), i = 0; 1 où yi = f(xi) i = 0; 1,
(x0; y0) = (�2; 4) et (x1; y1) = (2; 8):
2) Déterminer par la méthode de de Newton, le polynôme d�interpolation

P2(x) de degré 2 tel que P2(xi) = f(xi), i = 0; 1 et 2 où yi = f(xi) i = 0; 1
et 2; (x0; y0) = (�2; 4); (x1; y1) = (0; 2) et (x2; y2) = (2; 8). Conclusion.

Exercice IV :
On suppose que (x0; y0) = (0; 0); (x1; y1) = (1; 1) et (x2; y2) = (2; 8)
1) Déterminer par la méthode de Lagrange, le polynôme d�interpolation

P2(x) de degré 2 tel que P2(xi) = yi; i = 0; 1; 2.
2) Tracer le graphe des fonctions P2(x) = 3x2 � 2x et f(x) = x3 dans

l�intervalle [0; 2] :
3) Calculer P2(x) et f(x) = x3 pour x = 0:9; 1:1; 1:99; 2:1 et 5: Conclusion.
4) Déterminer l�erreur commise si on en remplace dans l�intervalle [0; 2] ;

f(x) = x3 par P2(x) = 3x2 � 2x.

Exercice V :
On suppose que (x0; y0) = (0; 1); (x1; y1) = (0:5; e

1
2 ), (x2; y2) = (1; e)
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1) Déterminer par la méthode de Lagrange, le polynôme d�interpolation
P2(x) de degré 2 tel que P2(xi) = yi, i = 0; 1; 2 et 3.
2) i) Déterminer une expression de l�erreur d�interpolation polynomiale.
ii) Déterminer une borne de l�erreur d�interpolation polynomiale. In-

dépendantes de � où � = �(x):
ii) Déterminer une borne de l�erreur d�interpolation polynomiale. In-

dépendantes de � et de x.

1

1S. El Bernoussi, S. El Hajji et A. Sayah
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Chapitre 5

Integration et dérivation
numérique.

5.1 Introduction :

Si f est une fonction dérivable sur [a; b]; la dérivée en c 2 ]a; b[ est dé�nie
par:

f 0(c) = lim
h!0

�f(c)

h
où �f(c) = f(c+ h)� f(c)

Si f est une fonction continue sur [a; b]; l�integrale de f sur [a; b] est dé�nie
par Z b

a

f(x)dx = lim
h!0
R(h)

où R(h) =

nX
k=1

f(a+ kh):h

R(h) est la somme de Riemann avec h = b�a
n
:

On sait déterminer f 0(c) �exactement�pour f dé�nie à partir de fonctions
élémentaires (exp: sinx, ex; lnx; :::):
On sait aussi calculer

R b
a
f(x)dx en utilisant les théorèmes fondamentaux

d�intégration pour une fonction continue sur [a; b]; et on a
R b
a
f(x)dx = F (b)�

F (a) où F (x) est une primitive de f(x):
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Mais il existe des fonctions très simples comme sinx
x
ou
p
cos2 x+ 3 sin2 x

qui n�ont pas de primitive connue, donc, comment peut-on integrer de telles
fonctions entre a et b?
D�autre part f peut-être connue seulement en quelques points et sa for-

mule est inconnue (exp: résultats experimentaux,...), donc comment peut-on
dériver ou intégrer ses fonctions?
Du point de vue numérique, la solution à ce problème est immédiate: nous

avons vu, dans les chapitres précédents, comment approximer une fonction
par une fonction plus simple, facile à dériver ou à intégrer.
De façon précise si P (x) est une approximation de f dans l�intervalle [a; b],

nous nous proposons d�étudier les approximations:

f 0(y) � P 0(y) y 2 [a; b]
etZ b

a

f(x)dx �
Z b

a

P (x)dx:

5.2 Dérivation.

La dérivation numérique nous permet de trouver une estimation de la dérivée
ou de la pente d�une fonction, en utilisant seulement un ensemble discret de
points.

5.2.1 Dérivée première.

Soit f une fonction connue seulement par sa valeur en (n+ 1) points donnés
xi i = 0; 1; :::; n distincts.
Les formules de di¤érence les plus simples basées sur l�utilisation de la

ligne droite pour interpoler les données ulilisent deux points pour estimer la
dérivée.
On suppose connue la valeur de la fonction en xi�1; xi et xi+1; on pose

f(xi�1) = yi�1; f(xi) = yi et f(xi+1) = yi+1:
Si on suppose que l�espace entre deux points successifs est constant, donc

on pose h = xi � xi�1 = xi+1 � xi:
Alors les formules standarts en deux points sont:
Formule de di¤erence progressive :
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f 0(xi) �
f(xi+1)� f(xi)
xi+1 � xi

=
yi+1 � yi
xi+1 � xi

:

Formule de di¤erence régressive :

f 0(xi) �
f(xi)� f(xi�1)
xi � xi�1

=
yi � yi�1
xi � xi�1

:

Formule de di¤erence centrale

f 0(xi) �
f(xi+1)� f(xi�1)
xi+1 � xi�1

=
yi+1 � yi�1
xi+1 � xi�1

:

Les trois formules classiques de di¤érences sont visualisées sur la �gure
suivante, et sont les conséquences de la dé�nition de la dérivée:
Exemple :
Pour illustrer les trois formules, considérons les données suivantes:
(x0; y0) = (1; 2); (x1; y1) = (2; 4); (x2; y2) = (3; 8); (x3; y3) = (4; 16) et

(x4; y4) = (5; 32):
Nous voulons estimer la valeur de f 0(x2):
Progressive: f 0(x) � f(x3)�f(x2)

x3�x2 = 16�8
4�3 = 8:

Regressive : f 0(x) � f(x2)�f(x1)
x2�x1 = 8�4

3�2 = 4:

Centrale : f 0(x) � f(x3)�f(x1)
x3�x1 = 16�4

4�2 = 6:
Les données ont été calculé pour la fonction f(x) = 2x: f 0(x) = 2x ln(2)

et pour x = 3 f 0(3) = 23 ln(2) = 5:544:

Remarque:
Les formules de di¤érences classiques peuvent être trouvées en utilisant

la formule de Taylor.

f(x+ h) = f(x) + hf 0(x) +
h2

2
f 00(�):

x � � � x+ h

� Formule progressive:

h = xi+1 � xi

f 0(xi) =
f(xi+1)� f(xi)

h
� h
2
f 00(�)

xi � � � xi+1
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l�erreur est h
2
f 00(�) donc en O(h): Cette formule peut être trouvée aussi

en utilisant le polynôme d�interpolation de Lagrange pour les points
(xi; f(xi)) et (xi+1; f(xi+1)):

� Formule regressive:

h = xi � xi�1

f 0(xi) =
f(xi)� f(xi�1)

h
+
h

2
f 00(�)

xi�1 � � � xi

La formule de di¤érence centrale de la dérivée en xi peut être trouvée en
utilisant la formule de Taylor d�ordre 3 avec h = xi+1 � xi = xi � xi�1

f(xi+1) = f(xi) + hf
0(xi) +

h2

2
f 00(xi) +

h3

3!
f 000(�1)

f(xi�1) = f(xi)� hf 0(xi) +
h2

2
f 00(xi)�

h3

3!
f 000(�2)

xi � �1 � xi+1; xi�1 � �2 � xi

si on suppose que f 000 est continue sur [xi�1; xi+1] on peut ecrire la formule
suivante:

f 0(xi) =
f(xi+1)� f(xi�1)

2h
+
h2

6
f 000(�)

xi�1 � � � xi+1

l�erreur est h2

6
f 000(�) donc en O(h2): La formule de di¤érence centrale peut

aussi être trouvée à partir du polynôme d�intérpolation de Lagrange en 3
points.

On peut interpoler les données par un polynome au lieu d�utiliser la
droite, nous obtenons alors les formules de di¤érence qui utilisent plus de
deux points. On suppose que le pas h est constant.
Formule de di¤érence progressive utilisant trois points:

f 0(xi) �
�f(xi+2) + 4f(xi+1)� 3f(xi)

xi+2 � xi
Formule de di¤érence régressive utilisant trois points:
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f 0(xi) �
3f(xi)� 4f(xi�1) + f(xi�2)

xi � xi�2
Exemple : Formules de di¤érence en trois points:
En utilisant les données de l�exemple précédent, on trouve:
f 0(xi) � �32+4(16)�3(8)

2
= 4 progressive.

f 0(xi) � 3(8)�4(4)+2
2

= 5 regressive.

5.2.2 Formule générale en trois points.

La formule d�approximation en 3 points de la dérivée première, basée sur le
polynôme d�interpolation de Lagrange, n�utilise pas des points équidistants.
Etant donné trois points (x1; y1); (x2; y2) et (x3; y3) avec x1 < x2 < x3; la

formule suivante permet d�approcher la dérivée en un point x 2 [x1; x3]: Les
dérivées aux points xi sont les suivantes:

f 0(x1) =
2x1 � x2 � x3

(x1 � x2)(x1 � x3)
y1 +

x1 � x3
(x2 � x1)(x2 � x3)

y2 +
x1 � x2

(x3 � x1)(x3 � x2)
y3;

f 0(x2) =
x2 � x3

(x1 � x2)(x1 � x3)
y1 +

2x2 � x1 � x3
(x2 � x1)(x2 � x3)

y2 +
x2 � x1

(x3 � x1)(x3 � x2)
y3;

f 0(x3) =
x3 � x2

(x1 � x2)(x1 � x3)
y1 +

x3 � x1
(x2 � x1)(x2 � x3)

y2 +
2x3 � x2 � x1

(x3 � x1)(x3 � x2)
y3;

Le polynôme de Lagrange est donnée par

P (x) = L1(x)y1 + L2(x)y2 + L3(x)y3

où

L1(x) =
(x� x2)(x� x3)
(x1 � x2)(x1 � x3)

L2(x) =
(x� x1)(x� x3)
(x2 � x1)(x2 � x3)

L3(x) =
(x� x1)(x� x2)
(x3 � x1)(x3 � x2)

L�approximation de la dérivée première est donnée par f 0(x) � P 0(x), qui
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peut s�ecrire

P 0(x) = L01(x)y1 + L
0
2(x)y2 + L

0
3(x)y3

où

L01(x) =
2x� x2 � x3

(x1 � x2)(x1 � x3)

L02(x) =
2x� x1 � x3

(x2 � x1)(x2 � x3)

L03(x) =
2x� x1 � x2

(x3 � x1)(x3 � x2)

donc

f 0(x) =
2x� x2 � x3

(x1 � x2)(x1 � x3)
y1+

2x� x1 � x3
(x2 � x1)(x2 � x3)

y2+
2x� x1 � x2

(x3 � x1)(x3 � x2)
y3:

5.2.3 Dérivées d�ordre supérieur.

Les formules de dérivées d�ordre supérieur, peuvent être trouvées à partir des
dérivées du polynôme de Lagrange ou en utilisant les formules de Taylor.
Par exemple, étant donné 3 points xi�1; xi; xi+1 équidistants, la formule

de la dérivée seconde est donnée par:

f 00(xi) =
1

h2
[f(xi+1)� 2f(xi) + f(xi�1)]

l�erreur est en O(h2):
Dérivée seconde à partir du polynôme de Taylor.
f(x+ h) = f(x) + hf 0(x) + h2

2
f 00(x) + h3

3!
f 000(x) + h4

4!
f (4)(�1)

f(x� h) = f(x)� hf 0(x) + h2

2
f 00(x)� h3

3!
f 000(x) + h4

4!
f (4)(�2)

x � �1 � x+ h et x� h � �2 � x:

f 00(x) ' f(x+ h) + f(x� h)� 2f(x)
h2

l�erreur est en O(h2):
Pour obtenir les formules de la troisième et la quatrième dérivée, on prend

une combinaison linéaire des développement de Taylor, pour f(x+2h); f(x+
h); f(x� h) et f(x� 2h):
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La table suivante donne di¤érentes formules centrales toutes en O(h2):

f 0(xi) '
1

2h
[f(xi+1)� f(xi�1)]

f 00(xi) '
1

h2
[f(xi+1)� 2f(xi) + f(xi�1)]

f 000(xi) '
1

2h3
[f(xi+2)� 2f(xi+1) + 2f(xi�1)� f(xi�2)]

f (4)(xi) '
1

h4
[f(xi+2)� 4f(xi+1) + 6f(xi)� 4f(xi�1) + f(xi�2)] :

En utilisant les polynômes d�interpolation de Lagrange les dérivées d�ordre
p sont calculées par:

f (p)(�) s
nX
i=0

Ai(�)f(xi)

où

Ai(�) = L
(p)
i (�) p � n

nX
i=0

Ai(�)x
k
i = 0 0 � k � p� 1

nX
i=0

Ai(�)x
k
i = k(k � 1):::(k � p+ 1)�k�p p � k � n:

Remarque :

La fomule est exacte pour les polynômes de degrés � n:

Le système linéaire donnant les Ai(�) a un déterminant de type Vander-
monde di¤érent de zéro si les xi sont distincts.

Les Ai(�) sont indépendants de f et peuvent être calculés une fois pour
toutes.
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5.2.4 Etude de l�erreur commise.

D�aprés le chapitre précédent, si f est connue en (n+1) points xi; i = 0; :::; n
alors f(x) = Pn(x) + e(x); où e(x) est l�erreur d�interpolation. En dérivant
on obtient

f 0(x) = P 0n(x) + e
0(x)

=

i=nX
i=0

Ai(x):f(xi) + e
0(x)

et e0(x) =
d

dx

�
1

(n+ 1)!
L(x):f (n+1) (�x)

�
=
d

dx
(L(x):f [x0; :::; xn; x])

=
1

(n+ 1)!
L0(x):f (n+1) (�x) +

1

(n+ 1)!
L(x):

d

dx

�
f (n+1) (�x)

�
On remarque tout de suite que l�erreur de dérivation est nulle si f est un
polynôme de degré inférieur ou égale à n. Si on prend pour x un point
xi; le second terme de la dérnière somme s�annule, sinon il faut connaître
d
dx

�
f (n+1) (�x)

�
; ce qui est di¢ cile car la fonction x! �x étant inconnue. On

peut donner une forme si f est n + 2 fois dérivable en utilisant la notion de
di¤érence. En e¤et

d

dx

�
f (n+1) (�x)

�
=
d

dx
(f [x0; :::; xn; x])

= lim
h!0

f [x0; :::; xn; x+ h]� f [x0; :::; xn; x]
h

= lim
h!0
f [x0; :::; xn; x; x+ h]

= lim
h!0

1

(n+ 2)!
f (n+2)(�x;h):

On constate qu�on devra se contenter d�une estimation

j e(x) j� 1

(n+ 1)!
j L0(x) jMn+1 +

1

(n+ 2)!
j L(x) jMn+2:

5.3 Méthodes numériques d�intégration.

Le but de cette leçon est de calculer numériquement des intégrales dé�nies
ou indé�nies. Soit f : [a; b] ! R, une fonction continue donnée. On désire
approcher numériquement la quantité

R b
a
f(x)dx:
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5.3.1 Formules fermées.

On appelle ainsi les formules quand la fonction f est continue sur lintervalle
[a; b]. Les points d�interpolation xi veri�ent a = x0 < x1 < ::: < xn�1 <
xn = b:
Formule des rectangles.
La formule des rectangles est une formule dite à un point x0 = a. Le

polynôme d�interpolation associé est P0(x) = f(a) et L(x) = x� a pour tout
x appartenant à [a; b]: D�où

I(f) ' I(P0) = f(a)(b� a):

L�interprétation graphique consiste donc à remplacer
R b
a
f(x)dx par l�aire

du rectangle de base [a; b] et de hauteur f(a).
Formule des trapèzes.
La formule des trapèzes est une formule à 2 points : x0 = a et x1 = b:

Le polynôme de Lagrange associé à ces deux points est P1(x) = f(a)
�
x�b
a�b
�
+

f(b)
�
x�a
b�a
�
.D�où

I(f) ' I(P1) =
Z b

a

P1(x)dx =
f(a) + f(b)

2
(b� a):

Formule de Simpson.
La formule de Simpson est une formule à trois points x0 = a , x1 = a+b

2

et x2 = b: : Le polynôme associé à ces trois points est P2(x) = f(a)L0(x) +
f(a+b

2
)L1(x) + f(b)L3(x): Notons que

L0(x) =
(x� x1)(x� b)
(a� x1)(a� b)

)
Z b

a

L0(x)dx =
(b� a)
6

;

L1(x) =
(x� a)(x� b)
(x1 � a)(x1 � b)

)
Z b

a

L1(x)dx =
4(b� a)
6

;

L2(x) =
(x� x1)(x� a)
(b� x1)(b� a)

)
Z b

a

L2(x)dx =
(b� a)
6

;

On tire donc la formule suivante:

I(f) ' I(P2) =
(b� a)
6

�
f(a) + 4f(

a+ b

2
) + f(b)

�
:
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Formules ouvertes.
On appelle ainsi les formules quand la fonction f est continue sur l�intervalle

]a; b[: Les points d�interpolation xi veri�ent a < x0 < x1 < ::: < xn�1 <
xn < b:
Formule de Ste¤ensen.
Il en existe une in�nité.

� Une à 1 points avec x0 = a+b
2
qui donne la formule du milieu suivant:

I(f) ' (b� a)f(a+ b
2
)

Cette formule est exacte pour tout polynôme de degré 1.

� Une à 2 points avec x0 = 2a+b
3

et x1 = a+2b
3

qui donne la formule
suivante :

I(f) ' b� a
2

�
f

�
2a+ b

3

�
+ f

�
2b+ a

3

��
:

Cette formule est exacte pour tout polynôme de degré 1.

� Une à 3 points avec x0 = 3a+b
4
et x1 = a+b

2
et x2 = 3b+a

4
qui donne la

formule suivante :

I(f) ' b� a
6

�
4f

�
3a+ b

4

�
+ 2f

�
a+ b

2

�
� 2f

�
a+ 3b

4

��
:

Cette formule est exacte pour tous les polynômes de degré 2.

5.3.2 Etude générale de l�erreur commise.

Pour que les formules d�intégration numérique données précédement soient
intéréssantes, il faut que l�on puisse estimer l�erreur E(f) = I(f) � I(Pn)
avec précision. Or si f est su¢ samment dérivable, on a

E(f) = I(f � Pn) =
Z b

a

�
1

(n+ 1)!
f (n+1)(�x)L(x)

�
dx:

Théorème : Supposons que E(f) = 0 pour les polynômes de degré au plus n
et que la fonction f 2 Cn+1 ([a; b]). On dit alors que la méthode est d�ordre
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n + 1: Si on pose Mn+1 = max
x2[a;b]

j f (n+1)(x) j; Une première estimation de
l�erreur est

j E(f) j� 1

(n+ 1)!
Mn+1

Z b

a

j L(x) j dx:

Théorème : En plus des hypothèses du Th précédent, on suppose que le
polynôme L(x) ne change pas de signe sur [a; b]; alors en utilisant le Th de
la moyènne pour E(f); on obtient

E(f) =
1

(n+ 1)!
f (n+1)(�)

Z b

a

L(x)dx:

� 2 [a; b]

En utilisant ce dernier Théorème on peut estimer les erreurs des méthodes
vues ci-dessus.

� Pour la formule du rectangle on a:

E(f) = f 0(�)

Z b

a

(x� a)dx = f 0(�)(b� a)
2

2
� 2 [a; b]

cette méthode est d�ordre 1:

� Pour la formule du trapèze on a:

E(f) =
1

2
f 00(�)

Z b

a

(x� a)(x� b)dx = �f
00(�)

12
(b� a)3

la méthode de Trapèze est dordre 2:

� Pour la formule de Simpson on a:

E(f) = �f
(4)(�)

90

�
b� a
2

�5
;

la méthode de Simpson est dordre 4:

Exemple :
I =

R 1
0
e�x

2
dx; a = 0; a+b

2
= 1

2
; b = 1; f(0) = 1; f(1

2
) = :7788; f(1) =

:36788:

65



1. Rectangle: I ' f(0) = 1:

2. Trapèze: I '
h
f(0)+f(1)

2

i
= :68393:

3. Simpson: I ' 1
6

�
f(0) + 4f(1

2
) + f(1)

�
= :74718:

4. La valeur de I à 5 décimales est :74718:

5.3.3 Formules composées.

Plutôt que d�augmenter le degré du polynôme d�interpolation, on peut obtenir
une formule d�integration en découpant l�intervalle d�intégration en sous-
intervalles et en appliquant des formules simples sur chacun des sous-intervalles.
Formule de trapèze.
Si n est entier, posons

h =
b� a
n
; xk = a+ kh; k = 0; :::; n:

alors

I(f) =

Z b

a

f(x)dx =
n�1X
k=0

�Z xk+1

xk

f(x)dx

�

=
n�1X
k=0

��
f(xk) + f(xk+1)

2

�
h� h

3

12
f 00(�k)

�
;

où �k 2 [xk; xk+1] ; k = 0; :::; n� 1

Développant et regroupant les termes qui apparaissent 2 fois, on obtient

I(f) =
h

2

"
f(a) + 2

n�1X
k=1

f(a+ kh) + f(b)

#
� h

3

12

n�1X
k=0

f 00(�k)

En appliquant le Th des valeurs intermédiaires, on peut réécrire l�erreur
sous la forme

E(f) = �nh
3

12
f 00(�) = �(b� a)

12
f 00(�)h2:
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Ceci nous donne la formule du trapèze composée pour laquelle l�approximation
est donnée par:

Tn(f) =
h

2

"
f(a) + 2

n�1X
k=1

f(a+ kh) + f(b)

#
et l�erreur par

ET (f) = �(b� a)
12

f 00(�)h2:

Formule de Simpson composée.
Supposons maintenant que n soit pair, groupant les intervalles 2 à 2 et

appliquant la formule de Simpson sur [xi; xi+2], on obtient

I(f) =
h

3

"
f(a) + 4

X
k impair

f(a+ kh) + 2
X
k pair

f(a+ kh) + f(b)

#
�n
2

f (4)(�)

90
h5:

Ceci nous conduit à la formule de Simpson composée pour laquelle l�approximation
est donnée par

Sn(f) =
h

3

"
f(a) + 4

X
k impair

f(a+ kh) + 2
X
k pair

f(a+ kh) + f(b)

#

et l�erreur par

ES(f) = �f (4)(�)(b� a)
180

h4:

Exemple : Déterminer
R 1
0
e�x

2
dx:

Si n désigne le nombre des intervalles utilisés.

n Tn(f) ET (f)
2 :73137 :015
4 :74298 3:84� 10�3
8 :74658 9:58� 10�4
16 :74676 1:39� 10�4
32 :74680 5:98� 10�5

Si nous désirons obtenir 6 décimales exactes, il nous faut déterminer h tel
que

max
0���1

j f 00(�) j h
2

12
� 5� 10�7; (5.1)
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Pour une partition régulière xk = kh; h = 1
n
; donc nous cherchons n tel

que

n2 � 1

12
max
0���1

j f 00(�) j 1

5� 10�7 :

or f 00(x) = e�x
2
(4x2 � 2) et f 000(x) = e�x24x(3 � 2x2): Puisque f 000(x) ne

change pas de signe sur [0; 1] ;

max
0���1

j f 00(�) j= max fj f 00(0) j; j f 00(1) jg = 2:

On voit que (5:1) sera satisfaite si

n2 � 10
6

3
; n > 578:

Remarque Dans le choix de la précision demandée, il faut tenir compte des
erreurs d�arrondi et de l�accumutation des erreurs

5.4 Exercices
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Série integration et dérivation.

Pour les problèmes des exercices (5:4) et (5:4), donner des approximations
des dérivées dans les cas suivants:

En utilisant la formule de di¤érence progressive.

En utilisant la formule de di¤érence regressive.

En utilisant la formule de di¤érence centrale.

Exercice : 1
Approcher y0(1:0) si

x = [0:8 0:9 1:0 1:1 1:2]

y = [0:992 0:999 1:000 1:001 1:008]

Exercise: 2

1. Approcher y0(4) si

x = [0 1 4 9 16]

y = [0 1 2 3 4]

2. Donner une expression de l�erreur de dérivation en x = 4:

3. Donner une majoration de l�erreur independament de x et de �x:

Exercise : 3
Calculer y00(2) si

x = [0 1 2 3 4]

y = [0 1 4 9 16]

Exercise : 4
Calculer

R �
2

0
sin2 xdx en utilisant la formule du trapèze et la formule de

Simpson. Comparer avec le résultat exact.

Exercise : 5
Pour le problème P1 approcher l�integrale:
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1. En utilisant la formule de trapèze composée avec 2 intervalles.

2. En utilisant la formule de trapèze composée avec 10 intervalles.

3. En utilisant la formule de Simpson avec 2 intervalles.

4. En utilisant la formule de Simpson composée avec 10 intervalles.

P1 :

Z 1

0

x sin(�x)dx

Exercise : 6
En utilisant les formules d�estimation d�erreur, trouver les bornes d�erreur

pour le problème P1 dans les cas 1-4, puis calculer la valeur exacte de
l�integrale et comparer les erreurs exactes "E(f)" et les bornes d�erreurs
trouvées.

1

1S. El Bernoussi, S. El Hajji et A. Sayah
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