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Chapitre 1

Représentation des nombres en
machine

1.1 Arithmétique des calculateurs et Sources
d’erreurs

Si sophistiqué qu’il soit , un calculateur ne peut fournir que des réponses
approximatives. Les approximations utilisées dépendent a la fois des con-
traintes physiques (espace mémoire, vitesse de I’horloge...) et du choix des
méthodes retenues par le concepteur du programme . (pour plus de détails
sur le fonctionnement d’un ordinateur et la terminologie de base voir par
exemple la page web htttp://www.commentcamarche.com

Le but de ce chapitre est de prendre connaissance de 'impact de ces
contraintes et de ces choix méthologiques. Dans certains cas il doit étre pris
en compte dans ’analyse des résultats dont une utilisation erronée pourrait
étre coliteuse.

La premiére contrainte est que le systéeme numérique de 'ordinateur est
discret, c’est a dire qu’il ne comporte qu'un nombre fini de nombres; Il en
découle que tous les calculs sont entachés d’erreurs.

1.1.1 Evaluation de ’erreur

Rappelons d’abord quelques notion de base ;
Si X est une quantité a calculer et X* la valeur calculée, on dit que :

1. X — X* est lerreur et | E' |=| X — X* | est l'erreur absolue.
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Exemple :
Si X =2.224 et X* = 2.223 alors ’erreur absolue

| E |=| X — X* |=2.224 — 2.223 = 0.001

— * . 2z .
. B, = ‘X = ‘ est 'erreur relative, X, # 0. X, est une valeur de référence
T

pour X. En général ,on prend X, = X.
Exemple :

Si X =2.224 et X* = 2.223 alors , si on prend X, = X, U'erreur relative

| X —X*| 0001

B | X = /.496 x 107*
DX, | X 2224

Cependant, si X est la valeur d’une fonction F'(t) avec a <t < b, on
choisira parfois une valeur de référence globale pour toutes les valeurs
de t.

Exemple :

SI X = sin(t) avec 0 <t < 7, on pourra prendre

= sup sin(t).

s
0<t< T

En général , on ne connait pas le signe de l'erreur de sorte que l'on

considere les erreurs absolues et les erreurs relatives absolues.
Les opérations élémentaires propagent des erreurs.
Dans la pratique, on considére que :

1) L’erreur absolue sur une somme est la somme des erreurs absolues.
2) L’erreur relative sur un produit ou un quotient est la somme des

ereurs relatives.

On peut estimer 'effet d'une erreur E sur 'argument x d’une fonction

f(z) au moyen de la dérivée de f(z). En effet f(x + E) ~ f(x) + Ef'(x)

Exemple :

Calculer la valeur de (11111111)?2
La valeur fournie par une petite calculatrice & cing chiffres est 1,2345x101
Mais la réponse exacte est 123456787654321.
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La machine a donc tronqué le résultat a 5 chiffres et Uerreur absolue est
de 6% 19°.

L’erreur relative est de 0.0005% .

Cet exemple montre qu’il faut établir clairement ’objectif visé.

Cet objectif est double ;

1) Nous voulons un bon ordre de grandeur (ici 10'*) et avoir le maximum
de décimales exactes,

2) Ce maximum ne peut excéder la longueur des mots permis par la
machine et dépend donc de la machine

1.1.2 La mémoire de 'ordinateur : le stockage des
nombres
La mémoire d’'un ordinateur est formée d’un certain nombre d’unités adess-

ables appelées OCTETS . Un ordinateur moderne contient des millions voir
des milliards d’octets. Les nombres sont stockés dans un ordinateur comme

ENTIERS ou REELS.

Les nombres entiers :

Les nombres entiers sont ceux que l’on utilise d’habitude sauf que le plus
grand nombre représentable dépend du nombre d’octets utilisés:
-avec deux (2) octets, on peut représenter les entiers compris entre

—32768 et 32767
-avec quatre (4) octets on peut représenterr les entiers compris entre

—2147483648 et 2147483647

Les nombres réels

Dans la mémoire d’un ordinateur, les nombres réels sont représentés en no-
tation flottante.

Cette notation a été introduite pour garder une erreur relative & peu prés
constante; quelque soit ’ordre de gandeur du nombre qu’on manipule.

En notation flottante, un nombre a la forme:



==Y x b°

b est la base du systéme numérique utilisé

Y est la mantisse : une suite de s entier y1y,...ys avec y; # 0 si  # 0 et
0<y <(b-1)

e est 'exposant(un nombre entier relatif)

La norme choisie est celle ot la mantisse est comprise entre 0 et 1 et ou
le premier chiffre apres la virgule est différent de zéro.

Calcul de l’erreur

Nous terminons ce chapitre en définissant les notions de troncature et
d’arrondie.

Exemple :
En base 10, x = 1/15 = 0.066666666......
Dans le cas d’une représentation tronquée mous aurons, pour s = b,

fl(z) = 0.66666 * 10~1.

Remarquez comment nous avons modifié I’exposant afin de respecter la
régle qui veut que le premier chiffre de la mantisse ne soit pas nul .

Dans ce cas, I'erreur absolue X — fI(X) est de 6 x 107", L’erreur relative
est de l’ordre de 107°

Dans une représentation tronquée a s chiffres, ’erreur relative maximale
est de l'ordre de 10~°

Dans une représentation arrondie, lorsque la premiére décimale négligée
est supérieure a 5, on ajoute 1 a la derniére décimale conservée.

Exemple :

r=1/15 = 0.066666666.

Nous écrirons fl(z) = 0.66667 x 1071

L’erreur absolue serait alors 3.333 x 10~ et lerreur relative serait 5 x
106

En général, l'erreur relative dans une représentation arrondie & s chiffres
est de 5 x 10~ soit la moitié de celle d’une représentation tronquée.



1.2 Les régles de base du modéle

Pour effectuer une opération sur deux nombres réels, on effectue ’opération
sur leurs représentations flottantes et on prend ensuite la représentation flot-
tante du résultat.

I’addition flottante

@y = fI(fl(x) + fl(y))

la soustraction flottante

roy = fl((x) - fl(y))

la multiplication flottante

vy = fI(fl(z) x fl(y))

la division flottante

z+y = fl(fl(x)/fl(y))

Chaque opération intermédiaire dans un calcul introduit une nouvelle
erreur d’arrrondi ou de troncature.

Dans la pratique, il faudra se souvenir du fait que deux expressions
algébriquement équivalentes peuvent fournir des résultats différents et que
I’ordre des opérations peut changer les résultats.

Pour I'addition et la soustraction on ne peut effectuer ces 2 opérations
que si les exposants sont les mémes. On transforme le plus petit exposant et
donc on ne respecte plus la régle voulant que le premier chiffre de la mantisse
ne soit pas nul.

Quelques remarques sur ce modeéle:

On constate une déviation importante par rapport aux lois habituelles de
I’arithmétique.

z + (y + z) peut étre différent de (z +y) + 2.

Exemple :
Pour 4 chiffres significatifs (s =4) on a :

(1 4 0.0005)+ 0.0005 = 1.000
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car

0.1 x 10'4+0.5. x 103=0.1. x 10'+0.00005. x 10*'=
0.1 x 10"4+0.0000. x 10'= 0.1 x 10"

et
1+ (0.0005+ 0.0005) = 1.001

Ainsi, Uaddition flottante n’est pas associative .(TD:Sommation d’une
série a termes positifs)

On constate aussi que si y est trés petit par rapport a x, l'addition de x
et y donnera seulement x.

Exemple :

L’équation 1 +x = x a x = 0 comme unique solution. Mais dans un
systéme a 10 chiffres significatifs, elle aura une infinité de solutions (il suffit
de prendre | z |< 5 x 10711)

La distributivité de la multiplication par rapport a ’addition.

Exemple :
Considérons ’opération

122 x (333 + 695) = (122 x 333) + (122 x 695) = 125416

Si nous effectuons ces deux calculs en arithmétique a 3 chiffres (s = 3)
et arrondi, nous obtenons:

122 x (838 + 695) = fl(122) x fl(1028)
= 122 x 103 x 10'= fi(125660) = 126 x 10°
(122 x 338) + (122 x 695) = fl(40626) + f1(84790)
406 x 10°+848 x 10°= fl(406 + 848) x 10°= fi(1254 x 10%) = 125 x 10°

Donc la distributivité de la multiplication par rapport o addition n’est
pas respectée en arithmétique flottante.



1.3 Propagation des erreurs.

Une étude de la propagation des erreurs d’arrondi permattra d’expliquer ce
phénomeéne.
Soit & calculer e* a 1’aide de son développement en série qui est convergent

pour tout z :

x  z?

Il est evident que dans la pratique il est impossible d’effectuer la somma-
tion d’une infinité de termes. On arrétera donc lorsque le terme général %’:
devient inférieur a 107" (on a ¢ digits). Pour x négatif on sait que le reste de
la serie est inférieur au premier terme négligé donc a 10~ *(puisque la serie
est altérnée).

Les calculs suivant sont fait sur ordinateur pour ¢ = 14.

x e’ S

—10 | 4.54.107° 4.54.107°

—15 | 3.06.1077 3.05.1077

—20 | 2.06.107 | —1.55.1077

—25 | 1.39.107% | 1.87.107°

-30 | 9.36.107* | 6.25.107*
On voit que pour = < 20 les résultats obtenus sont dépourvus de sens.
L’explication de ce phénomeéne est la suivante: pour x = —30 les termes
de la serie vont en croissant jusqu’a g—;? = 8.10% puis ils décroissent et
2 —9.19.10715.

L’erreur absolue sur le terme maximal est de 8.10'.107 = 8.10~*. Ainsi
le résultat obtenu pour S représente uniquement ’accumulation des erreurs
d’arrondi sur les termes de plus grand module de développement en serie.

1.3.1 Conditionnement et stabilité numérique.

Le fait que certains nombres ne soient pas représentés de facon exacte dans
un ordinateur entraine que 'introduction méme de donnée d’un probléme en
machine modifie quelque peu le probléme initial; Il se peut que cette petite
variation des données entraine une variation importante des résultats. C’est
la notion de conditionnement d’un probléme.

On dit qu’un probléme est bien (ou mal) conditionné, si une petite varia-
tion des données entraine une petite (une grande) variation sur les résultats.
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Cette notion de conditionnement est liée au probléme mathématique lui
méme et est indépendante de la méthode utilisée pour le résoudre.

Une autre notion importante en pratique est celle de stabilité numérique.
Un probléme peut étre bien conditionné et la méthode utilisée pour le ré-
soudre peut étre sujette & une propagation importante des erreurs numériques.

Ces notions de conditionnement d’un probléme et de stabilité numérique
d’une méthode de résolution sont fondamentales en analyse numérique. Si un
probléme est mal conditionné alors la solution exacte du probléemetronqué ou
arrondi & t digits pourra étre trés différente de la solution exacte du probléme
initial. Aucune methode ne pourra rien; il faudra essayer de donner une autre

formulation au probléme.
1

1S, El Bernoussi, S. El Hajji et A. Sayah
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Chapitre 2

Résolution de f(x)=0

2.1 Introduction

Soit f une fonction numérique d’une variable réelle.
On cherche les racines simples de 1’équation

1) fl#)=0

La premiére étape consiste a isoler les racines, c’est & dire trouver un in-
tervalle [a, b] dans lequel «v est "'unique racine réelle de (1). On supposera que
f est continue et dérivable autant de fois que nécessaire dans cet intervalle.

Pour trouver cet intervalle on aura besoin de quelques calculs prélim-
inaires en utilisant soit le graphe des fonctions, soit (si la fonction f est
continue dans |a, b]) le théoréme des valeurs intermédiaires en calculant f(a)
et £(b)

Si f(a) x f(b) <0 f admet un nombre impair de racines dans
[a, b]
Si f(a)* f(b) >0 f admet un nombre pair de racines

Exemple :

Soit. la fonction du grahe suivant :

La fonction n’est pas définie pour z = In(2) et on a f'(z) =1+ ﬁ
donc f'(z) > 0 pour tout z.

L’équation a donc 2 racines simples situées de chaque coté de In(2).

On vérifie sans probléme qu’une premiére racine appartient a [—1,0] et

la deuxiéme a [1, 2]
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On supposera donc désormais avoir trouvé un intervalle [a, b] ou f admet
une unique racine simple et on supposera que f est définie, continue, et
autant de fois continument dérivable que nécessaire.

Nous allons & présent définir la notion d’algorithme.

Définition : Nous appellerons algoritnme toute méthode de résolution
d’un probléme donné.

Pour tout probléme, nous avons des données et des résultats. Les données
sont appelées parameétres d’entrée (input) et les résultats parameétres de sortie
(output). Ils constituent l'interface de 1’algorithme (ou encore la partie visible
de l'algorithme).

Dans ce chapitre, nous désignerons par {p,} une suite de nombres réels .
Il y a plusieurs facons de générer les termes d’une suite. En analyse
numérique, on construit les suites a 'aide d’un procédé itératif appelé algo-
rithme.
Les algorithmes classiques que nous allons étudier sont les suivants:
i) Meéthode de la bissection
ii) Méthode de Newton-Raphson
iii) Méthode de la sécante
iv) Méthode du point fixe.

Le but de ce chapitre est de trouver des approximations de la solution de
I’équation (1) avec une précision donnée et un nombre d’itérations maximum.
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Afin de comparer ces différentes méthodes, nous allons introduire la no-
tion d’ordre de convergence.

2.2 Méthode de la bissection.

Considérons une fonction f(x) quelconque, continue et cherchons p tel que

flp)=0.
Nous supposons qu’on a localisé par tatonnement un intervalle [a, b] dans
lequel la fonction change de signe (c.a.d. f(a)* f(b) < 0) on pose ¢ = %2 si

f(a)* f(c) < 0 on remplace b par ¢ sinon on remplace a par ¢, et on continue
cette operation jusqu’a ce qu’on trouve p avec la précision demandée.

Algorithme de bissection (ou de dichotomie)

But : Donner une fonction continue f(z) et un intervalle [a,b] pour
lequel f(a) et f(b) sont de signes contraires, trouver une approximation
de la solution de f(z) = 0 dans cet intervalle; en construisant une suite
d’intervalles ([a,, b,]), contenant cette racine et tets que a, ou b, est le mi-
lieu de l'intervalle [a,_1, b,—1].

Entrées : a,b les extrémités de I'intervalle

€ la précision désirée
Ny le nombre maximal d’itérations
Sortie : la valeur approchée de la solution de f(p) =0

Etape 0: Si f(a) = 0 imprimer la solution est a, aller a I’étape 9
Si f(b) = 0 imprimer la solution est b, aller a 'étape 9
Etape 1:
si f(b) % f(a) >0
alors imprimer (il n’y a pas de changement de signe)
aller a I’étape 9
Etape 2: poser N =1
Etape 3:
Tant que N < Ny,faire les étapes 4 a 7
Etape4: poser p = “T“’
Etape 5:Si f(p) =0 ou %52 <
Alors imprimer p
aller a ’étape 9
Etape 6: poser N =N +1
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Etape 7: Si f(a) * f(p) >0
alors poser a = p
sinon poser b = p
Etape 8: Imprimer aprés N, itérations ’approximation obtenue est p et
I’erreur maximale est b_T“

Etape 9: Fin

2.3 Méthode de Newton-Raphson:

Le principe consiste & construire une suite (z,),, telle que x,.; soit
I'intersection de la tangente a la courbe de f au point (z,, f(x,)) avec I'axe
horizontal.

025 T

057

Figure 2.2: Méthode de Newton pour f(z) = log(z), o = 2.

On a:
A = (z9, f(20)), B = (71,0) € azxe(Ox)
Aet BeD:y=ax+b

donc

0O=ax;+b

{ f(zo) = axo+0b N { xlazf'(xo)

Algorithme de Newton-Raphson.
But: Trouver une solution de f(z) =0
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Entrées: une approximation initiale py
e (la précision désirée)
Ny (le nombre maximum d’itérations)
Sortie: valeur approchée de p ou un message d’échec
Etapel : N =1
Etape 2: Tant que N < Ny, faire les étapes 3 a 6.
Etape 3: Poser p = py — ]{,((’; %))
Etape 4: Si| p — po |< ¢ alors imprimer p
aller a I'étape 8.
Etape 5: Poser N = N + 1.
Etape 6: Poser py = p.
Etape 7: Imprimer la méthode a échoué apreés N itérations.
Etape 8: Fin.

2.4 Méthode de la sécante

La méthode de Newton-Raphson suppose le calcul de f’'(p) a chaque étape.
Il se peut qu’on ne dispose pas d'un programme permettant de calculer sys-
tématiquement f’ .

L’algorithme suivant peut étre considéré comme une approximation de la
méthode de Newton.

Le principe consiste & construire une suite (x,), & l'aide de la formule
obtenue en remplagant dans la méthode de Newton f’(p,) par %.
Ainsi au lieu d’utiliser la tangente au point p, nous allons utiliser la sécante
passant par les points d’abscisses p,, et p,,_1 pour en déduire p,, 1. Ce dernier
est obtenu comme intersection de la sécante passant par les points d’abscisse
Pn €t p,_1 et de 'axe des abscisses.

L’équation de la sécante s’écrit :

s(x) = f(pa) + (x — py) Hoe )
Si $(pps1) = 0, on en déduit:
_ Pn—Pn—
Pr+1 = Pn = F0n) 565~ om0
Algorithme de la sécante:

But:Trouver une solution de f(z) =0
Entrées: deux approximations initiales pg et pq

15
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e (la précision désirée)

Ny (le nombre maximum d’itérations)
Sortie:la valeur approchée de p ou un message d’échec
Etape 1: poser N =1

G = [f(po)

@ = f(p1)
Etape 2: Tant que N < Ny + 1,faire les étapes 3 a 6
Etape 3: poser p =p; — ql(];i:—zg)
Etape 4: Si | p — p; |< € alors imprimer p
aller & I’étape 8
Etape 5: Poser N =N +1

Etape 6: Poser py = py

qo = q1
b1r=Pp
Q1:f(p)

Etape 7: Imprimer la méthode a échoué aprés N, itérations
Etape 8: Fin.

2.5 Méthode du point fixe

Nous pouvons observer que la méthode de Newton peut s’interpréter comme
Prt1 = g(pn) O
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g(z) =2 — (%) Maintenant , si la fonction g(z) est continue et si
lalgorithme converge (c.a.d. p, — p), on tire de p,.+1 = g(p,) que p satisfait
I’équation p = ¢g(p) ; on dit que p est un point fixe de g.

On peut toujours transformer un probléme du type f(x) = 0 en un prob-
léme de la forme z = g(x) et ce d’une infinité de fagons.

Par exemple

> —-2=0

ouxr=2/x

ouz=a*+x—2

ouz=oa(r?—-2)+x

Il faut toutefois noter que ce type de transformations introduisent des
solutions ’parasites’.

Par exemple : résoudre 1/z = a ou encore x = 2x — ax?

On voit que 0 est racine de la deuxiéme équation mais pas de la premiére.

Algorithme du point fixe

But: trouver une solution de g(z) = x

Entrées: une approximation initiale pg
¢(la précision désirée)

Ny le nombre maximale d’itérations
Sortie: valeur approchée de p ou un message d’échec
Etape 1: poser N =1
Etape 2: Tant que N < Ny, faire les étapes 3 a4 6
Etape 3: poser p = g(po)
Etape 4: Si|p—po|<¢
alors imprimer p
aller a I'étape 8
Etape 5: posern=n+1
Etape 6: poser pp = p
Etape 7: Imprimer (la méthode a échoué aprrés Ny itérations)
Etape 8 : Fin.
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2.6 Convergence et ordre de convergence.

Définition: Soit D une partie de R et F' une application de D dans D. On
dit que la fonction F' est contractante si

Ve,y € D 3k € ]0,1] tel que
| F(z) = Fy) <k [z2—y].

k est le coéfficient de contraction ou de Lipschitz de F.

Théoréme: Considérons le segment S = [pg — a,po +a| C D; si F est
contractante sur S et si | Fi(pg) — po |< (1 — k) a, alors l'itération p,1 =
F(p,) de point initial py , converge vers 'unique point fixe p € S de F.

Théoréme: Convergence locale.

Si F' est différentiable au voisinage d’un point fixe p et si | F'(p) |< 1
alors :

3V voisinage de p tels que py € V' et p,.1 = F(p,) converge vers p.
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2.6.1 Interprétation graphique.

075 T
0625 T
05T

0375 T

| | | |
t t t t
0375 05 0625 075

X

Figure 2.4: F(z) = —a® + 2z; |F'(x)| < 1, convergence.

On voit graphiquement que | F'(p) |< 1, et par conséquent les itérations
convergent vers le point fixe. p est un point fixe attractif. Par contre si
| F'(p) |> 1 pas de convergence vers le point fixe, p est un point fixe répulsif.

y

| | |
t t t t t {
5 75 10 125 15 175 20
X

F(z) = 2% — 2, |F'(16)| > 1, Vitération diverge.

Remarque: Un point fixe répulsif pour une méthode devient attractif
pour une autre.
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2.6.2 Ordre de convergence.

La convergence de litération p,.1; = F(p,) vers le point fixe peut se
faire plus ou moins vite.

Définition : Considérons une suite {p,} convergeant vers p et posons
€n = Pn — P-

On dit dans le cas ol {
ment vers p ou encore que la méthode est du premier ordre.

Siona {‘(JT),C

Exemple :

La méthode de Newton pour résoudre 1’équation f(z) = 0 est une méth-
f(z) =0, alors f'(z*) # 0 et il existe un voisinage V de z* tel que pour tout
po €V, la suite (p,,), converge vers z* et 'ordre de convergence est 2.

(en effet F'(x) = 1 — (fl(x))(szé()@*f”(x) = F'(z*) = 0. Ainsi d’aprés
le théoréme précédent la méthode de Newton converge. Pour déterminer
lordre de convergence on utilise la formule de Tylors en z* : F/(z) = F(2*) +

F/(2*)(z — 2*) + F"(0) =22y,

66—1’} converge, que la suite p, converge linéaire-
-

} converge, alors la convergence est dite d’ordre k.

ode de type point fixe avec F(z) = x — Si x* est racine simple de

2.7 Exercices
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Série f(z) =0

Exercices 1
Résoudre a ’aide de la méthode de bisection tanxz —x = 0 dans 'intervalle
4;4.7].

Exercice 2

On considére 1’équation

(1) e* —4x =0

1) Déterminer le nombre et la position approximative des racines de (1)
situées dans .x > 0

2) Utiliser 'algorithme de bissection pour déterminer la plus petite de
ces racines & ¢ prés.(par exemple 1077)

3) Sans faire d’itérations, déterminer combien vous devriez en faire pour
calculer la plus grande racine a l’aide de la bissection avec une précision de
1078, si I'intervalle de départ est [2;2, 5]

Exercice 3
Ecrire un algorithme pour calculer par la méthode de Newton la racine
K-ieme d’un nombre.

Quelle est la valeur de s = \/2 +V2+V2+ .7

Suggestion: écrire .p,+1=G(p,),po=0 Quel est 'ordre de convergence ?

Exercice 4

Ecrire 3 méthodes itératives pour la résolution de 2®—z—1 =0 et vérifier
expérimentalement leur convergence avec o = 1,5. Trouver a 10 %preés la
racine comprise entre 1 et 2. Connaissant la valeur de cette racine, calculer
Iordre de convergence de vos 3 méthodes. Ce résultat coincide-t-il avec
I’expérience?

Exercice 5

Résoudre x?-1=0 en utilisant la méthode de la sécante avec o = —3 et
x1 = 5/3. Qu'arrivera-t-il si on choisit et zo = 5/3 et 1 = —37 Expliquez.

1

1S. El Bernoussi, S. El Hajji et A. Sayah
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Chapitre 3

Algébre linéaire

3.1 Introduction

Un sytéme lineaire s’écrit sous la forme :
(1) Ax =b

ou A est une matrice naxn a coefficients réels, b € R" et x € R".

La résolution de grands systémes linéaires (et non linéaires) est pratique
courante de nos jours. Elle apparait dans tous les domaines ot I’on s’intéresse
a la résolution numérique d’équations aux dérivées partielles.

11 existe plusieurs packages (linpack, eispack, ..), logiciels (Maple et Mat-
lab) et programmes (http://www.netlib.com, numerical recipes, NAG, IMSL,
...) de base pour le résoudre.

Le choix de la méthode dépend fortement du type (forme) de la matrice.

Les méthodes de résolution sont de deux types :

Les méthodes directes : Une méthode est dite directe si elle permet d’obtenir
la solution en un nombre fini d’opérations.

Les méthodes itératives : Une méthode est dite itérative si elle permet de
construire une suite (x,), qui converge vers la solution.

Dans ce chapitre nous allons :

1. Rapeler des notions et notations de base relatives aux systémes linéaires
et aux matrices
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2. Etudier une méthode directe : la méthode de Gauss.
3. Etudier la décomposition (factorisation) LU.

4. Etudier des applications : Inverse de matrices,...

3.2 Rappels sur les systémes linéaires

Un systeme de n équations linéaires a n inconnues peut toujours s’écrire sous
la forme :

(1) Ax =b

ol A est une matrice (a;;) et x et b sont des vecteurs colonnes de dimension
n.

Si la matrice A est inversible alors le systéme linéaire (1) admet une
unique solution x = A~'b ot A~! est la matrice inverse de A.

Ainsi théoriquement le probléme revient & calculer A~1? Mais en pratique
ce calcul est difficile.

Il existe plusieurs méthodes classiques pour résoudre (1) sans calculer
AL

Pour cela on va considerer le cas simple suivant :

rT+2y=>5
(1) {2x+y:4

i) La méthode de Cramer consiste a calculer la solution en calculant des
déterminants.

‘52’ ‘15’

4 1 3 2 4 6

On a: x = 1 2 ===lety= 19 ==2=2
2 1 2 1

ii) La méthode de substitution (ou d’élimination) consiste a transformer
le systéme (1).

(1) T+2y=>5 N T =—2y+3 N rT=—-2y+5
20 +y=4 2e+y=4 2(—2y+5)+y=4
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T=—-2y+5 rT=—-2y+5 x=1
= = =
3y =26

Peut-on généraliser ces méthodes pour un systéme de n équations avec
n € N?

Théoriquement OUI mais en pratique cela va nécessiter beaucoup de cal-
culs et de techniques.

3.3 Meéthode Gauss

La méthode de résolution la plus étudiée (et une des plus employées) s’appelle
méthode d’élimination de Gauss.

L’idée de base de cette méthode consiste a transformer le systéme linéaire
(1) en un probléme que 'on sait résoudre.

Si la matrice A = D avec D une matrice diagonale, alors on sait résoudre
(1)

Mais toute matrice n’est pas diagonalisable.
Si la matrice A = U (ou L) avec U (ou T') une matrice triangulaire
supérieure ( ou inférieure) alors on sait résoudre (1).

Probléme : Comment tranformer une matrice en une matrice triangulaire
inférieure ou supérieure 7

La méthode de substitution (d’é¢limination) répond a cette question mais
elle n’est pas automatique.

La méthode d’élimination de Gauss a pour but de remplacer le sys-
téme (1) par un systéme triangulaire possédant la méme solution. Son
principe s’apparente a celui de la méthode de substitution (d’élimination)
mais (comme on le verra ci dessous), il est plus simple & automatiser.

Regardons son fonctionnement sur ’exemple suivant cas n = 3:

On pose A = (a;j)ij=13 X = (x;)i=13¢t b = (b;)i=13 de telle sorte que
AX = b s’écrit sous la forme :

a1171 + 1272 + a13T3 = by
2171 + A22%2 + a3T3 = by
a31%1 + asaT2 + aszrz = b

ou encore sous la forme dite augmentée

11 a1z A3 by
(A b) = Q21 Q22 423 by
asi asy asz bs
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On suppose que aj; # 0, par élimination, on obtient :
apn aip a3z b
(A1 b1) = 0 ahy ap b
0 a3 ajyy U
On va illustrer la méthode de Gauss sans passer par le sytéme augmenter

On a:

a111 + 122 + 133 = bl (ll)
(1) a1T1 + Ago%2 + a3 = by (lg)
as1T1 + aga%e + assrs = by (l3)

On note par (1;) la i®™ équation du systéme précedent.
On suppose que ay; # 0,

On pose :
(I3) = an(lz) — ax(l})
et

(15) = a1 (l3) — asi (1)
Alors (1) s’écrit

1121 + a2 + G133 = b1 (ll)
(2) g + angs = by (1)
azyT2 + agzrs = by (I3)

On suppose que ab, # 0,
On pose :

(1) = abs(ly) — ajy(ly)
Alors (2) s’écrit
a1 + a12T9 + a13T3 = bl (ll)
(2) 9yT2 + apgmy = by (1)
(1,;)131'3 = bg (Zg)

Remarque :

i) Les termes diagonaux & chaque étape sont appelés les pivots,

ii) Siun pivot a;; est nul on change de ligne (on permute) de 7 a n (pivotage
partiel)
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iii) Cette méthode se généralise assez facilement bien qu'il faut étre pru-
dent avec le choix du pivot. En pratique, il faut éviter de prendre des pivots
"trop" petits.

Exemple : Sur 'importance du pivot

1) On considére le systéme :

r+y=2

Calculer la solution exacte de ce systéme.
2) Calculer la solution pour s = 3 avec troncature des systémes

T4y =2 0%z +y=1
() {10_4x+y:1 ct (1) { T+y=2

Remarque : [’algorithme de Gauss est une méthode systématique de résolu-
tion de systémes d’équations comportant un nombre quelconque d’inconnues.

Dans le cas ou tous les pivots sont non nuls i.e. a; # 0, 'algorithme:
Elimination de Gauss s’ecrit :

Partie 1: Réduction a la forme triangulaire (ou élimination de Gauss)
Entrée A et b
Sortie A = U (forme triangulaire), et b.
Pour j=1,...,(n —1)
Pouri=7+1,....n

lij A
27
Pour k=75+1,...n
Qi < Qi — lijajk
Fin
bj — bj - lz‘jbj
Fin
Fin
Sortie A = U (forme triangulaire), et b
Cette partie s’écrit sous la forme (algorithmique)
Etape 1 : Poser j = 1

Etape 2: Tant que j < n — 1 faire
Etape 3: Si aj; = 0 afficher 'pivot nul’ aller a étape 14, sinon
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Etape 4: Poser i = j + 1
Etape 5: Tant que i < n faire
Etape 6: ;; = i
, 77
Etape 7: Si [;; = 05 aller a I’étape 12.
Etape 8: Poser k = j + 1
Etape 9: Tant que k < n faire
Etape 10: a;, = aix — lija;i, k = k + 1; aller a I’étape 9.
Etape 11: bl = bz — lijbj 3
Etape 12: poser i = i 4+ 1; Aller a ’étape 5.
Etape 13: j = j + 1; Aller a I'étape 2.
Etape 14: Fin.
Remarques:Les éléments sous la diagonale principale de la nouvelle matrice
obtenue sont nuls. Comme ils n’interviennent pas dans la résolution du
systéme triangulaire formé, il est inutile que l'algorithme leur assigne cette
valeur nulle.

Exemple : On considére le systéme linéaire :

r+y+3t=4
2r+y—z2+t=1
3r —y—z+2t=-3
—r+2y+3z—t=4

qui s’écrit encore:

1 1 0 3 x 4
2 1 -1 1 y | | 1
3 -1 -1 2 2| 7| -3

-1 2 3 -1 t 4

Nous appliquons 'algorithme a notre exemple en travaillant sur la matrice
augmentée.
Nous obtenons

A b

1 1 0 3 4
2 1 -1 1 1
3 -1 -1 2 -3
-1 3 -1 4
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1 1 0 3. 4
0O -1 -1 =5 . =7
0O -4 -1 -7 . =15
o 3 3 2. 8
1 1 0 3 . 4
0O -1 -1 -5 . =7
o o 3 13 . 13
o o0 0 —-13 . —-13

Que 'on peut écrire sous la forme :

r+y+3t=4

—y—2z—5t=-7
3z4+13t=13 ’
—13t = —13

Notons que ’étape j = 3 nous donnerait /45 = 0.
Nous avons maintenant un systéme triangulaire & résoudre.

Partie 2 : Remontée triangulaire
Entrée A, b avec A matrice triangulaire supérieure
Sortie x solution du sytéme Ax = b
° Etape 1: @, = Lo

ann

e Etape 2: Pouri =n —1,n—2,...,1 faire:
1 n
€T; = a_(bl — Z aijl'j)
i1 j=it1
En appliquant cet algorithme & notre exemple, nous obtenons = = (—1,2,0, 1).
Remarque:

1. Dans la pratique le test (3) de I'algorithme d’élimination de Gauss ne
conduit pas a l'arrét. En fait, si le pivot est nul, on cherche, dans
la méme colonne, un élément d’indice plus grand non nul, puis on
échange les lignes correspondantes. Si ceci est impossible, le systéme
est singulier.
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2. On est parfois amené, pour des raisons de stabilité numérique, a ef-
fectuer des échanges de lignes méme si le test (3) est négatif (c’est a
dire que le pivot est non nul). Ceci conduit a des stratégies dites de
pivot que nous n’étudierons pas ici.

Exemple : Résolution du systéme suivant :

20+ 6y + 102 =10 2 6 10 x 0
r+3y+3z=2 <11 3 3 y | = 2
3r + 14y + 282 = —8 3 14 28 z -8
2 6 10 O 2 6 10 O 2 6 10 O
1 3 3 2 =100 —4 4 =105 13 -8
3 14 28 -8 0 5 13 -8 00 —4 4
En utilisant la rementé on trouve:
z= _i4 = -1 2
y=+(-8—-13x(-1)=1 =az"=| 2
r=3(—6x1-10x (-1)) =2 —1

3. Méthode de Gauss avec normalisation :Elle consiste 4 normaliser le
pivot:

On a:

a1y + a1p%2 + arzrs = by (ly)
(1) A21%1 + Q22%2 + 933 = by ()
as1T1 + aga%e + assrs = by (l3)

On note par (I;) la i équation du systéme précedent.
On suppose que a3 # 0,

YAt - a1z a1z . — b1y
(I) séerit : zy + §2ap + PB3a5 = & (1)

Si on pose :
(l5) = (I2) — a21 (1)
et

(l5) = (Is) — as: (1)
Alors (1) s’écrit
1+ Z—EZEQ + Zﬁl‘g = ab_lll (lll)
(2) ayyT + ajgry = by (1)
agyTy + aggry = by (I3)
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On suppose que ab, # 0,

(15) s’écrit xo + aysxs = by (1%)
Si on pose :

(l5) = (I5) — asy(13)

si a4y # 0 onpose (Iy) x3=-#
Alors (2) s’écrit

a a _ b I
T+ 2oy + Pay = L (1)

(2) T+ agzrs = by (I3)
vy =g (1)
33

1. Cette statégie est trés utile pour calculer I'inverse d’'une matrice.

Nous pouvons nous demander s’il existe une relation entre la matrice de
départ et la matrice triangulaire obtenue. Ce lien existe.

3.4 Factorisation LU

Matriciellement la méthode de Gauss consiste & multiplier la matrice A par
la matrice L; de telle sorte que I'on ait :

A =LA
0 0
-2 (0 1
On suppose que ab, # 0, donc on cherche Ly de telle sorte que

0 0 aj

11 Q12 A3

Ag = LAy = 0 ay CL/23
1
= Ly = 0
0



Ainsiona: Ay = Ly A; = U et A, est une matrice triangulaire supérieure.
De plus si on pose Ag = A alors U = Ay = Lyl Ag c’est & dire que

U - L2L1A =4 A - L;lLIIU

On a Ly et Ly sont des matrices inversibles et triangulaires inférieures
donc Ly % Ly est une matrice inversible et triangulaire inférieure.

De méme L = L;' % Ly' est une matrice inversible et triangulaire in-
férieure

Donc A = LU.

Ainsi le systéme linéaire (1) AX = b s’écrit

Ly = b avec L matrice triangulaire inférieure
LUX =b & . . . L.
UX =y avec U matrice triangulaire supérieure
En conclusion ( & admettre) la méthode de Gauss revient a décomposer la
matrice A en un produit de deux (2) matrices triangulaires 1'une supérieure
U et l'autre inférieure L.
Avec :

lnl e ln,n—l 1
ol ;; est défini & I'étape (6) de I’algorithme d’élimination et (si I’algorithme

d’élimination n’exige pas d’échange de lignes).

Nous ne démontrerons pas cette proposition. Nous nous contenterons de la
vérifier sur notre exemple.

Exemple :
1 1 0 3 1 0 00 1 1 0 3
2 1 -1 1| 2 1 00 0 -1 -1 -5
3 -1 -1 2| 3 4 10 0 0 3 13
-1 2 3 -1 -1 -3 0 1 o 0 0 -13
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Il y a une classe importante de matrices pour lesquelles 1’élimination
peut toujours s’opérer sans échange de lignes (i.e. le pivot a;; n’est jamais
nul pendant I’algorithme d’élimination). Ce sont les matrices & diagonale
strictement dominante.

Définition: Une matrice A est dite & diagonale strictement dominante si
pour tout ¢ =1,2,.....,.m ,on a :

n

ER

J=Lj#

est vérifiée.

Remarque : Si la matrice est & diagonale strictement dominante alors elle
est inversible.

3.4.1 Appplications de la Factorisation LU

Si 'on doit résoudre souvent un systéme ot seul le membre de droite change
ou son veut calculer I'inverse d’une matrice, il y a intérét a effectuer la ré-
duction & la forme triangulaire une fois pour toutes.

En effet, si A = LU on peut résoudre: Az = b en résolvant Lz = b et
Ur==z2 Ona:

B (2) Lz=b
(1) A:U—b<:>{ (3) Uz — »
Dans ce cas Av = LUz = L(Uz) =Lz =1 .
Les systeémes (2) et (3) étant triangulaires, la résolution ne nécessite que
I’exécution d’une remontée et d’une descente triangulaire.

Exemple :
1 0 00 1 1 0 3
A=LU = g 411 (1) 8 8 _01 _31 I; , on résoud le sys-
-1 -3 0 1 0 0 0 -13
4
téme Ax = 1
-3
4
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21:4 4

. 221+22:1 . —7
Lz=b= 321+422+23:—3 = A= 13
—21—322+24:4 —13
—13z4 = —13 —1

. 3$3+13£C4:13 o 2
Ur=2= N == 0
{L’1+$2+3l’4:4 1

3.5 Mesure des erreurs

L’utilisation d’un calculateur pour implanter les algorithmes étudiés conduira
inévitablement a des erreurs. Pour mesurer celles-ci, nous devons mesurer la
distance entre le vecteur représentant la solution exacte z = (x4, ...,x,) et le
vecteur & = (I, ..., &,) représentant la solution approchée. Nous pouvons,
pour ce faire, utiliser la "longueur" usuelle de R" i.e.:

n

1

lzllz = £ a7}
1

pourtant, dans la pratique on lui préfére souvent la longueur

7]l = max ||

Par exemple si z = (1,—7,2,4) alors ||zl =7 .

Exemple :
Sixz=1(1,1,1,1) alors ||zl =1 si & = (1.01,1.1,1,1), on a

|z — ]| = 0.1

Considérons alors le systeme

107 8 7 7 32
78 6 5 | | 23
8 6 10 9 zs | | 33
75 9 10 24 31

dont la solution exacte est x = (1,1,1,1) .
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Si dans le membre de droite nous remplagons b par:
b= (32.06; 22.87; 33.07; 30.89)

nons obtenons
& = (9.19; —12.59, 4.49, —1.09)

C’est-a-dire qu’une erreur relative de 'ordre de:

—3%107!
[16/] 0

sur b a entrainé une erreur relative de 'ordre de

[ = #[loo

[E41F

= 13.52

sur la solution.

Nous devons donc soupconner que 'application de I'arithmétique finie a
la résolution d’un tel systéme serait désastreuse. L’étude de cette question
dépasse le cadre de ce programme.

3.6 Exercices
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Série Az =0

Exercice I -
1) On considére le systéme linéaire :

(1) ( 1.0%01 2 ) ( z ) = < 6.0%05 )

Déterminer la solution X de ce systéme.

2) Dans le systéme précédent, on remplace 6.0005 par 6, déterminer la
solution X* de ce nouveau systéme notée (2).

3) Calculer les erreurs relatives sur les données et sur les résultats.

4) Conclusion.

Exercice II -
Résoudre le systéme linéaire (1):

r+2y+3z=1
(1) 2o + 6y + 102 =0
3r + 14y + 282 = -8

1) Par Gauss Classique
2) Par Gauss avec pivotage partiel
3) Par Gauss avec pivotage et mise a 'échelle (i.e. a; = 1).

Exercice III -

1) En arithmétique flottante avec 2 chiffres significatifs ( s = 2 (s est le
nombre de digits)) et arrondi, résoudre par élimination de Gauss, les systémes
linéaires (1) et (2).

(1) 0.000lz +y =3 (2) rT+2y=>5
T+2y=>5 0.000lx +y =3

2) Conclusion

Exercice IV -

30 —20 -10 1
Soit la matrice A = —-20 55 -—10 et b= 5
—10 —10 50 2
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1) Ecrire la matrice A sous la forme LU i.e. trouver L et U (sans pivotage)
avec L matrice triangulaire Inférieure et U triangulaire supérieur.

2) En déduire le determinant de A

3) Résoudre par Factorisation LU, le systéme linéaire AX = b

Exercice VI -

1 -1 2
Soit la matrice A = -2 1 1
-1 2 1

1) Ecrire la matrice A sous la forme LU i.e. trouver L et U avec L matrice
triangulaire Inférieure et U triangulaire supérieur.
2) Utiliser 1) pour calculer le déterminant de la matrice A.

3) Utiliser 1) pour calculer 'inverse de la matrice A.
1

1. El Bernoussi, S. El Hajji et A. Sayah
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Chapitre 4

Interpolation polynémiale

4.1 Introduction

Nous abordons dans ce chapitre un nouveau type de probléme, faisant inter-
venir la notion d’approximation d’une fonction.
Cette notion a déja été rencontrée dans les cours d’analyse.

Exemples :
1) D’aprés la Formule de Taylor a ordre 5 de la fonction sin(z), on a :

3 ab a8
Vo € Vois(0), sin(z) ~z — a + &l + Sin(G)(f)ﬁ ou ¢ € Vois(0)
On a tronqué la formule de Taylor aprés 'ordre N (ici 5), on obtient :
au voisinage de 0, une approximation de sin(x) par un polynéme de
degré N (ici 5).
Ierreur commise serait de ordre de sin(® (¢ )gg—? ou ¢ € Vois(0)
Ainsi avec ce type d’approximation, on a :

o Si N =3,sin(0.1) = (0.1) — & — 99833 x 102

e Si N =5,sin(0.1) = 0.1 — &% 4 OL" _ g 9833 x 102

Avec le logiciel Maple on a : sin(0.1) = 9.9833 x 1072
2) Avec les cours d’analyse I et I, on ne connait pas d’expression ex-

plicite de I = fol e dx
Cependant d’aprés :
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e La formule du trapéze [ = fol e dx ~ f(o);f(l) = 1+§71 = 0.68394

o La formulf; de Simpson : [ = ['e " dz ~ L[£(0) +4f(L) + f(1)] =
F(144e 1 +e1)=0.74718

e En utilisant la méthode des trapézes et en subdivisant (partageant) le
segment (intervalle) [0, 1] en 10 intervalles egaux, ona: [ = fol e " dx ~
el 4 L5 e 4+ L =0.74621

e En utilisant la méthode de Simpson et en subdivisant (partageant) le
segment (intervalle) [0, 1] en 10 intervalles égaux, ona: I = fol e dx ~

betH L e m 4 250 e (< (- 4)7) + 5 = 0.74682

Avec le Logiciel Maple, on a : fol e dr = syv/merf (1) = 0.746 82
NB : erf () est "The Error Function”. FElle est définie pour tout = par :
2 (T 2
erf(z) = 2= [y e dt.
Donc lerreur relative ( la qualité de I'approximation) dépend du type
d’approximation choisie.

On ne connait pas a ce niveau du cours ’expression explicite de ’erreur.

La notion d’approximation d’une fonction consiste & remplacer un prob-
léeme donné par un probléme voisin (un probléme majeur en analyse numeérique).

La question fondamentale serais de savoir la qualité de cette approxima-
tion i.e. la solution (du probléme approché) obtenue est -elle aussi voisine
que 'on veut de la solution du probléme initial.

Remarque : En pratique la fonction f est connue explicitement, ou seule-
ment par ses valeurs en quelques points.

La notion d’interpolation polynomiale est la facon la plus simple d’obtenir
une telle approximation.
Théoréme : (a admettre)

Soit f une fonction continue dans [a,b] C IR, alors pour tout € > 0
donné, il existe un polynéme P, de degré n tel que

Mazx |f(x) — P,(z)] <€

z€[a,b]
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Ce théoréme ne permet pas de construire (de déterminer explicitement)
le polynome P,. Il existe cependant un certain nombre de techniques (algo-
rithmes) qui le permettent :

1. L’interpolation polyndémiale: Elle est la plus classique et est un outil
pour la construction des méthodes d’intégration numérique ou des méth-
odes d’approximation des équations différentielles.

Remarque : Pour les équations aux dérivées partielles, la méthode
des éléments finis, un des outils de base de 'ingénierie moderne, utilise
de facon essentielle I'interpolation multi-dimensionnelle.

2. L’interpolation par les fonctions splines : Elle est plus stable que
I'interpolation polynomiale, est largement utilisée dans tous les pro-
grammes de dessin assisté par ordinateur, conception assistée par ordi-
nateur ou plus généralement de graphisme.

3. Les séries de Fourier et leur analogue discret, la transformation de
Fourier discréte : Elles sont un moyen trés utile pour I’approximation
des fonctions périodiques.

Remarque : L’analyse de Fourier est & la base de nombreuses applications,
par exemple en traitement du signal.

Remarque : Une fagon naturelle d’approcher les fonctions périodiques est
d’utiliser les polynomes trigonométrique.

Nous allons nous limiter a 'introduction de I'interpolation Polynomiale :
c’est la fagon la plus classique et la plus simple d’approcher une fonction. Elle
consiste & déterminer un polynéme P, (x) de degré n qui puisse remplacer
lors des applications la fonction f(z).

De plus, c’est un outil efficace pour :

e Calculer, pour x donné, une approximation de f(x) en calculant P,(z)

e Construire :

1. des méthodes d’intégration numérique
2. des méthodes de différentation

3. des méthodes d’approximation des équations différentielles
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4. ..

(nous reviendrons en détails sur ces points dans les chapitres suivants).

Le principe est simple, le procédé est le suivant :

e On choisit (ou on se donne) (n + 1) points xg, 1, ..., Ty .

e On calcule yo = f(20), .., yn = f(xn)

ou on se donne (z;,7;), 1 =0,....,n .

e On cherche un polyndme de degré n tel que P,(z;) =i, i =0,...,n .

Remarque :

1) Les points (2, ¥;)i—o0.» sont appelés points d’interpolation.

2) Si la fonction f est connue seulement par ses valeurs en quelques points,
les (n + 1) points xg, 1, ..., T,, sont fixés..

3) Si on veut que P, (z;) = f(x;) et P (x;) = f'(x;), 1 = 0,...,n , on
obtient 'interpolation dite d’Hermite.

La notion d’interpolation polynomiale est la facon la plus simple d’obtenir
une telle approximation.

Nous allons montrer I'existence d’un tel polynome P, (z) = a,x" + ...+ ag
en le construisant effectivement.

Il existe plusieurs techniques pour calculer P,(x). Les plus connues sont
celles de Lagrange et de Newton-Cotes. Elles produisent en fin de compte le
méme résultat. Chaque méthode a ses avantages et ses inconvénients.

Nous allons en fait le faire des deux fagons :

1. Une méthode directe basée sur la résolution d’un systéme linéaire

2. Une méthode itérative due a Lagrange.
Nous terminerons ce chapitre par :

1. Une breve discution sur l'erreur d’interpolation polynomiale

2. Une breve description du principe de la méthode itérée de Newton-
Cotes
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4.2 Une méthode directe basée sur la résolu-
tion d’un systéme linéaire:
e On se donne (n + 1) points zg, z1, ..., T, -
e On calcule yo = f(x0), ..., yn = f(zn) -
e On cherche un polyndme de degré n tel que P,(z;) =v;, i =0,...,n .
Ecrivons explicitement P, (z;) = y;.
anx?—l—an_1x?_1+...—|—a1xi+a0:y,-, 1=0,....n

On peut réécrire ces (n + 1) équations sous forme matricielle :

n—1 1

n
Ty Ty T T Qn Yo
n—1
xy e 1 A1 U1
n n—1
x, T SRR S | ao Yn

La matrice de ce systéme est une matrice de type Vandermonde.
On montre que son déterminant est

det = H(IZ — Ij)

1<j

On a det # 0 si tous les x; sont distincts. On peut donc trouver un unique
vecteur de coefficients (ay, ..., ag) résolvant le probléme.

Il est connu (& admettre) que les matrices du type Vandermonde devien-
nent trés mal conditionnées lorsque n augmente (elle sont trés sensible aux
erreurs d’arrondies).

Dans la pratique, cette méthode n’est & utiliser que si n < 3 . Il serait a
la fois inutile et dangereux de vouloir I'utiliser pour n grand.
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4.3 Une méthode itérative : Méthode de La-
grange

4.3.1 Interpolation Linéaire :

On consideére deux points (2o, o), (71, Y1) avec :

{ To # T1
Yo = f(zo) et y1 = f(21).

Pour déterminer le polynoéme P;(z) de dégré 1 (d’équation : y = ax + b)
qui passe par deux points distincts (xo, o), (€1, 41) (2o # x1). On peut:
1) Résoudre le systeme d’équations:

{a:ﬁo+b = Y

ari+b =
d’ou
_ (y1—0)
{ v (xl_x())y y
— \_ — T1Yo—Toy1
b = yo—axg= P
On a:
— T1Yg — T
Pl(:v) 3 (y1 _yo)x+( 1Y0 - 0y1)
(961 iCo) 1 — To
et
Pi(z0) = yo et Pi(z1) =0
2) Poser
r — I
L —
o() Lo — 11
r — X9
L —
1(z) ¥ — %o
On a:

0 si 1#k
L’“(m:{1 si zi
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Ainsi,

B (x — x1) T — To
_ (yl - ?Jo) T+ ($1yo — Tolh
($1 - xo) T1 — o
On a
Pi(x0) = yo et Pi(x1) =1
car

0 si i#k
L’“(xi)_{ 1 si i=k
Ces deux procédés déterminent évidemment le méme polyndéme de dégré
1 (la méme droite).

Si maintenant, on veut déterminer le polynome de degré 2 qui passe par
trois (3) points distincts alors:
i) la premiére expression de P;(z) est inadéquate (il faut refaire les
calculs)
ii) la dexiéme expression se préte assez facilement & une généralisa-
tion par récurrence.
Exemple :
Déterminer le polynome d’interpolation P;(z) de degré 1 tel que
Pi(z;) = f(z),1=0,1
avec Y; = f(mz) 1=0,1, (x07 yO) = <07 1>7 (1’1,91) = (27 5)
On a déterminé le polynéome d’interpolation qui passe par les 2 points :
(0,1) et (2,5)
D’aprés la méthode de Lagrange,

Py(z) = yoLo(z) + y1 L1 ()

. (z—m) T — Tg
—yo—(xo ) 1<m1 —x0>
L (z=2) (x —0)
“o-y e
=2x+1
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4.3.2 Interpolation parabolique

On considére trois points (o, o), (x1,41) et (z2,y2) avec :

{ To # 11 et To F T2 et Ty F X9
Yo = f(x0), 11 = f(x1) et yo = f(x2).

Pour déterminer le polynéme P,(z) de dégré 2, d’équation y = ax®+bx+c
qui passe par trois points distincts (zo, o), (x1,%1) et (x2,y2), il suffit de
poser:

. (x —x1)(x — x29)
Lolo) = (2o — @1)(z0 — T2)
(x — wo)(x — x2)
Lafe) = (21 — 20) (21 — 22)
(x — zo)(x — 21)
Lalo) = (22 — wo)(z9 — 71)
I\ 0 si i#k
L’f("%):{ 1 si i=k
Ainsi

Py(z) = yoLo(z) + yr1 La(x) + yaLa(z)
(r —x1)(x — 229) (x — xo)(x — x2) (x — xo)(x — 1)

¢ (xo - $1)($0 - xz) ' (!L‘l - $0)(=T1 - $2) 2($2 - xo)(ﬂh - $1)

est le polynome d’interpolation polyndmiale associé.
Exemple :

Déterminer le polynome d’interpolation Py(z) de degré 2 tel que

PQ(ZL’Z) = f(ZEZ), 1= 0,1 et 2

avec y; = f(l‘z) 1=0,1et2, (an yO) = (O’ 1)7 (‘Tla yl) = (1’ 2) et <x2a y2) =
(2,5)

On a déterminé le polynome d’interpolation qui passe par les 3 points :
(0,1),(1,2) et (2,5)

D’aprés la méthode de Lagrange,
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Py(z) = yoLo(x) + y1L1(x) + y2Lo()
(x —z1)(x — 22) (x — mo)(x — 22) (z — mo)(z — 1)
2o — 21)(z0 — T2) | (x1 — o) (1 — @2) | (w2 — o) (T2 — 21)
(@-1@-2) ,@)z-2)  (2@-1)

(=1)(=2) (M(=1) (2)(1)

=22 +1

:yo(

Remarque :

1) Pour calculer P,(z) ,on n’a pas utilisé le polynome P;(x) calculé dans
I’exemple précédent et pourtant on avait deux points communs.

2) Li(x),i = 0,1,2 sont des polynémes de degré 2 :

Lo(w) = EJED — Lz —1) (e —2) = §a? — S+ 1

Ll(az):%:—x(x—%:—xz—i-%c

z)(r—1
Ly(z) = 95 ()2()(1)) =sr(@—1)=32" -3

On considére (L;());—02 comme une base de 'interpolation polynémiale
quadratique

Dans l'intervallle [0, 2], il existe plusieurs fonctions f(z) qui passent par
les 3 points (xg,40) = (0,1), (z1,11) = (1,2) et (z9,y2) = (2,5) mais elle ne
seront pas approchées par Pp(z) = 22 + 1 de la méme fagon.
4.3.3 Interpolation de Lagrange

e On choisit n + 1 points g, 1, ..., T, -

e On calcule yo = f(x0), ..., yn = f(zn) -

e On cherche un polynéme de degré n tel que P,(z;) =v;, i =0,...,n .

On introduit les coefficients d’interpolation de Lagrange.

(x —xg)...(v — xp_1)(x — Tpa1)...(x — T)

Lk(l‘) = (ﬂ; _ xo)(xk; — xk—l)(xk — {Ek+1...(fL‘k - fL'n)
T e
Lk(x) - j%_}[;ék (l'k — $j)
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Li(x) est un polynome de degré n,

0 si i#k
Lk(gfi):{1 si zikz

Donc

P(r) = yoLo(z) + y1 L1 () + ... + ynLn(z) = ZykLk(l’)

est un polynéme de degré n qui vérifie bien P(x;) = y;

Propriété : Le Polynome d’interpolation polynomiale est unique.

En effet si P(x) et Q(z) sont deux polynomes d’interpolation alors :
P(z) — Q(z) est un polyndéme de degré n pour lequel

Ce polynéme de degré < n ayant n + 1 racines, il est identiquement nul.

Exemple :

On suppose que f(z) = /r et que (zo,y0) = (0,0), (v1,31) = (1,1) et
(2, 92) = (8,2)

1) Déterminer le polynome P»(x) d’interpolation polyndmiale qui passent
par les points (z;, ¥;)i—o,2

On a a déterminer le polynéme d’interpolation qui passe par les 3 points
: (07 0)7 (17 1) et (87 2)

D’aprés la méthode de Lagrange,

Py(z) = yoLo(x) + y1L1(x) + yoLo(z)

(x — 1) (x — x2) (x — zo)(x — x2) (x — o) (x — 1)
B 0(350 - Il)(afo - 1U2) o (131 - Io)(xl - 1132) T (1’2 - xo)(Iz - 1’1)
B (r—1)(x—2) (x —0)(x —38) (x—=0)(x—1)
_0(0—1)(0—2) +1(1—0)(1—8) +2(8—0)(8—1)
Py(z) = —%ﬁ + %x

On a bien P3(0) = 0, P2(1) = 1 et Po(8) = —2(8)* + 318 =2
2) Calculer Py(x) et f(x) = &/x pour z = 0.5,0.95,1, 1.5 et 3. Conclusion.

On a:
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T f(@)  P(z) =—%2"+ 5w
0.5 0.7937 0.526 79
0.95 0.98305 0.955 09

1 1 1

1.5 1.1447 1.4196

3 14422 B 23571

L’interpolation polynomiale de degré 2 ne fournit de résultat acceptable
qu’au voisinage des points d’interpolation ici 1.

3) Tracer le graphe de f(x) et P(x).Conclusion.

On voit que dans 'intervalle [2,6], P»(x) fournit une mauvaise approxi-
mation de f(z).

Pour x donne, Ps(x) fournira une bonne approximation de f(z) si « est
voisin de 0,1 et 8.

Remarque :

1) En pratique, on utilise I'interpolation polynémiale avec des polynomes
de dégré n assez grand ou l'interpolation polynémiale par morceaux. Ainsi
dans I’exemple précedent, il faut augmenter le nombre de points d’interpolations.

2) Si les valeurs v, sont des valeurs expérimentales. L’interpolation poly-
nomiale est une technique peu appropriée pour de telles situations. Les
polynomes de degré élevé sont sensibles a la perturbation des données.

3) La méthode de Lagrange s’adapte mal au changement du nombre de
points (z;,¥;);- On ne peut utiliser les coefficients de Lagrange si on passe
de n a (n+ 1) points.

4) Phénoméne de RUNGE (fonction de Runge) : L’interpolation
polynomiale ne fournit pas une bonne approximation de la fonction f(x) =
mﬁ' Si on augmente le nombre de points d’interpolation le resultat devient
plus mauvais. (A admettre).

4.4 Interpolation Itérée de Newton-Cotes
e On choisit n + 1 points xq, T1, ..., T, .

e On calcule yo = f(x0), ..., Yo = f(zn) -

e On cherche un polynéome de degré n tel que P,(z;) =vy;, 1 =0,...,n .
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L’Interpolation Itérée de Newton-Cotes est un procédé itératif qui permet
de calculer le polynome d’interpolation P,(x) de dégré n basé sur (n + 1)
points (Z;, ¥i)i=o,» & partir du polynéome d’interpolation P,_1)(x) de dégré
(n — 1) basé sur n points (2, Y;)i=o,(n—1) , €N posant :

P.(xz) = Pp—n(z) + C(x), n>1

avec

C(z) = an(r — z0)(x — 21)...(T — T(n-1))

RN S ()
n = kg_% (x, — 0) - (Th — T(o—1)) (Th — T(e41)) - (T — Tn)

Les coéfficients a,, sont appelés différences divisées d’ordre n de la fonction
f, on note :

an = f o, T1,y .0y Ty

e On appelle ”différence divisée d’ordre 0 de f en un point z” la valeur

définie par
flx] = f(z)
e Différence ”divisée d’ordre 1 de f en deux points x et y” la valeur
définie par
flel = fly
fle oyl = =/l
rT—Y
on a
flz)  fly
fleg = L2y J0)
rT—y y—x

e Différence ”divisée d’ordre 2 de f en deux points z,y et z” la valeur

définie par
fle,y, 2] = f[x,yx]:ﬁ[y,z]
/() f) £(2)




et plus généralement:

flry, zay .y xy, Z —
i=1 [] (iUz—fL“k)

-

bl
N

Remarque:
Les différences divisées sont indépendants de 1’ordre des points.

Quel est le lien entre f(z) et lex différences divisées?
Soit x un point autre que les n + 1 points z;, i = 1,...,n. On a

flx,zo] = f(xx) : io[xo]
d' ot

f(@) = [ [xo] + (2 = wo) [ [, o]

mais comme
[z, w0 — f w0, 74]

r — I

f [CU, X, xl] -
alors

f(x) = flwo] + (z — z0) f [0, 1] — (2 — 0)(x — 1) f [, 70, 1]

en continuant ainsi de proche en proche on obtient:

f(z) = flzol + (x — o) [ [xo, 21] + ... + (x — x0) ... (T — 2p1) [ [T0ys ooy Tp) +

(x —x9)...(x — ) f [, X0, ..., Ty

on vérifie que
f(z) = Py(x) + L(x) f [, zg, ..., 2]

o P,(z) est un polynome de degré n tel que P,(z;) = f(z;), pouri =0, ...,n
C’est donc le polyndéme d’interpolation de Lagrange, on ’appelle le polynome
de Newton.

Comme signalé dans I'introduction, I'interpolation polynomiale sera util-
isé comme outil d’approximation (pour la construction des méthodes d’intégration
numérique ou des méthodes de dérivation numérique ou des méthodes d’approximation
des équations différentielles), il est donc fondamental de connaitre une ex-
pression de I'erreur d’interpolation.
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4.5 Erreur d’Interpolation polynomiale :

L’erreur commise lors d’une interpolation est une question fondamentale en
analyse numérique:

e eclle renseigne a priori sur la nature de cette erreur
e clle fournit des informations sur les termes qui y participent

e clle permet d’avoir un ordre de grandeur de I’erreur commise.

Nous allons énoncer un résultat qui répond a ces interrogations dans le
cas ou la fonction f est réguliére (de classe C?, p assez grand).
Théoréme :

Soient f une fonction de classe C"™! dans I et , (2;)i—0,, (n + 1) points
distincts dans I avec g < 11 < ... < T,

Alors pour tout x € [z, z,], il existe ( = ((z) tel que

A9

(n-+1)
)= Palo) = s LAY

(n+1)!

L(x)

(x —zo)(x —21)...(T — ) =

ol

Po(x) = yoLo(w) + 11 L1 (2) + oo+ ynLn(w) = > yiLa(2)

n

avec Ly(x) = H =)

j=0jn (B~ %)

et L(z) = (z — xo)(x — 21)...(x — )

P,(x) est le polynome d’interpolation de Lagrange.

Remarque :
1) Cette formule montre que :
i) lerreur est nulle pour x = z; i.e. x est un point d’interpolation.
ii) Perreur dépend de la fonction considérée ( de f™+1)) et des points
d’interpolations (x;);.
2) Cette formule d’erreur permet de trouver des formules d’erreur pour
I’intégration numérique et la differentiabilité numérique.
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Dans le cas de I'erreur d’interpolation & partir de la forme de Newton, on

f(z) — Py(x) = L(x).f[z, xo, ..., T,].

Comme on a la méme fonction f selon les mémes points x; pour i =0, ..., n,
il s’agit de deux formes du méme polynoéme, et I’erreur d’interpolation est la
méme, d’ol

L(z) = L(z).f[x,xo, ..., Tp).

Exemple :

Déterminer I’erreur d’interpolation polynomiale dans le cas de I'interpolation

parabolique
On approche la fonction f(x) par la parabole passant par les points

(0, 90) = (0, 1), (z1,51) = (1,2) et (z2,42) = (2,5).

Le polynome d’interpolation Ps(x) de degré 2 tel que Py(z;) = f(x;),
i=0,1et?2

avec y; = f(xz) i1=0,1let2, (33'0, yU) N (O? 1)7 ('Tla yl) = (17 2) et <x27 y2) =
(2,5)

D’aprés la méthode de Lagrange,

Py(z) = yoLo(x) + y1L1(z) + yo2 Lo(x)

- D@—2)  ()e-2) (@)1
2 oy T o0

=22 +1

=1

D’apres le théoréme précédent,

19
3!

RIS
E]

(x — xo)(x — 1) (T — x2)

f(x) = Py(x)

~—

z(r —1)(x —2)

Si [f"®(x)| < M alors

o1



(@) =

(le maximum de u(x =

%u(x):m f(

4.6 Exercices:

Veel0,2], [f(x) - Pa(x)]

By(a)] < — [o(z = 1)(z - 2)]

)(z — 2) est atteint en z* =

52
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Série Interpolation Numérique

Exercice I :

1) Déterminer par une méthode directe basée sur la résolution d’un sys-
téme linéaire, le polynoéme d’interpolation P;(x) de degré 1 tel que P (z;) =
f(xi), 1=0,1avecy; = f(z;) i = 0,1, (x0,y0) = (=2,4) et (x1,41) = (2,8)

2) Déterminer par une méthode directe basée sur la résolution d’un sys-
téme linéaire, le polynome d’interpolation Py(x) de degré 2 tel que Py(z;) =
f(z;),i=0,1et 2avecy; = f(x;) i =0,1et 2, (zo,90) = (—2,4), (z1,y1) =
(0,2) et (z2,y2) = (2,8). Conclusion.

Exercice II :

1) Déterminer par la méthode de Lagrange, le polynome d’interpolation
P(x) de degré 1 tel que Pi(x;) = f(x;), i = 0,1 ou y; = f(x;) i = 0,1,
(w0, 40) = (=2,4) et (x1,51) = (2,8)

2) Déterminer par la méthode de Lagrange, le polynome d’interpolation
Py(x) de degré 2 tel que Py(z;) = f(x;), i =0,1et 200y, = f(z;) i =0,1
et 2, (l’o,yo) = <_2>4)7 ($1,y1) = (072} et (x27y2) = (278)

Exercice 111 :

1) Déterminer par la méthode de Newton-Cotes, le polynéme d’interpolation
Pi(x) de degré 1 tel que Pi(x;) = f(x;), i = 0,1 ouy; = f(x;) ¢ = 0,1,
(w0, 90) = (=2,4) et (z1,91) = (2,8).

2) Déterminer par la méthode de de Newton, le polynéme d’interpolation
Py(x) de degré 2 tel que Py(z;) = f(x;),i=0,1et 200y, = f(z;) i =0,1
et 2, (zo,%) = (—2,4), (z1,y1) = (0,2) et (z2,y2) = (2,8). Conclusion.

Exercice IV :

On suppose que (zo,y0) = (0,0), (z1,91) = (1,1) et (22,y2) = (2,8)

1) Déterminer par la méthode de Lagrange, le polyndéme d’interpolation
Py(z) de degré 2 tel que Po(x;) = y;;1=0,1,2.

2) Tracer le graphe des fonctions Py(x) = 322 — 2z et f(z) = z* dans
I'intervalle [0, 2].

3) Calculer Py(z) et f(x) = 23 pour z = 0.9,1.1,1.99, 2.1 et 5. Conclusion.

4) Déterminer l’erreur commise si on en remplace dans I'intervalle [0, 2],
f(z) = 2® par Py(z) = 32 — 2x.

Exercice V :
On suppose que (7o, y0) = (0,1), (z1,91) = (0.5,€2), (z2,%2) = (1,¢)
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1) Déterminer par la méthode de Lagrange, le polyndéme d’interpolation
Py(x) de degré 2 tel que Po(z;) =y;, i =0,1,2 et 3.

2) i) Déterminer une expression de lerreur d’interpolation polynomiale.

ii) Déterminer une borne de l'erreur d’interpolation polynomiale. In-
dépendantes de £ ou & = £(z).

ii) Déterminer une borne de 'erreur d’interpolation polynomiale. In-
dépendantes de £ et de x.

1

1S, El Bernoussi, S. El Hajji et A. Sayah
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Chapitre 5

Integration et dérivation
numérique.

5.1 Introduction :

Si f est une fonction dérivable sur [a,b], la dérivée en ¢ € Ja,b| est définie
par:

7(0) = 1im 29

h—0 h

ou Af(c) = fle+h)—f(c)

Si f est une fonction continue sur [a, b], 'integrale de f sur [a, b] est définie
par

b
/a f(z)dx = ;IZE%R(h)

ot R(h)=>_ f(a+kh).h

k=1

R(h) est la somme de Riemann avec h = b;—“

On sait déterminer f’(c) ”exactement” pour f définie a partir de fonctions
élémentaires (exp: sinz, e, Inzx,...).

On sait aussi calculer fab f(z)dz en utilisant les théorémes fondamentaux
d’intégration pour une fonction continue sur [a, b], et on a fab f(z)dx = F(b)—
F(a) ou F(x) est une primitive de f(x).

95



sin x

Mais il existe des fonctions trés simples comme *2* ou Vcos? x + 3sin’
qui n’ont pas de primitive connue, donc, comment peut-on integrer de telles
fonctions entre a et b?

D’autre part f peut-étre connue seulement en quelques points et sa for-
mule est inconnue (exp: résultats experimentaux,...), donc comment peut-on
dériver ou intégrer ses fonctions?

Du point de vue numérique, la solution a ce probléme est immédiate: nous
avons vu, dans les chapitres précédents, comment approximer une fonction
par une fonction plus simple, facile a dériver ou a intégrer.

De fagon précise si P(z) est une approximation de f dans l'intervalle [a, b],
nous nous proposons d’étudier les approximations:

f'(y) ~ P'(y) y € [a,b]

et
/a b f()ds ~ / b P(z)dx.

5.2 Dérivation.

La dérivation numérique nous permet de trouver une estimation de la dérivée
ou de la pente d’une fonction, en utilisant seulement un ensemble discret de
points.

5.2.1 Dérivée premiére.

Soit f une fonction connue seulement par sa valeur en (n + 1) points donnés
r; 1 =0,1,...,n distincts.

Les formules de différence les plus simples basées sur I'utilisation de la
ligne droite pour interpoler les données ulilisent deux points pour estimer la
dérivée.

On suppose connue la valeur de la fonction en x; 1, x; et x;,1; on pose
f(@ic1) = yie1, [(@i) = yi et f(2is1) = yisr-

Si on suppose que l’espace entre deux points successifs est constant, donc
on pose h = Ti —Tj—1 = Xj1 — Xy

Alors les formules standarts en deux points sont:

Formule de difference progressive :
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f/(xi) ~ f(l’z‘ﬂ) - f(ﬂfz) _ Y1 T Y

Tit1 — T4 Tit+1 — T4

Formule de difference régressive :

f’(iﬂz‘) ~ fxi) — fzi1) _ YT Y

Ty — Tj—1 Ty — Tj—1

Formule de difference centrale

f'(xz) ~ f(@ip1) — fzic1) _ Yitr — Y1 .
Tit1 — Ti—1 Tit1 — Ti—1
Les trois formules classiques de différences sont visualisées sur la figure
suivante, et sont les conséquences de la définition de la dérivée:
Exemple :
Pour illustrer les trois formules, considérons les données suivantes:
(x07 yU) = (1’ 2); (xla yl) = (274); (x27 y2) N (37 8); ($3,y3) = (47 16) et
(24, 91) = (5,32).
Nous voulons estimer la valeur de f'(z2).
Progressive: f(x) = fza)=flez) _ 16-8 _ g

T3—T2 -3
Regressive : f(x) ~ —f@;g:ﬁwl) =35 =4
Centrale : f(z) = f(x;;:ﬁzl) =1z =6

Les données ont été calculé pour la fonction f(x) =2*. f'(x) = 2°In(2)
et pour z =3 f/(3) = 23In(2) = 5.544.

Remarque:
Les formules de différences classiques peuvent étre trouvées en utilisant
la formule de Taylor.

Fla+ ) = @) + @)+ ).
r<n<z+h
e Formule progressive:
h=x1—x;

/ _ f(xig) = fl@) A
f(@) = ; ~3
r; << T

f"(n)
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Perreur est 2 f”(n) donc en O(h). Cette formule peut étre trouvée aussi
en utilisant le polynome d’interpolation de Lagrange pour les points

(i, f(21)) et (Tiga, f(Tir1))-

e Formule regressive:

h= i — Ti—1

f’(ﬂfi) _ f(xi) = flzi)

h
Tio1 <n < ux

N | S

+ =f"(n)

La formule de différence centrale de la dérivée en x; peut étre trouvée en
utilisant la formule de Taylor d’ordre 3 avec h = ;.1 — x; = x; — x;_1

h? h?
f(@ivr) = fla;) + hf'(z:) + ?f”(fﬂi) 7 gf’”(m)
h3 "

! h2 1
f(xia) = f(@:) — hf'(2:) + o (i) — i (12)

T < STy, Ticg S <X

si on suppose que f"” est continue sur [z;_1,x;+1] on peut ecrire la formule
suivante:
/ f(xiJrl) — f(xifl) h? "
f(i) 57 &)
Ti1 <N < Tipy

Perreur est %2 " (n) donc en O(h?). La formule de différence centrale peut
aussi étre trouvée a partir du polyndéme d’intérpolation de Lagrange en 3
points.

On peut interpoler les données par un polynome au lieu d’utiliser la
droite, nous obtenons alors les formules de différence qui utilisent plus de
deux points. On suppose que le pas h est constant.

Formule de différence progressive utilisant trois points:

—f(@iy2) +4f(2ip1) — 3f ()

Tit2 — T4

fl(@) ~

Formule de différence régressive utilisant trois points:
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ooy Sf (@) —Af(zia) + fzig)
f (iﬁz) ~
Ty — Tj—2
Exemple : Formules de différence en trois points:
En utilisant les données de ’exemple précédent, on trouve:
f(x;) ~ w 4 progressive.

f(x;) ~ M—S regressive.

5.2.2 Formule générale en trois points.

La formule d’approximation en 3 points de la dérivée premiére, basée sur le
polynome d’interpolation de Lagrange, n’utilise pas des points équidistants.

Etant donné trois points (z1,y1); (z2,y2) et (z3,y3) avec x1 < x5 < w3, la
formule suivante permet d’approcher la dérivée en un point = € [z, z3]. Les
dérivées aux points x; sont les suivantes:

2331—.1'2—1’3 Ir1 — I3 T1 — X9
fl(xy) = y1 + Yo + Ys;
S P | AN LU Py | et L Fpmpy | gy
To — X3 2372—.1'1—1’3 To — Iq
f(xg) = Y1 + Yo + Ys;
(z2) (21— 22) (w1 — @3)”" " (22— w1)(wa —a3) " (23— x1) (w3 — 22)
f/(ﬁg) _ I3 — X2 I3 — Iq 2.%’3 — T9 — I1 Us:

(21 — z2) (21 — $3)y1 - (z2 — @1) (20 — $3)y2 - (z3 — 1) (73 — 22)

Le polynéme de Lagrange est donnée par

P(x) = Li(x)y1 + La(2)y2 + L3(z)ys

(x — z9)(x — x3)
Lafe) = (21 — @2) (21 — 23)

(z — 1) (z — 3)
Lafo) = (zg — 1) (22 — 73)

(x —z1)(x — 29)
Lalw) = (23 — 21)(23 — 72)

L’approximation de la dérivée premiére est donnée par f'(x) ~ P'(z), qui
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peut s’ecrire

P'(z) = Li(@)yr + Ly(2)ys + Ly(2)ys
ou
20 — x9 — T3
(z1 — z2) (21 — x3)
20— x1 — T3

Ly(x) =

Li(x) =
) = =) (w2 — 29)
20 — 11 — T2

Li(z) =

) = =) (s — )
donc

20 — Ty — T 20— 11— x 20— 11— X

f’(a:): 2 3 " 1 3 1 2

)ys-

(l‘l — .Z'Q)(H?l — 1'3) (ZCQ — .1’1)(.1'2 — SCg)yz (ZE'3 — $1)($3 — T

5.2.3 Dérivées d’ordre supérieur.

Les formules de dérivées d’ordre supérieur, peuvent étre trouvées a partir des
dérivées du polyndéme de Lagrange ou en utilisant les formules de Taylor.

Par exemple, étant donné 3 points x; 1, x;, x;11 équidistants, la formule
de la dérivée seconde est donnée par:

f() = %[f(%ﬂ) —2f(z:) + f(zi1)]
lerreur est en O(h?).
Dérivée seconde a partir du polynéme de Taylor.
fla+h) = f(@) +hf'(x) + 5 (@) + 5 7 () + 5 O ()
fla—h) = fl@) = hf'(x) + 5 f"(x) = 5 " (@) + 5 f @ (e)
r<m<z+h et x—h<n<ux

fl@+h)+ flz —h) —2f(x)
'(a) = :
erreur est en O(h?).
Pour obtenir les formules de la troisiéme et la quatriéme dérivée, on prend
une combinaison linéaire des développement de Taylor, pour f(x+2h), f(x+

h), f(x —h) et f(x —2h).
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La table suivante donne différentes formules centrales toutes en O(h?):

£ = o (i) = fi)]

£) = o [Flin) = 20 + (i)

F70) 2 s [ (sea) = 2f () + 20 (wi2) = F o)
FOe) o 1 [ isa) = Af (o) + 6/ (53) = 4f (@) + fi-a)].

En utilisant les polynémes d’interpolation de Lagrange les dérivées d’ordre
p sont calculées par:

Pa) ~ 32 A (o

Ai(a) =LP(a) p<n

ZAi(a):vf:O 0<k<p-1

ZA )k =k(k—1)..(k—p+1)a"? p<k<n.

Remarque :

La fomule est exacte pour les polyndémes de degrés < n.

Le systéme linéaire donnant les A;(a) a un déterminant de type Vander-
monde différent de zéro si les x; sont distincts.

Les A;(«) sont indépendants de f et peuvent étre calculés une fois pour
toutes.
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5.2.4 Etude de l’erreur commise.

D’aprés le chapitre précédent, si f est connue en (n+1) points x;,i =0, ..., n
alors f(z) = P,(x) + e(z), ou e(z) est I'erreur d’interpolation. En dérivant
on obtient

Fl) = Pa) + ¢
ZA ()
et ¢(c) = di ( O >) = L (L@ Sl o)

(n+1) 1 d n+1
= (n+1)‘L( ). f (&) + mL(x)-@ (S ()

On remarque tout de suite que l'erreur de dérivation est nulle si f est un
polynéme de degré inférieur ou égale & n. Si on prend pour x un point
x;, le second terme de la dérniére somme s’annule, sinon il faut connaitre
L (Ot (&), ce qui est difficile car la fonction 2 — &, étant inconnue. On
peut donner une forme si f est n 4 2 fois dérivable en utilisant la notion de

différence. En effet
d

L (F (€)= 2 (flros s )
flzo, ooy Tpyx + h] — flxo, ..., Tp,

AT
ho h
= }lef[ﬂj'o, oy Ty T, T+ D]

= 1 (n+2)
Ml o)

On constate qu’on devra se contenter d’une estimation

1 , 1
| e(z) |< (n+ 1) | L' (x )|Mn+1+m

| L(x) | Mo,

5.3 Meéthodes numériques d’intégration.

Le but de cette legon est de calculer numériquement des intégrales définies
ou indéfinies. Soit f : [a,b] — R, une fonction continue donnée. On désire

approcher numériquement la quantité fab f(z)dx
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5.3.1 Formules fermées.

On appelle ainsi les formules quand la fonction f est continue sur lintervalle
la,b]. Les points d’interpolation z; verifient a = 2o < 11 < ... < T, 1 <
T, = b.

Formule des rectangles.

La formule des rectangles est une formule dite a un point zo = a. Le
polynome d’interpolation associé est Py(z) = f(a) et L(z) = z — a pour tout
x appartenant a [a, b]. D’ou

I(f) = I(Py) = f(a)(b—a).

L’interprétation graphique consiste donc a remplacer fab f(x)dx par aire
du rectangle de base [a, b] et de hauteur f(a).

Formule des trapézes.

La formule des trapézes est une formule a 2 points : o = a et z; = b.
Le polynome de Lagrange associé a ces deux points est P;(z) = f(a) (£22) +

f(b) (2).D’on

[(f)z[(Pl):/ Pﬂ@@:M(b-@.

Formule de Simpson.

La formule de Simpson est une formule a trois points zg = a , z1 =
et x9 = b: . Le polyndme associé a ces trois points est Py(z) = f(a)Lo(z) +
f(E2)Lyi(z) + f(b)Ls(z). Notons que

a+b

On tire donc la formule suivante:

(b—a)
6

I(f) = 1(P2) =



Formules ouvertes.

On appelle ainsi les formules quand la fonction f est continue sur 'intervalle
la,b[. Les points d’interpolation z; verifient a < zg < 1 < ... < 1 <
T, <b.

Formule de Steffensen.

Il en existe une infinité.

__atb

e Une a 1 points avec 7o = 57 qui donne la formule du milieu suivant:

a+b
2

I(f) = (b—a)f(——)

Cette formule est exacte pour tout polynéme de degré 1.

a+2b

2a+b
3

3

=15 (2 (327

Cette formule est exacte pour tout polynéme de degré 1.

e Une a 2 points avec xy = et r1 = qui donne la formule

suivante :

e Une a 3 points avec g = 342 et 2, = 4L et 25 = ?’lﬁ% qui donne la

4 2
formule suivante :

[<f):bga <4f (3az—b>+2f (a;—b) _2f(a44—13b))'

Cette formule est exacte pour tous les polynomes de degré 2.

5.3.2 Etude générale de ’erreur commise.

Pour que les formules d’intégration numérique données précédement soient
intéréssantes, il faut que l'on puisse estimer 'erreur E(f) = I(f) — I(P,)
avec précision. Or si f est suffisamment dérivable, on a

b
E(f)=1(f—-P) :/ {( 1 f(n+1)(§$)L(l’) dz.

n+1)!

Théoréme : Supposons que E(f) = 0 pour les polynomes de degré au plus n
et que la fonction f € C™*! ([a,b]). On dit alors que la méthode est d’ordre
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n + 1. Si on pose M,1 = m[a%] | f™*+D(x) |, Une premiére estimation de
xE|a,

Perreur est .
1
E < —M, L dx.
B 1 Mo [ 1 24a) [ do
Théoréme : En plus des hypothéses du Th précédent, on suppose que le
polynome L(x) ne change pas de signe sur [a, b], alors en utilisant le Th de

la moyénne pour E(f), on obtient

1
E(f):(nﬂ)!

1 € la,b]

£ / L(z)dz.

En utilisant ce dernier Théoréme on peut estimer les erreurs des méthodes
vues ci-dessus.

e Pour la formule du rectangle on a:

b b— 2
B = £ [ o -ade= 5T e
cette méthode est d’ordre 1.
e Pour la formule du trapéze on a:
1 b "
B = 50 [ (o= o = e = -0 - oy

la méthode de Trapéze est dordre 2.

e Pour la formule de Simpson on a:

by =L [T,

la méthode de Simpson est dordre 4.

Exemple :
I = fol @*xzdx, a =0, = %,b =1, f(0) = 17f(%) = 7788, f(1) =
.36788.
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1. Rectangle: I ~ f(0) = 1.
2. Trapezes [~ |LOHM] — 68303

3. Simpson: I~ % [f(0)+4f(3)+ f(1)] =.74718.

4. La valeur de I a 5 décimales est .74718.

5.3.3 Formules composées.

Plutot que d’augmenter le degré du polynéme d’interpolation, on peut obtenir
une formule d’integration en découpant l'intervalle d’intégration en sous-
intervalles et en appliquant des formules simples sur chacun des sous-intervalles.
Formule de trapéze.
Si n est entier, posons

b—a

h = Ty =a-+kh, k=0,...n

alors

/ f(z)de = Z (/+ f(x)d:r)

- Z (Lot ey )

ou 1y € [$k7$k+1] k=0,..,n—1

Développant et regroupant les termes qui apparaissent 2 fois, on obtient

1) =2 | @) + 23 fat k) + £0)| ~ 237 Pl
k=1 k=0

En appliquant le Th des valeurs intermédiaires, on peut réécrire ’erreur
sous la forme

nh? (b—a)

Bf) = =2 ) = =

T f"(n)h?.
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Ceci nous donne la formule du trapéze composée pour laquelle ’approximation
est donnée par:

n—1
To(f) = g @) +23 fla+kh) + £(b)
k=1
et lerreur par
wr(p) = oD e

Formule de Simpson composée.

Supposons maintenant que n soit pair, groupant les intervalles 2 & 2 et
appliquant la formule de Simpson sur [z;, z;12], on obtient
3 )

fla)+4 > fla+kh)+2 > fla+kh)+ f(b) 5 00

k impair k pair

I(f) =

Ceci nous conduit a la formule de Simpson composée pour laquelle 'approximation
est donnée par

h

Sa(f) = 3 fla)+4 Y fla+kh)+2 > fla+kh)+ f(b)

k impair k pair

et 'erreur par
BS(f) = 19 S

Exemple : Déterminer fol e dz.
Si n désigne le nombre des intervalles utilisés.

T.(f)  ET(f)
73137 015

74298 3.84 x 1073
74658 9.58 x 10~*
16 74676 1.39 x 1074
32 .74680 5.98 x 107°

0 A NS

Si nous désirons obtenir 6 décimales exactes, il nous faut déterminer h tel

que
2

h
max | f"(n) | 5 S5% 1077, (5.1)

0<n<1
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Pour une partition réguliere x, = kh,h = %; donc nous cherchons n tel
que

1 1
2 "
2 piax | [ | 55—

or f'(x) = e ¥ (422 — 2) et f"(x) = e " 4x(3 — 222). Puisque f”(z) ne
change pas de signe sur [0;1],

max | f*(n) [= max{| f*(0) [, f"(1) [} = 2.

0<n<1

On voit que (5.1) sera satisfaite si

106
TL2 Z ?, n > 578.

Remarque Dans le choix de la précision demandée, il faut tenir compte des
erreurs d’arrondi et de ’accumutation des erreurs

5.4 Exercices
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Série integration et dérivation.

Pour les problémes des exercices (5.4) et (5.4), donner des approximations
des dérivées dans les cas suivants:

En utilisant la formule de différence progressive.
En utilisant la formule de différence regressive.
En utilisant la formule de différence centrale.
Exercice : 1
Approcher 3/(1.0) si
r=[08 09 1.0 1.1 1.2]
y =1[0.992 0.999 1.000 1.001 1.008]
Exercise: 2

1. Approcher y/(4) si

r=[0 1 4 9 16]
y=1[0 1 2 3 {4
2. Donner une expression de I'erreur de dérivation en x = 4.

3. Donner une majoration de l’erreur independament de x et de &,.

Exercise : 3
Calculer y"(2) si

z=[0 1 2 3 4
y=1[0 1 4 9 16]

Exercise : 4

Calculer fog sin? zdx en utilisant la formule du trapéze et la formule de
Simpson. Comparer avec le résultat exact.

Exercise : 5

Pour le probléme P1 approcher I’ integrale:
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1. En utilisant la formule de trapéze composée avec 2 intervalles.
2. En utilisant la formule de trapéze composée avec 10 intervalles.
3. En utilisant la formule de Simpson avec 2 intervalles.

4. En utilisant la formule de Simpson composée avec 10 intervalles.

1
P1: /xsin(wx)daz
0

Exercise : 6

En utilisant les formules d’estimation d’erreur, trouver les bornes d’erreur
pour le probleme P1 dans les cas 1-4, puis calculer la valeur exacte de
I'integrale et comparer les erreurs exactes ”E(f)” et les bornes d’erreurs
trouvées.

1

S. El Bernoussi, S. El Hajji et A. Sayah
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