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— Chapitre 1
Résolution de systemes lineaires

Méthode direct

1.1 Position du probléme :

Dans ce chapitre, nous considérons un systeme d’équations
linéaires d’ordre n de la forme

Ax =10 (1.1)

Ici A est une n x » matrice réguliere de coefficients s;;,1 <i,j <n,
donnés, » est un vecteur colonne a n composantes v;, 1<;j<n,
données et x est un vecteur colonne a n composantes x;,1 < j<n,
inconnues. Dans la suite, nous utiliserons les notations matricielles
standards, i.e

a1 a2 - - .- Aup by X1
a1 22 . . . A2y ) X2

, b= , b=
an,'l anlz . . . an,n L bn | L x” ]

Le systeme (4.1) peut s’écrire explicitement sous forme d’un
systeme de » équations a » inconnues xy, x, ....., x,:
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1.1. Position du probleme :

ay1x1+a12xX2+..... + ay pxp= by

az1x1+azpx+..... +ax nxn= by

Ay 1X1+0n 2X2+ ... + Ay nXn= by

Définition 1.1: On dira que la matrice A est triangulaire supérieure
(respectivement triangulaire inférieure) si s;,= 0 pour tout couple
(i,j) tel que 1 < j<i <n (respectivement 1 <i<j <n).

Définition 1.2 : Si A est une matrice triangulaire supérieure
(respect. triangulaire inférieure), on dira que les systémes (1.1) et
(1.2) sont triangulaires supérieurs (resp. triangulaire inférieurs).

Supposons un instant que la matrice 4 soit triangulaire supérieure

nous constatons alors que le déterminant de la matrice 4 est

le produit des valeurs diagonales s; et, puisque 4 est supposée
réguliere ; nous avons a;# 0,1 < i < n. Ainsi, quitte a diviser chaque
équation de (1.2) par le terme de la diagonale, il n’est pas restrictif
de supposer que s;=1,1<i<n Dans ce cas, la matrice est une
matrice triangulaire avec des valeurs 1 dans sa diagonale et, de
(1.2), nous déduisons successivement les inconnues x,, x,_1, ..., x;.

En effet, nous avons :

xp=bn/a, ,

etpouri=n-1,n-2,..3,21:
xXi=bi/a;— Yi_iq (a;%))/ az.
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1.2. Méthode de Gauss

Dans le cas ot1 la matrice A est réguliere mais non nécessairement
triangulaire supérieure, la méthode d’élimination de Gauss aura
pour but de transformer le systeme Ax = b en un systéeme équivalent
triangulaire supérieure avec des valeurs 1 sur la diagonale.

1.2 Méthode de Gauss

1.2.1 Elimination de Gauss sur un exemple :

Soit le systeme linéaire c est une matrice triangulaire :

4 8§ 12 4
A=13 8 13 et b=1|5 (1.3)
2 9 18 11

Le systéeme Ax = devient dans ce cas :

4x14+8xr+12x3=4
3x14+8x2+13x3=5 (1-4)
2x14+9x,+18x3= 11

Premiere étape,
ca consiste a diviser la premiére équation de (1.4) par a;1=4
(appelé pivot) pour obtenir :
xX1+2x,+3x3= 1. (15)
Ensuite nous soustrayons 3 fois (1.5) a la deuxieme équation
de (1.4) et 2 fois I’équation (1.5) a la troisieme équation de (1.4) :

Nous obtenons un systeme équivalent a (1.4) qui est
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1.2. Méthode de Gauss

xX1+2x2+3x3=1
2xr+4x3=2 (16)
5x,4+12x3=9

Deuxieme étape,

nous divisons la deuxieme équation (1.6) par 2 (le deuxieme
pivot). Nous obtenons :

Xo+2x3=1 (1.7)
Et par la suite :

X1+2x2+3x3=1
Xo+2x3=1 (18)
ZX3: 4

qui est équivalent au systeme (1.4).

Derniere étape,

finalement, il suffit de diviser la troisieme équation par le troisieme
pivot, qui est ici 2, pour obtenir :

X1+2x2+3x3=1
x2—|—2x3: 1 (19)

X3= 2

De (1.9), il est facile de déduire successivement les inconnues

X1,X2,X3 :
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1.2. Méthode de Gauss

1.2.2 Algorithme d’élimination

Nous présentons maintenant un algorithme qui, effectué par
un ordinateur, permet de réaliser I’élimination dont, le mécanisme
a été décrit dans la section précédente. Pour réaliser cet objectif,
nous appelons A la matrice et v@ le second membre obtenus
avant la ieme étape de I’élimination. Ainsi le tableau A(Va la forme

suivante :
B 1 1 1 1 1 1 T
dV a) &Y LG AV L ey
2 2 2 2 2
0 ”gz) a§3) ”§4) I aéi) agn)
3 3 3 3
00 G
o 0 0 4 g agy
o O 0 O
. 0O O ) .
Al) = _ ,(1.10)
.a(zfl)
i—1,i—1
S i)
_ 0 aly am

Avec  AW=A, et Ax=b

La ieme étape de 1'élimination consistera a passer du tableau
A@ au tableau AV et du tableau v+V) par opération suivante :

ieme étape. Nous divisons la ieme ligne de 4@ par le ieme pivot o
(supposé différent de zéro), puis on remplace la ligne """ par
la ligne

Lgf*l): Lg.i)—mﬁ*Ll(i), j=i+1,i+2,..,n oit, mj; = agl])/ai(;) (1.11)

Nous faisons de méme avec le second membre :
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1.2. Méthode de Gauss

1.2.3 Matrice élémentaire de Gauss

Soient les matrices élémentaires de Gauss

1 0 0
—m71 1 0
—m 0 1
Ml— 31 ’
0
— My 0 0 1

4 k —iéme colonne

1 0 0 0
0
0
0
. 1 . D\
M; = k — ieme ligne (1.13)
; —Mis1e -1
0
1 0
0 0 01
k)
ot =" i=k+1,k+2,..,nen supposant que st o,
kk

En posante.= (0,.....,1,0,...,0)" etmy= (0,0, ..., =t 4, ..., —m,, ) | ,ON Obtient
M= 1 +mel et on vérifie que m; est inversible et que M '= 1 — mye]
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1.2. Méthode de Gauss

Remarque : Matriciellement, dans 'algorithme d’élimination
la premiere étape est équivalente au produit matriciel A®= m;AM.

L’étape finale est alors donnée par :

AMW=1U =M, 1M,_5...M;M; AN, AD) = A,

Evidemment, l’étape finale n’est accessible par ce procédé que
si tous les pivots 4’ sont tous non nuls.

Définition : 1.3 : 4, est la sous matrice principale d’ordre k de
A si A, est lak x kmatrice de coefficienta;;, 1 <i,j <k <n.

Nous avons le résultat suivant.

Théorémel : Si toutes les sous-matrices principales 4, de la
matrice de départ A sont régulieres, k=1,2,..,n, alors les pivots
obtenus successivement dans 1’élimination de Gauss sont tous
non nuls. Inversement si tous les pivots obtenus au cours de
I’élimination de Gauss sont non nuls, alors toutes les sous-matrices
principales de 4 sont régulieres.

det A= oV x a2 x ... x 2 (1.14)

n

Il est également facile de vérifier que les opérations faites sur
la matrice A impliquent, si 4; est la sous-matrice principale d’ordre
ide A:
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1.2. Méthode de Gauss

det A;=det ALV
det Ay= agll) det Aéz)
det Az=a{Val?) det AT

(1.15)

det A= ol .al) | det )

Nous concluons de (1.14) et (1.15) que si det4; # 0 pour tout
i=1,2,...n alors les valeurs a{),433, ...} |, ., 4} sont non nulles.

1.2.4 Elimination da Gauss avec changement de Pivot

Comme nous venons de le voir, I'algorithme d’élimination
donné dans la section précédente ne peut étre exécuté que si
les pivots successifs sont non nuls, c’est a dire si toutes les sous-
matrices principales de 4 sont régulieres. Il est évident qu'il est
impossible de traiter par cet algorithme le systeme suivant :

0x1+x2+3x3=1
5x142x,+3x3=4 (1.16)
6x1+8xy+x3=1

Car, dans ce cas, on ne peut pas diviser la premiere ligne par le
premier pivot qui est nul (la premiere sous-matrice principale
est donc singuliére!). On voit immédiatement que les choses se
présentent mieux si on échange la premiere et la troisieme ligne
pour obtenir

Merci denousrendre visite sur
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1.2. Méthode de Gauss

6X1+SX2+X3: 1
5x14-2x04+3x3= 4 (1.17)
0x1+x2+3x3=1

En effet, maintenant nous pouvons diviser la premiere ligne
par le pivot 6.

Cette maniere de faire s’appelle” pivotage partiel” ; elle consiste
a échanger deux équations dont le but d’avoir le plus grand
pivot possible en valeur absolue.

Le probleme peut se poser méme avec un pivot trop petit.

Pour éviter de diviser par des pivots trop petits pouvant conduire
a des solutions absurdes.

Exemple : soit a résoudre le systeme

107 0% +x,=1
X1 —Xp= 0

La solution exact est x;=x,=1/(1+107'%) ~ 1.

Cependant, si on suppose que les calculs sont effectués en
virgule flottante, avec mantisse a 9 chiffres, la résolution du
systeme par la méthode de Gauss donne des résultats différents
selon qu’on l'applique avec ou sans pivot

(i) Si on applique la méthode de Gauss sans pivot on obtient

-10 —
niy = 10 et 107 x+n=1
(=1 -10"")x,= —10%
Ce qui donne x;~ 0, x,~ 1 a cause des arrondis des résultats avec
neuf premiers chiffres significatifs.

(i) Si on adopte la stratégie du pivot partiel qui consiste
a mettre en premiere ligne celle dont le coefficient de «
plus grand en module alors on permute les lignes pour StsEEhne
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1.2. Méthode de Gauss

X1—Xp—= 0
10_10361 +x=1

Pour lequel m; =101 et qui conduit a la solution approchée

xv~1 et xy=x.

En conclusion, on peut adopter automatiquement la stratégie
du pivot partiel, c’est a dire a chaque étape k :
(k)

choisir al(ii): maXy>; (A

Matriciellement, cette opération revient a multiplier la matrice
AW par une matrice de permutation p, avant d’appliquer I’élimination
de Gauss. L'étape finale est données par A= u = M,,_1P,_1;M,_».....M»Py;M; P;; A
ou les M; sont des matrices élémentaires de Gauss et les p,; des
matrices de permutations (elle échange les lignes k et 1) pour
1>k

Si a une étape k on n’a pas besoin de pivoter, 1'écriture reste
valable avec p,=1 ou1 I est la matrice identité.

LR 1l

oS o O
e}
—_

o o o O

w « « . Pg=01 . Py=1 . . |¢—————
Py= K “ k —ieme ligne (1.18)

0 0

P =1 Py=0

Remarque : p,4 échange les lignes « et 1 alors que Ap, échange
les colonnes k et i. on a encore :p,= P,;'= P},
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1.2. Méthode de Gauss

Définition 1.4 : Une matrice de permutation est un produit de
matrices de permutation.

1.2.5 Méthode de Gauss avec pivot total

On pourrait aussi adopter la stratégie du pivot total qui consiste,
a chaque étape k, a prendre ay = maxi; - af] | . Ce qui reviendrait
a multiplier la matrice A® par deux matrices, de permutation

P et Q I'une a droite pour permuter les lignes et 1’autre pour

permuter les colonnes.

1.2.6 Factorisation LU

Tout va donc trés bien pour ce systeme, mais supposons qu’on
ait a résoudre 3089 systemes avec la méme matrice A mais 3089
seconds membres » différents (par exemple on peut vouloir calculer
la réponse d'une structure de génie civil a 3089 changements
différents). Il serait un peu dommage de recommencer les opérations
ci-dessous 3089 fois, alors qu’on peut en éviter une bonne partie.

Comment faire?

L’idée est de “factoriser” la matrice 4 , c’est a dire comme un
produit A = Lu, ou L est triangulaire inférieure et u triangulaire
supérieure.

On reformule alors le systeme Ax =5 sous forme Lux =0 et on
résout maintenant deux systémes faciles a résoudre car triangulaires
Ly=betux=y.

La factorisation Lu de la matrice 4 découle immédiatement de
l’algorithme de Gauss.
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1.2. Méthode de Gauss

Théoreme : Décomposition LU d’une matrice soit A € M,(IR)
une matrice inversible, il existe une matrice de permutation p
telle que, pour cette matrice de permutation, il existe un et un
seul couple (L, u) ot L est une matrice triangulaire inférieure de
termes diagonaux tous égaux a 1 et u est une matrice triangulaire
supérieure, vérifiant

PM = LU

*Preuve : L'existence de la matrice pr et les matrices L, u peut

s’effectuer en s’inspirant de I’algorithme ”Lu avec pivot partiel”.

En effet, chaque étape i peut s’écrire A0)= m; ;PE-D A1 olt AD= A, pi—)
est la matrice de permutation qui permet le choix du pivot
partiel, et M;_; est une matrice élémentaire de Gauss (matrice
d’élimination qui effectue les combinaisons linéaires de lignes
permettant de mettre a zéro tous les coefficients de la colonne
i situés en dessous de la ligne i. Pour simplifier, raisonnons sur
une matrice 4 x 4 (le raisonnement est le méme pour une matrice

n Xxmn.

En appliquant I'algorithme
M3P®I M PP M PWA = U

Les matrices pi+V et M;,, ne permutent pas .Prenons par exemple

1 0 0 O 1 0 0 O
M) 01 0 O PO)— Py, 01 00
0 a1 0 0 0 01
0 b 01 0 010
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1.2. Méthode de Gauss

On vérifie facilement que m,r® # P? M, mais par contre, comme
la multiplication a gauche par pi+) permute les lignes i + 1 et i + &,
pour k > 1 et que la multiplication a droite permute les colonnes
i+1eti+kdenm;, La matrice M= pi+)pm,pi+1) est encore une matrice
triangulaire inférieure avec la méme structure que M; : On a
juste échangé les coefficients extra diagonaux des lignes i+1 et
i+k Ona donc

P(i“)Mi:]\N/L-P(i“) car pli+1) pli+1)_ |,

Dans 1'exemple précédent, on effectue le calcul

PG M, PG =

(@] o e} —
S —

(@] —_ (e] e}

— @] e} e}
2

qui est une matrice triangulaire inférieure de coefficient tous
égaux a 1, et comme P pG)= 1, on donc

PG My=M,P®)
Pour revenir a notre exemple ot » = 4 on peut donc écrire

MsMpPRIM PPN A = U
Mais par le méme raisonnement que précédemment, on @ um,=m, P

~

oll M, est encore une matrice triangulaire inférieure avec des 1
sur la diagonale. On en déduit que

~

MsMyM; P PR PM A — 1,
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1.3. Méthode de Choleski

soit encore PA = LU ou1 P = PP)P()p() est bien une matrice de permutation

et L = (M;M,M;)"" est une matrice triangulaire inférieure avec des
1 sur la diagonale.

Le raisonnement pour n=4 se généralise facilement a n arbitraire.

Dans ce cas, I’échelonnement de la matrice s’écrit
M, PN, _,P=2) MyPOMPDA =U

Et se transforme en

ou F est une matrice triangulaire inférieure avec des 1 sur la
diagonale.

On a ainsi démontré I’existence.

2. Unicité : Pour montrer l'unicité du couple (,u) a p donnée,
supposons qu’il existe une matrice p et des matrices L, et L,
triangulaires inférieures et u; u, triangulaires supérieures telles
que PA = LiU; = LoUs.

Dans ce cas, on a L;'L; = U,u; !, or la matrice ;'L,est une matrice
triangulaire inférieure avec des 1 sur la diagonale, et la matrice
Uu;! triangulaire supérieure, on en déduit que ;'L = LU = 1
et donc L= L, et U= U,.

1.3 Méthode de Choleski

On va maintenant étudier la méthode de Choleski, qui est une
méthode directe adaptée au cas ou la matrice A est symétrique
définie positive (s.d.p). On rappelle quune matrice A € M,(IR)
de coefficients (s);,_,est symétrique si AT= 4, ou AT désigne la
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1.3. Méthode de Choleski

transposée de 4, définie par les coefficients (a;),., et que A est
définie positive si Ax.x > 0 (ou xTAx > 0) pour tout x # 0. Dans ce cas
,x.y désigne le produit scalaire de x et y de Ir". On rappelle que
si A est s.d.p elle est en particulier inversible.

1.3.1 Description de la méthode

Commengons par un exemple. On considere la matrice

qui est également symétrique. Calculons sa décomposition Lu.
Par échelonnement, on obtient

1 -0 0 2 -1 0
A=LU=| -05 1 0 0 3/2 -1
0 -2/3 1 0 0 4/3

La structure Lu ne conserve pas la symétrie de la matrice A.
Pour des raisons de cotit mémoire, il est important de pouvoir
la conserver. Une facon de faire est de décomposer u en sa
partie diagonale fois une matrice triangulaire.

On obtient
2 0 1 —-1/2 0
u=|o0 3/2 0 1 —2/3
0 4/3 0 0 1

On adonc u = DL", comme tous les coefficients de D sont positifs,
on peut écrire D =vDvD , ou VD est la matrice diagonale dont
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1.3. Méthode de Choleski

les éléments diagonaux sont les racines carrées des éléments
. ~nT ~
diagonaux de D, on a donc A = LvDvDLT=LL , avec L= LVD.

Notons que la matrice L est toujours triangulaire inférieure,
mais ses coefficients diaginaux ne sont plus astreints a étre égaux
a 1. C’est la décomposition de Choleski de la matrice A.

1.3.2 Théoréme : Décomposition de Choleski

Soit A € M,(IR) (n>1) une matrice symétrique définie positive.
Alors il existe une unique matrice Le M, (IR) telle que

1. L est triangulaire inférieure, L= (1,)!_,

2. 1;>0, pour toutie{1,2,..,n}

~~T
3. A=LL

1. Existence de la décomposition Soit A € M, (IR) (n > 1) une matrice
symétrique définie positive. On sait déja qu’il existe une matrice

de permutation P et L triangulaire inférieure et u triangulaire
supérieure telles que ra=ru. A 'avantage dans le cas ou la
matrice est s.d.p, est que la décomposition est toujours possible
sans permutation. On prouve l'existence et 'unicité en construisant
la décomposition, c’est a dire en construisant la matrice L.

Démonstration par récurrence sur n

1. Pour n=1, on a A = (a;;).Comme 4 est s.d.p a;;>0. On a peut
2 (° . 4 < . ~~T
définir L= (1,;) ou I;;=,/ai;, et on a bien A =LL .

2. On suppose que la décomposition de Choleski s’obtient
pour A € M,(IR), pour 1 < p < n et démontrons que la propriété est
encore vraie pour A € M,(IR) s.d.p.

Soit donc 4 € M,;1(IR) s.d.p ; on peut écrire A sous forme :
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1.3. Méthode de Choleski

ol B € M,(IR), a € IR" et a ¢ IR. Montrons que B est s.d.p, c’est a

dire que By.y > 0, pour tout y € IR"— {0}, et x = ( Y ) c IR"!
0
Comme 4 ests.d.p,on a

0<Ax.x_[; i](z).(g)_{f; .[Z]_By.y

Et donc B est s.d.p. Par hypothése de récurrence, il existe une
matrice M € M,(IR), M = (m;)};_, telle que :

l.mj=0 si j>i (triangulaire inférieure)
2. m;;> 0
3. B=MM".

On va chercher L sous forme

M 0
bt A
~~T
Avec be IR" et A€ IR} tels que A =LL . Pour déterminer b et 2,
~~T

calculons LL =4, et on veut que les égalités suivantes soient
vérifiées :

Mb=a et bTh 4+ A=«

Comme M est inversible (en effet det (M) = 1, m;;> 0), la premiere
égalité ci-dessous donne : 1-'= Ma et en remplagons dans la deuxieme
égalité, on obtient :

(M~ 'a)T(Ma) + %= a, et donc a7 (MT) "1 (M 1a) + A*= a SOit encore 4

soit encore aT(MM") a4+ A% = «,

c’est a dire aTB~la+ A2= « (2.1)
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1.3. Méthode de Choleski

Pour que (2.1) soit vérifiée, il faut que
a—a'B~la>0 (2.2)

Montrons que cette condition est effectivement vérifiée :

7161

Soit z = [ b
-1

] e IR". On a z #£0 et donc 0 < Ax.x car A est s.d.p

et donc

On a donc Az.z = a—a"B1a > 0 ce qui démontre 1'inégalité (2.2)

On peut choisir ainsi A =va—a7B-1a> 0 de tel sorte que (2.1) soit
vérifiée.

Posons :

~ | M 0
L—
[ (M 'a)™t A }
~~T

L est bien triangulaire inférieure et vérifie 1,>0et A =LL .

On a terminé ainsi la partie existence.

2. Unicité et calcul de L Soit donc 4 € M,(IR) s.d.p ; on vient de

montrer qu’il existe donc Le M, (IR) triangulaire inférieure telle
~~T
que;>0et A=LL . Onadonc

aij= Y0y Lyl i v(i,j) €{1,...,n}* (2.3)

1. Calculons la premiere colonne de L; pour j=1,0na

a11=linln (1,=0,vj > 2);et donc 1= /ay;
= Io1ln (I,;=0,Vj =2 3); =12
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1.3. Méthode de Choleski

ai1= Il lﬂ:% Vie{2,..,n}.

2. On suppose avoir calculé les q premiéres colonnes de L. On
calcul la colonne (g+1) en prenant j=q+1 dans (2

. +1
pouri=g+1 aq+1q+1:ZZ:1 lyviklgy 1k lgr1k= 0 pour k > q+2

=L Zéﬂk“‘i“‘i“ — Zq+1q+1:\/aq+1q+1 -Xl l§+1k
Notons que 4411541 - £}, 2 >o0carl existe.

On procede de la méme manieére pour g +2,....,n0ona:

41
tigr1= Y0 lilgs k= X _q lilgr 1+ lige1lg+1q+1

Et donc

o AL . 1
llq—I—l— (aiq+1 TR lzquJrlk)quq+1

On calcule ainsi toutes les colonnes de L. On a donc démontré
que L est unique par moyen constructif de calcul de .
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— Chapitre 2
Méthodes itératives pour la résolution

des systemes linéaires

2.1 Rappels: normes, rayon spectral

Définition 1.1 : Norme matricielle-norme induite) On note
M,(IR) 'espace vectoriel sur IR des matrices carrées d’ordre n.

a. On appelle norme matricielle sur m,(Ir) une norme ||.|| sur
M,(IR) telle que :

||AB[| < [[A[[.|[B]] VA, B € My(IR).

b. On considere 1r" muni de la norme ||.||. On appelle norme
matricielle induite sur m,(Ir) la norme encore notée ||.||, la norme
sur M,(IR) définie par :

||A||=sup {||Ax||;x € IR", ||x|| =1} VA € M,(IR)

Proposition 1.2 Soit M, (Ir) muni d’une norme induite ||.||. Alors
pour toute matrice A € M,(IR), On a:

Ljjax|| <|lAll1x]] Vx € IR".

2.||Al| = max {||Ax||;x € IR",||x|| = 1}

3.||A]| = max{"|ﬁ“',x € IR"— {0}}

4.|||| est une norme matricielle.
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2.1. Rappels: normes, rayon spectral

Preuve 1. Soit x € IR" - {0} posons y =

|A]| (car ||A|| = HSI‘1|p |Ax|]) et donc HA
X 1
|A|| % ||X]|  Vx e IR"—{0}.

i, alors |ly|| =1 donc ||ay|| <
‘ < ||A|| c'est & dire ||Ax|| <

[Ix]]

si x=0 Alors Ax=0 et ||X||=0 et ||Ax||=0 et ]'inégalité est encore
vérifiée.

2. Soit 'application o définie sur ir* dans IR : o(x) =||Ax|| est
continue sur la sphere unité s,= {x € IR", ||x|| = 1} qui est un compact
de 1r". Donc o esr bornée et atteint ses bornes. Il existe xyc Ir" tel
que [[A]] = [|Axol| -

3. Cette égalité résulte du fait que 'Axl = ||apz
x #0.

4. Soient A et B € M,(IR) On ||A||=sup {||Ax||;x € IR", ||x|| = 1}, OF

\AH

[|ABx|| < [[A]] x [[Bx]|| < [|A[| < [IB][ x [IX]| < [|A[| < [|B]|,

on en déduit que ||.|| est une norme matricielle.

Définition 1.3 : Rayon spectral Soit 4 € m,(IR) une matrice inversible.
On appelle rayon spectral de 4 la quantité :

p(A) = max {|)\| ;A e ¢, avaleur propre de A} .

Caractérisation de normes induites : Soit A = (;),; ;-,€ Mu(IR)

1. On munit 1r* de la norme ||||_ et M,(IR) de la norme induite
correspondante, notée aussi ||.||,

Alors :

[1Alloe = max Xy [a

2. On munit /r* de la norme |||, et M,(IR) de la norme induite
correspondante, notée aussi ||.||;
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2.1. Rappels: normes, rayon spectral

Alors: |All; = ax Y |aijl .

3. On munit 1r" de la norme ||||, et M,(IR) de la norme induite
correspondante, notée aussi ||.||,.

Alors :

Nl—=

A, = [p(ATA)} , en particulier si A est symétrique, ||A||, = p(A).

Proposition 1.5 : Approximation du rayon spectral par une
norme induite Soit A € M, (IR) et ¢ > 0. Il existe une norme spectral
sur [R" (qui dépend de 4 et ¢) telle que la norme induite sur m,(IR),
notée ||.||,, vérifie :

1Al 4 < p(A) +-€

Corollaire 1.6 : convergence spectrale On munit m,(Ir) d'une
norme , notée ||.||. Soit A € M,(IR).

Alors :

p(A) < 1 si et seulement si A* converge vers o quand « tend vers
+00.

Preuve : Sip(A) <1, grace a I'approximation du rayon spectral
de la proposition précédente, il existe ¢ > 0 tel que p(A) <1-2¢ et
d"une norme induite |||, tel que ||A||,, =1 < p(A) +¢ < 1-¢, comme
|1All,. est une norme matricielle, on a ||A¥| |, < uk converge vers 0
gd k — +0o. Comme M, (IR) est de dimension finie, toutes les normes
sont équivalentes et donc

AKX = 0gd k — +o0.
q
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2.1. Rappels: normes, rayon spectral

Réciproquement, supposons A* converge vers 0 qd k tend vers +co.
et montrons que p(A) < 1.

Soit A une valeur propre et x # 0 le vecteur propre associé. Alors
Akx = Akx et s1 Ak~ 0gd k — +oo alors Akx — 0 et donc A*x — 0, qui nest
possible que si |A] < 1.

1.7 Proposition : convergence et rayon spectral On munit M, (IR)
d"une norme, notée ||.||. Soit A € M, (IR). Alors p(4) =lim [|A¥| /¥ (admise)

1.8 Corollaire : comparaison rayon spectral et norme. On munit
M,(IR) d"'une norme, notée ||.||. Soit A € M, (IR). Alors :

p(A) <|lAll.

Par Consequent si M € M,(IR) et x(Ve [R", pour montrer que la
suite x¥= M*x) converge vers 0 dans 1r", il suffit de trouver une
norme matricielle ||.|| telle que ||.m|| < 1.

Preuve Si ||| est une norme matricielle, alors ||4%|| < |jA|]* et
donc par la caractérisation du rayon spectral donné dans la
proposition précédente, on obtient p(A) =lim || A¥| <Al

1.9 Théoréme : Matrice de la forme 1+4 1. Soit une norme
matricielle induite, 1 la matrice identité de M, (IR) et A € M,(IR)
telle que ||4|| < 1. Alors la matrice 1+ 4 est inversible et on a ‘ ‘(I + A ‘ ‘ <
m.

2. Si une matrice de la forme 1+ A € Mm,(Ir) est singuliere, alors
|A|| > 1 pour toute norme matricielle ||.||.

Démonstration :
1. Si p(4) < 1,les valeurs propres de 4 sont toutes différentes de

1 et —1. Donc 0 n’est pas valeur propre des matrices 1+ 4 et 1 - 4,
qui sont donc inversibles.
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2.2. Méthodes itératives :

Supposons que ||A|| < 1alors on a p(A) < 1. Il est facile de vérifier
que

i AR —A) =1— A"

Si p(A) <1 et le corollaire 1.6 = A"~ 0qd k — +c. De plus, 14
inversible.

En passant a la limite, on a donc (1 - 4)'=yx;% A~ (%)

Réciproquement, sip(4) > 1 la série ne peut converger en raison
du corollaire 1.6.

On a démontré plus haut que si p(4) < 11a série de terme générale
Ak est absolument convergente et qu’elle vérifie (x). On en déduit
que si [|A]| <1

1+ 27| <5144 < BB IANE =

A 71 00
De méme on a (1— A) '=yx > (—1)ka* et H (I+A) H <
2. S5i une matrice de la forme 1+ A € M, (IR) est singuliere, alors
A = —1est valeur propre et donc p(4) = 1 > 1et en utilisant le corollaire

1.8, on obtient que ||A]| > p(A) =1 > 1.

2.2 Meéthodes itératives :

2.2.1 Définitions et propriétés

Soit A € M,(IR) une matrice inversible et » € Ir", on cherche toujours
ici a résoudre le systeme : Trouver x € IR" tel que Ax=1b, mais de
facon itérative, c’est a dire par la construction d"une suite.

Définition 2.1.1: Méthode itérative On appelle méthode itérative
de résolution du systeme linéaire Ax = b une méthode qui construit
une suite (x%),_,, ou "l'itéré” x* est calculé a partir des itérés
0,xM,x2), .., x1 censée converger vers x solution de Ax = b.
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2.2. Méthodes itératives :

Définition 2.1.2 : (méthode itérative convergente) On dit que
la méthode itérative est convergente si pour tout choix initial
xO¢e IR", on a, x— x gd x —» +o0.

Enfin, on veut que cette suite soit a calculer. Une idée est de
travailler avec une matrice p inversible qui soit “proche” de 4,
mais plus facile a inverser que A.

On appelle matrice de pré conditionnement cette matrice. On
écrit alors A =P (P— A) = P N, et on réécrit le systeme Ax = b sous
forme :

Px=(P—A)x+b=Nx+b

Cette forme suggere la construction de la suite (+*),_,, a partir
d"un choix initial x© donné, par la formule suivante :

px+D = Nx(®) 4p,
ce qui peut s’écrire également
x(t1) = Bx(K) ¢ (2.1)
avecB=P 'N=I-P'Aetc=rP""b.
On introduit I'erreur d’approximation * a l'itération définie
par:
e = xk) _x, k € IR" (2.2)

ou x® est construit par (2.1) et x = aA~'s. Il est facile de vérifier
que x®¥— x = A"bgd x — +oo S1 et seulement sie®— 0qd k — +oo.

Lemme 2.1.3 : La suite ()  définie par (2.2) est également
détinie par

= x(0) —x et e = x(k) _x = Bke(0) (2.3)

comme c=P'b =P 'Ax,0n a

ekt = x (1) _y — Bx® _x 4 P~1Ax = B(xP —x), B=P 'N=1-P'A

Par récurrence sur k on a e®= pk(x¥—x)
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2.2. Méthodes itératives :

Théoreme 2.1.4: Convergence de la suite. Soit 4, P € M, (IR) inversibles.
Soit x) donné et la suite (x*)  la suite définie par (2.1)

1. La suite (x),,y définie par (2.1) converge vers x = A"'s si et
seulement si p(B) < 1.

2. La suite (x¥),_,y définie par (2.1) converge si et seulement si
il existe une norme induite ||.|| telle que ||B|| < 1.

dém :
1. On a vu aussi que (x*) _  définie par (2.1) converge si et

seulement si e®— 04d x — +00, 0n en déduit par le crollaire 1.6 que
™) converge vers o si et seulement si p(B) < 1

keIN
2. 5’1l existe une norme induite ||| telle que |[B||<1 et donc
p(B) <1 et donc d’aprés le corollaire 1.6 la méthode converge.

Réciproquement Sila méthode converge alors o(B) < 1, et donc
il existe n >0 tel que p(B) =1-n. Prenons =2 et appliquons la
proposition 1.5, il existe une norme induite |B||;., <1-¢<1 d’oul
le résultat.

, (N . Pe ~, o . . ~(k ~(k ~
Théoreme 2.1.5: Considérons deux méthodes itératives 3" =13 1+ ¢

et xk+D=Tx®c avec p(T) < (%) et x0=5"alors ve > 0 Fko>0 tq

~(K)
k>ko  supfm>( é’g}ﬁe)k.

Donc la méthode itérative de la matrice T converge plus rapidement
que celle de la matrice 7, en résumé, I’étude des méthodes itératives
consiste a étudier les deux problemes suivants :

1. Etant donne une méthode itérative de la matrice 7, déterminer

si la méthode converge, i.e si p(4) < 1 ou s’il existe une norme |||
telle que ||1]| < 1.

2. Etant donné deux méthodes itératives convergente 7 et -
les comparer, la méthode plus rapide est celle ayant le plus petlf

rayon spectral.
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2.3. Description des méithodes classiques

2.1.6 On appelle taux moyen de convergence sur k itérations

le nombre R = (k, T) = — log || ||/ et taux asymptotique de convergence
le nombre Rr(T) = ETOOIN{(k, T) = —log (p(T)) R(T)joue le rOle de vitesse

de convergence, plus r(T) est grand plus rapide est la convergence.

2.3 Description des méithodes classiques

Méthode de Jacobi 3.1 : Elle consiste a choisir P =D = diag(a;)
inversible et N = (-a;;),.;. Le schéma itératif est comme suit :

2+ =D YL 4+ u)x® 4D 1p (3.1.1)

La matrice Bj= D~'(L+ u) est dite matrice de Jacobi associée a la
matrice A. Si x© est le vecteur initial (donné), 1’algorithme de
Jacobi est de la forme

k1) » ()

1 Z]#lau +%’ pouri=1,2....,n

Cette algorithme nécessite s;20 pour i=1,2..,ncestadire
D inversible.

Explicitement, on obtient

k+1 k k k
anxg + ): —alzxg )—alzxé ) . — alnx,g )—H?l

k+1 k k k k
anlxg _ —anlxg ) _ anzxg )—anzxg o, — ann_1x£21+bn

D’apres le théoreme précédent, une condition suffisante pour
que la méthode de JACOBI converge est o(B)) < 10u ||Bj|| < 1.

Théoréme 3.1.2
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2.3. Description des méithodes classiques

Si A est une matrice carrée a diagonale strictement dominante
en lignes alors la m éthode de Jacobi converge.

Preuve Onay’|e;|<le;] par définition B=D'(L+U),
J#i

D’autre part (b));;= -7 pouri#jet(p),=0 d’ott |[B)||,, = max; ‘(bI)ij =

max {Mz’; . ‘a”‘} etona |||l <1
7&
Corollaire 3.1.3

Si A est une matrice carrée a diagonale strictement dominante
en colonnes alors la méthodes de Jacobi converge.(la démonstration
estidentique a celle du théor éme 3.1.2 en considérant la norme

1114

3.2 Méthode Gauss-Seidel Pour cette méthode, les matrices p
et N sont données par :

P=D-Linversibleet N = u, Let u proviennent de l'écriture A=D - L - U,
le schéma itératif est :

(D — L)x* V= ux®4p (3.2.1)
ou encore
D= (D - L) 'ux®4+(D - L) b (3.2.2)

en posant que D - L est inversible (3.2.1) et (3.3.2) peuvent s’écrire
sous forme

Dx%H 1) =[x+ 4 x4 p (3.2.3)

et
x(H1) = D=1+ D170 p—1p (3.3.3)
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2.3. Description des méithodes classiques

En explicitant (3.3.3) on obtient :

allxgkﬂ): —alzxgk)— ............... alnx( )—i—D 1y,
azzxék—i_l): —a21x§k+1)—a23xék)— .............. — aan,gk)—{—D_lbz
k+1 k+1 k+1 k+1 k+1 k _
aiixi( )— —ailxg * )—aizxg - aji_ 1x1( Jlr )—ainZ(;lr N amx,(,l )—i—D 1p;
k+1 k+1 k+1 k+1
a,mxg, ) _ —anlxg + )—angxg O, — Ay 1x,(1 +1 )-|—D b,

La matrice Bgs= (D — L) 'u est dite matrice de Gauss-Seidel associée
a la matrice A.
Remarque :

Bes= (- D 'L)"'D-1u.

Théoreme 3.2.1 Si 4 est une matrice carrée a diagonale strictement
dominante en lignes alors la méthode de Gauss-Seidel converge.

Preuve Posons Bgs= (D - L) 'u et montrons que ||Bgs||., < 1 OU ||Bgs||o, =

x#0 o0
Soit y = B.gx = (D — L) 'ux alors (D - L)y = Ux ou encore Dy = Ly + Ux

et y = D~'Ly + D~'ux. Considérons l'indice i, tq

[|yio| | = max|yil = |[yllo = [Bas¥lo
Il vient y;, =" (D™'L), jyj + XL, 4y (D u)m]
%igj

10]
igig

alol

En regroupant les termes

1
par suite \y10|—||y||00§210 x| oo

Yoo +Xi=iy 41

Tigj
Tigig

>0 d’ou on tire:

)—1

Higj.
Figig

Par hypothese, le terme 1-x

) Y]]

[E3

(1 ZIO 1

n
S Zj:i()-i-l

igj
Tipig

aj; ] 111'0]'

Aiigig

)(1-

] 10—*—1 uzoz

Finalement

malBostlles _ 1.
A Tl
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2.3. Description des méithodes classiques

3.3 Méthode de relaxation Si on considere les matrices p et N
dépendantes d'un parametre w, on obtient A(w) = P(w) — N(w).

Prenons P(w) =1D - L et N(w) =1-“D + U, en supposant p(w) inversible,
le schéma itératif qui en résulte est le suivant :

—1/1—w (k) -1
y+1) = (%D—L) (1w D+ U)x +(%D—L) b (3.3.1)

L’équation 3.3.1 peut étre remplaceée par :
x(k+1) = (%D)_le(kH)—F[(l —w)[+wD 'U) x® 4+ (wD b (3.3.2)
La matrice de relaxation est donnée par :
Bo= (1D~ L)' (32D + U).

*Si w =1, on retrouve la méthode de Gauss-Seidel.
* 51w > 1, on parle de sur-relaxation.
*Siw <1, on parle de sous-relaxation.

Ici la condition de convergence ||8,|| < 1 dépendra du parametre
w et par conséquent, on est amené a chercher tous les » pour
lesquels il y a convergence et en suite choisir la valeur optimale
wy de telle sorte que la vitesse de convergence soit meilleure
possible.

Théoreme Si A est une matrice hermitienne définie positive
alors la méthode de relaxation converge si w €]o,2].

UM Merci denousrendrevisite sur F S

e Jol 2 i http://fso.umpoujda.com/

HAMME!




— Chapitre 3
Approximation des solutions de

I’equation non linéaire f(x) =0

3.1 Rappels et notations :

Définition 1: Soit k un réel strictement positif et ¢ une fonction
définie sur un intervalle [4,4] de IR a valeurs dans Ir.

La fonction ¢ est dite Lipschitzienne de rapport « (ou encore
k — Lipshitzienne S1 pour tout x et y e[s,p) on a :

1g(x) —g(W)| < kl|x—yl.

Définition 2 : Soit ¢ est une fonction k — Lipschitzienne de rapport k
sur [4,b]. La fonction ¢ est dite contractante de rapport de contraction
k €]0,1].

Exemple 1: ¢(x) =sinx est Lipshitzienne de rapport k = 1.

3.1.3 Définition 3 : Soit une g fonction définie sur un intervalle
[,b] de IR a valeurs dans IR, la fonction ¢ est dite uniformément
continue sur [s,b], Si

ve > 0,3n > 0 tel que vx ety € [4,0], Vérifiant |x — y| < n, on ait [g(x) — g(y)| < e

Remarque1: Toute fonction Lipschitzienne sur [4, 4] est uniformément
continue sur [s,b].
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3.1. Rappels et notations :

Théoreme 1: (Des valeurs intermédiaires) Soit f une fonction
définie et continue sur un intervalle fermé borné [4, 5] de IrR. Alors
pour tout o € f([a,0]), il existe un réel c €[4, 5] tel que 0= f(c). Si de
plus 5 est strictement monotone alors le point ¢ est unique.

3.1.5 Théoréeme 2 : (TVLI. cas particulier s = 0) Soit f une fonction
définie et continue sur un intervalle [4,b] et vérifiant f(a) x f(b) <0
alors 3c 4, 4] tel que f(c) = 0. Si de plus f est trictement monotone
alors c est unique.

3.15 bis :(Théoreme de Rolle)

Soit f une fonction définie sur un intervalle [s, 4] & valeurs dans
IR et si f est continue sur [4,b] et dérivable |4, 5] et vérifie f(b) = f(a)
alors 3c €]a, 5] tel que M (c) =0

3.1.6 Téoréme 3 :(Des accroissemenys finis) Soit f une fonction
définie sur un intervalle [4,b] & valeurs dans IR et si f est continue
sur [4,b] et dérivable sur |4, 5], alors elle existe 3¢ € s, 5] tel que :

f(b) = f(a) = (b —a) x f(c)
ol f(c) est la dérivée de f au point c.

Théoréme 4 : (Formule de Taylor) Soit f une fonction de classe
¢’ sur un intervalle [4,5], alors il existe un réel c ¢4, 5] tel que

F(b) = f(a)+ (b —a) fV (a)+L (b —a)fP (a)
+ot L (b — a)”f(”)(a)+(n+11)! (b—a)" Tt (),

Théoréme 5 : (De Maclaurin) Soit f une fonction de classe c»
sur un intervalle 1 contenant o, et telle que f soit dérivable
a 'interieur de l'intervalle de 1. Alors v x €1, il existe un réel ¢
strictement compris entre o et x tel que :

f(x) = £(0) + xf(l)(o)—|—%x2f(2)(0) + ""+%xnf(n)(0)+(nil)!xnﬂf(nﬂ)(c)'
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3.1. Rappels et notations :

Définition 4 : Soit ¢ un réel et f une fonction définie sur un
intervalle 1 de Ir a valeurs dans Ir. 6 est dit zéro de £ si f(6) =

Définition 5 : Soit ¢ un réel et ¢ une fonction définie sur un
intervalle 1 c Ir. On dit que ¢ est un point fixe de g si g(6) = .

Lemme 1 : Soit 1 un intervalle de Ir et f une fonction définie
sur I et a valeur dans Ir. Alors la recherche des zéros de f est
équivalente a la recherche des points fixes de la fonction ¢ définie

par g(x) = x — f(x).

Lemme 2 : Soit ¢ une fonction de classe c! sur [4,5]. S"il existe
un réel k > o tel que : ‘ g ’ < k Vx € [a,b] alors ¢ est k — Lipschitzienne.

Preuve : Il suffit d’appliquer le théoréme des accroissements
finis a ¢ sur [x,y] avec x < y. Donc 3c €]x, y[ tel que

g(y) —g(x) = (y—x) xg"(e)
donc [g(y) - g(x)| < k|y — x| puisque [V (c)| < k.
Définition 6 : Soit (x,).c;v une suite admettant pour limite o.
On appelle erreur de la n-ieme étape le réel défini par :
en= Xxp,—0.
Définition 7: On dit que la convergence (x,),cv vers o est d’ordre
p Si:

lim lens]
X—+00 len|?

=cC

ol ¢ et p sont des réels positifs

*sip=1la convergence est dite linéaire

*si p=2la convergence est dite quadratique
* si p =3 la convergence est dite cubique.

UMP Merci de nousrendre visite sur l: S

e Jol 2 i http://fso.umpoujda.com/




3.1. Rappels et notations :

Définition 8 : On dira que le réel s est une approximation du
réel « avec une précision e si |a - 5| < .

En particulier, on dira que le terme (x,,) d'une suite (x)uciv
approche 6 avec une précision e si |x,—6| < e.

Exemple :
xw=1/n tend vers zéro quand » tend vers +co.

Si on veut une précision e = 102 il suffit de prendre », tel que

no> 103,

3.1.16 Théoreme 6 : Soit ¢ une fonction k — contractante SUT [a,b] A
valeurs dans [4,0], et (x4),cv la suite récurrente définie par

%€ [a,b], xo donné et x,,,= g(x,) pour tout » > o.
Alors :

1. La suite (x,).c;v converge vers un réel o.

2. La fonction ¢ admet un point fixe unique.

3. PourtoutneiIN*Ona:
| —0] < |21 —x0|

Preuve : Comme x,  [5,b] et que ¢ une fonction k — contractante sur
a,b)a |a,b],onax, € [a,b] Vn € IN.

Le fait que g est une fonction k — contractante sur [a, b] implique

X1 — x| < |g(xn) — g(xn-1)| < klxy — x4-1] Vn € IN*.
Par conséquent on obtient

X1 — x| < K" |x1 — x| n>0 (3.1.1)
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3.1. Rappels et notations :

A 1’aide de l'inégalité (3.1.1) on montre que la suite (x,),eln
vérifie :

2Xntp — Xn| < |Xngp — Xngp—1| F |Xngp—1 = Xnpp—a| F oo, +
| Xn1 — Xl
§k”*p_l\xl—x0\+k"+p_2\x1—xo\—|— ...................... -+
k" ]xl — X()’

< IR g — xo]
|Xnap — Xu| < 7K™ |21 — X0 (3.1.2)
L’'inégalité (3.1.2) prouve que la suite est de Cauchy car k" —
0 gd k — 400
alors Ve > 0, dng > 0 tel que pour tout n > 1y on ait :

< 1-k

€&
— [x1—x0]

et par la suite
ﬁkn le . x0| S E.

Donc pour tout ¢ > 0,3ny > 0 tel que pour tout n > ny
on ait :

[Xngp — Xn| < 7k |21 — x0] <.

(xn)nern est de Cauchy et par conséquent elle converge vers
une limite 8. Comme g est continue sur [g,b], et que x, 41 =
2(x,) et que x, € [a,b] Vn € IN alors on a I_H)I.}Xn =0 = g(9),
c’est a dire que 0 est un point fixe de g.

Unicité du point fixe :

Supposons que g admet un autre point fixe @ # S alorsona:

8(a) = 8(B)| = | — B| < k|a — | ouencore (1 —k) [a — B| <
0 mais comme k < 1, alors o = f3.

Enfin, en faisant tendre p vers 4-co on obtient dans I'inégalité(3.1.2) :
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3.1. Rappels et notations :

[ Xn+p — Xn| < 72K [x1 — X
on obtient :

10— x| < T12k" |x1 — xo Vn € IN*.

Théoreme 7 : (Condition de convergence locale) Soit ¢ une
fonction de classe C! au voisinage de 6. Si g(6) = fet|g(V)(0)| <
1, alors de > 0 tel que Vxy € [0 —¢,0 + ¢] la suite (x,),ein =
(g(xy—1))neIn est définie et converge vers 6,1'unique solution
deg(x) =xdans [ =[0—¢,0+¢].

preuve : Puisque ¢ est une fonction de classe C! au voisinage
de 6 et que [¢V(0)| < 1ona:

g™ (x)| < 1,au voisinage de 6.

Par conséquent, il existe ¢ > 0 tel que :

Vxel=1[0—¢0+¢] ‘g ‘ < 1, et puisque ¢V est continue
sur le fermé I, on en déduit qu'3 k € [0, 1] tel que

Vxel=1[0—¢0+¢] gD (x)| <k<1

Pour appliquer le théoréme 6, il suffit de vérifier que : g(I) C
I

Or, par application du théoreme des accroissements finis on
a:

VxEI:[G—ee—I—s] 1g(x) — 0| < |x—0].
Remarque 2 : * Si | ¢M(o )| = 1, la suite peut converger ou

dlverger

*Si ¢1)(0), > 1, et si la suite posséde une infinité de termes
différents de 0, alors la suite ne peut converger.
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3.2. Méthode de Newton et méthode de la corde

Théoreme 8 : La suite récurrente définie par xo € |[a,b], xo
donné et x, 1 = g(x,),Vn > 0, converge linéairement vers 0
et si ¢ est de classe C! sur [a, b], alors

C = limlfeitl =1 g(0) |
preuve : Il suffit d’appliquer le théoreme des accroissements
finis dans l'intervalle d’extrémités x,, et 6,on a

leni1] = |xpi1 — 0] = |g(xn) — 6] = |(xn — 0)gW(cn)| et de 1a
on obtient :

Lim % = lim | g™ (c) =] g™ (0) |

400 |e7’l|

3.2 Meéthode de Newton et méthode de la corde

3.2.1 Méthode de Newton (ou Newton-Raphson) :

Soit une f : IR — IR une fonction de classe C! et 6 un zéro
simple de f, c’est a dire f(8) = 0 et f1)(0) # 0. Supposons
que 1'on connaisse une valeur x, proche de 6. Pour calculer
Xn+1 Nous prenons l'intersection de ’axe Ox avec la droite de
la tangente du graphe de f passant par le point (x,, f(x,))

Clairement, nous avons la relation f(x,)/(x, — x,41) = f(x,)
qui donne, lorsque x( est choisi proche de 0, la méthode de
Newton :

Yol = Xy — Ay n=0,1, (3.2.1)

Nous voyons ainsi que la la méthode de Newton est une méthode
de point fixe pour calculer 0. En effet, il suffit de constater que
si on pose :

5559 il 282 Asals http://fso.umpoujda.com/
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3.2. Méthode de Newton et méthode de la corde

g(x) =x— f{l(;zl) alors f(x) = 0 <= x = g(x) (du moins
au voisinage de 0 pour lequel f()(x) # 0) et (3.2.1) s’écrit

Xn+1 = g(xn)'

En vu d’utiliser le Théoreme de la convergence locale, calculons

gW(x):
si festC?:

et par la suite , puisque f(0) = 0 et f(9) = ¢V (0) = 0.

Nous obtenons le résultat suivant :

Théoréme 9 : Supposons f est C* et supposons que 6 soit tel
que f(8) = 0et f(1(8) # 0. Alors Je > 0si xg satisfait |0 — x| <
¢, la suite (x,),ein donnée par la méthode de Newton (3.2)
converge vers 0. De plus la convergence est quadratique.

Preuve :

_ f(x) 1
onag(x) = x— 0 € 1gM(6)| < 1 alors la convergence
annoncée dans ce théoréeme est une conséquence du théoreme
de la convergence locale.

A priori la covergence est linéaire

g(x) —g(y)| =

" m(t)dt’ < Irt1€alx’g ()] |x—y] <

klx =yl
si nous prenons y = 6 nous tirons que

8(x) =g(0)| < k[x—06] < [x—6] <e.
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3.2. Méthode de Newton et méthode de la corde

Nous allons maintenant montrer que la convergence est quadratique,
ceci est une conséquence du fait que ¢ () = 0.

Nous développons f autour de x,,, nous obtenons :
F(x) = fQn) + (= 20) f () + 35 (x = xa)2f P (&)

ou &, € alintervalle d’extrimité x et x,,. En choisisant x = 0
dans 1’égalité ci-dessous, en divisant par f(1)(x,) et en tenant
compte du fait que f(6) = 0, nous avons :

£(xn) _ FPE) (v N2
Ay O X0 ¥ 3w (X~ )7 =0

En utilisons (3.2.1) nous obtenons

(2)
’xn—|—1 — 9‘ — %’f )(izi“ ’ 0 — x, |2

Il suffit maintenant de poser

max]| f(2)(&)|

1 xel
& 2 min] f) (xy)|

xel

Pour obtenir

[Xn11 — 6] < C | x—x, |

d’ou la convergence quadratique.

B. Mhéthode de la corde (ou Newton modifiée) Cette méthode
permet d’éviter qu’a chaque itération de (3.2.1) on ait a évaluer

fM(x,). La méthode de la corde consiste a remplacer f!)(x,)

par f)(x,) dans (3.2.1), ce qui donne :

- f(xn) s,
Xpi1 = Xp — 70 (xg) n=20,1.....
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3.2. Méthode de Newton et méthode de la corde

Le calcul de la suite (x,),cn seffectue en prenant toujours la
méme pente f1)(xg), d’ot1 'appelation méthode de la corde. Ici
encore, nous posons

W
$00) =2 = g

et constatons que f(0) = 0si g(0) = 6.

Ainsi on a

Xnt1 = &(xn)

et la méthode est une méthode de point fixe.
Remarque : ¢ dépend du point fixe de départ xo.

Théoréeme 10 : Supposons f de C? et supposons 0 soit tel que
(@) = 0et f1(O) # 0. Alors 3e > 0 tel quesixg € I =
0 — ¢,0 4+ €|, lasuite (x;,),ern donnée par la méthode de la corde
converge vers 0. La convergence est linéaire.

Preuve: f de C?etpuisque f()(0) # 0, il est facile de montrer
qude >0etk < ltelsquexpe I =[0—¢60+¢ ona

g (x)] = |1 _ Y

D xg) < k Vx € I.

et par la suite on a

g(x) —g(y)| =

dt’<max’g ()] |x—y] <

k!x—y\

siy = 6,onag(x)—g(0)] < klx—6],cad|g(x)—0] <
k|x—0|
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3.3. Méthode de dichotomie :

3.3 Méthode de dichotomie :

Soit f une fonction continue sur [a, b] vérifiant f(a) x f(b) <
0.

La fonction f admet au moins un zéro dans [a, b]. La méthode
de dichotomie consiste a approcher 0 par un encadrement, en
réduisant a chaque étape l'intervalle de moitié selon I’algorithme

suivant
Etape I: on pose ap = a et by = b, on pose ¢ = ”0+b0 puis on
teste si ¢ = 6O c’est terminé, sinon si f(agp) X f (co) < 0 alors
_ _ . __ay1+b
0 € |ao,co], on pose a; = ag et by = ¢y puis ¢ = =51,
Si f(bo) X f(co) < 0alors 8 € [cy, by, alors on pose a1 = ¢y et
bl = bo pUiS C1 = @.

pd Z Z N b _a -
b Aprés cette étape la longueur de |a;,bq] est égale a 50 =
—a
5.

Etape II: On recommence le procédé de 1'étape 1.

Etape k: A chaque étape k du procédé, soit on tombe sur ¢ =
0 soit on diminue la longueur de I'intervalle de moitié.

Théoréme : Les ai, by et ¢, satisfont les propriétés suivantes :

L. [aky1, bes] C lax, by -

_ bg—ap _ by—ag
2. bgs1 — M1 = 5 = T

3. la suite ¢, converge vers 0.
b—a
4. ‘Ck —0 — 92k+1
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3.3. Méthode de dichotomie :

Preuve : 1. Pour k > 0 on ¢y = (ax+ by)/2 et [agy1, bria] =
[k, cx] ou [ck, bx] donc [aky1, brya] C [ak, by -

2. On a par construction by, 1 — axr1 = (bx — ax) /2 montre par
récurrence que

bk—ak: (b—a)/Z"

Pour k = 0 la relation est vraie.

Si on suppose que la relation est vraie a 'ordre k, c’est a dire
by —ay = (b—a)/2%.

Montrons alors que by1 — ax1 = (b — a)

En effet, by — apy1 = (e —ax)/2 =
a)/2k+1.

3. Par construction 0 € [a, bi| et ¢, = (ax + by)/2 est le milieu
de [ay, bi| donc :

/ k—l—lo
(bk—ak)/Z = (b—

lcx—0)| < (by—ax)/2< (b—a)/2""' -0 gd  k— +oo.
En d’auters termes :

cx — 0 qd k — +o0.

Remarque: Le théoreme précédent permet de calculer al’avance
le nombre maximal n € IN d’itérations assurant la précision ¢,

en effet :
Pour que ¢, vérifie : lck — 0] < (b—a)/2""! & la n-iéme
étape, il suffit que n vérifie : (b—a)/2""1 < ¢ 0onaalors:

e —0] < (b—a)/2"1 <,

b p < 2n+1 . > In(b ho:)z Lne 1.
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3.4. Méthode de la fausse position (Fegula Falsi)

Exemple : f(x) = x®+ 4x*> — 10. On vérifie graphiquement
que f admet une racine réellé dans [1,2] et que la méthode de
dichotomie est appliquable. f(1) x f(2) <0

Pour trouver une approximation de cette racine, on peut réaliser
la méthode de dichotomie avec une précision égale a 10~ 1°.

On a les résultats suivants : n (numérique) = 33 n(théorie) =
32,21928

x = 1.3652300134  f(x) = —2.378897¢ — 0.11.

3.4 Meéthode de la fausse position (Fegula Falsi)

Au lieu de prendre a chaque étape ¢, qui est le milieu de g, b],
la méthode de fausse position prend le point d’intersection de
’axe Ox avec la droite passant par (ay, f(ax)) et (b, f(bx)).

L’équation de cette droite est donnée par :

X=a _ y—f(a)
b—a — f(b)—f(a)
Elle coupe 'axe Ox au point: M(ck, 0) ot ¢y = ay + f(ak)%.

On suit le procédé comme dans le cas de dichotomie en testant :

Si f(cx) x f(ax) < 0alors 6 € [ag, ci|, alors on pose a1 = ag
et b1 = cx.

Si f(ck) X f(bx) < 0alors 6 € [ck, bi], alors on pose ax1 = ¢k
et bk_|_1 — bk.

Puis on cherche a nouveau la droite passant par (a1, f (ax+1))

et (bxy1, f(bri1))-
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3.4. Méthode de la fausse position (Fegula Falsi)

Exemple : f(x) = x® — 20 et comme f(0.75) x f(4.5) < 0
on peut donc appliquer la méthode de la fausse position dans
l'intervalle [0.75,4.5].

La solution est x = 2.7133.
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Chapitre 4

Problemes d’interpolation

4.1 Position du probléme :

Supposons que 'on veuille chercher un polyndéme p de degré
n >0 qui, pour des valeurs ¢, #;, t,, ...., t, distinctes données, prennent
des valeurs pq, p1, p2, ..., p Tespectivement, c’est a dire

p(t) =p,pouro<j<n (4.1)

Une maniere apparemment simple de résoudre ce probleme
est d’écrire

p(t) = a+agt + axt’+......... + a,t" (4.2)

OU ag, ay, 1y, ...., a, SONt des coefficients qui devront étre déterminés.
Les (n+1) relations (4.1) s’écrivent alors :

a-+ alt]-—l—azt?—}— ......... + ant” P pour0<;j<n (4.3)

On obtient un systeme de (»+1) équations a (z+1) inconnues

aOI al/ a2/ ceees Ap

Soit T la (n+1) x (n +1) matrice définie par :
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4.2. Interpolation de LAGRANGE

1 ty t3 t
1t £ t
T =
R tr |

C’est la matrice de Vandermonde associée aux points ¢, t,
ty, ..., tn
Si detp sont (n+1)- vecteurs colonnes suivants :

1= (ag, a1, az,....,an)" et _p> = (po, Py, Py - P,)', NOUS pouvons écrire
(4.3) sous forme matricielles :

Ta=p (4.4)

Ainsi, le probléme consiste a chercher le polynome p satisfaisant
(4.1) peut se réduire a résoudre le systéeme linéaire (4.4) qui n’est
pas une tache triviale.

4.2 Interpolation de LAGRANGE

1.1 Base de Lagrange : Il est facile de résoudre le probleme (4.1)
lorsque toutes les valeurs p; sont égales a zéro sauf une, qui est
fixée a 1.

Soit k un entier donné entre o et x, et supposons que 1'on ait
pr=1 et pour j #k pi=0.

Soit ¢, la fonction de ¢ définie par
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4.2. Interpolation de LAGRANGE

(b (=t (=t )=ty ) (=)
k() = =) =) Fmte ) (et 1) () (4.5)

Le numérateur de ¢, est un produit de » termes (t—t,), j £k et
est donc un polyndme de degré » en +.

Le dénominateur de ¢, est une constante et il est facile de
vérifier que :

(i) ¢ est un polyndme de degré »

(ii) oi(t;) =08l j#£k 0<j<n

(iil) ei(t) =1

A chaque point ¢, nous avons donc associé un polyndéme ¢, de
degré » valant 1 en et zéro aux autres points ¢, j # k.

Les polyndmes ¢y, ¢1, ¢s, ..., ¢, sont linéairements indépendants.
En effet vt € IR, Si ag, a1, ay, ..., a, sONt 7 +1 nombres réels tels que
Y"_yaje;(t) =0 (vt € IR), alors pour t = 4 nous obtenons :

0=Xioa®j(t) = o,
et par conséquent tous les =0  pour 0<k<n

Notons 1pr, I'espace vectoriel formé par tous les polyndmes de
degré < » de dimension « + 1 et que sa base canonique est donnée
par 1,t,...,t".

Le fait que les polynomes g, ..., ¢, ...., , sSont linéairements indépendants
montre que ces derniers forment aussi une base de 1p,.

Définition 1.1: Nous dirons que (¢, ..., ¢y, ..., ¢,) €st base de Lagrange
de 1P, associée aux points ¢, t, t, ...., tu.

Exemple1.1: Prenonsn=2 #=-1n=0ett=1 Labasede Lagrange
de 1P, associée aux points -1, 0 et 1 est formée par les polyndmes

définis par: , = o) 052051 (4.6)

(Pl(t) :(t_t—_z)_zl_t (4.7)
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4.3. Interpolation d"une fonction continue par un polynéme

oa(t) =%_ 0.5¢24-0.5¢ (4.8)
Revenons au point (4.1) consistant a chercher le polyndme p
de degré » qui prenne des valeurs données p, p1, p2, ..., p» €n des

points distincts t, t;, ta, ..., tu.

Soit (¢, ..., or .., 0,) Une base de Lagrange de ip, associée aux
points ty, t1, ta, ..., tu.

Alors le polyndme p cherché est défini par;

p(t) = po@o(t) + pro1(t) +.ooev. + Ppen(t) =X pj@;(t) (4.9)

En effet, puisque p est une combinaison linéaire de (n + 1) polyndmes
90, ) Pk, -y 0 tOUS de degré n, alors p est lui méme de degré », c’est
adirepelp,

D’autre part, si nous utilisons les propriétés des polyndomes
¢r, NOUS aVONS pour k =0,1,2, ..., 1 :

p(t) =Xiopj®j(ty) = pi (4.10)

qui est bien la relation (1.1).

Exemple 2 : Trouver un polyndme de degré deux qui vaut en
to= —1 €N pp= 8, €N t;=0 en p;= 3, €N t,= 3 €N py= 6.

p(t) = 4> —t + 3.

4.3 Interpolation d’une fonction continue par un polyndéme

Soit une fonction :IrR — IR continue donnée et soit ¢, ¢, t,...., t,
(n+1) points distincts donnés.

Nous cherchons maintenant a interpoler f par un polynéme p
de degré » aux points t, t, t, ..., t, c'est a dire nous cherchons un
polyndme p de degré » tel que :

p(te) = f(t), O<k<mn (4.11)
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4.4. Existance et unicité de l'interpolant

Si f(t) est donnée, alors en posant p;= f(t)), 0 < j < n et en suivant
ce qui est fait dans la relation (4.3), nous obtenons

p(t) = po@o(t) + pro1(t) + .. + p,@n(t) =L pjej(t),

o pj, 0 < j < n forment une base de Lagrange de 1r, associée aux
points t, t1, ta, ..., tu.

La solution du point (4.11) est donc définie par :
p(t) =Xio f(t))e;(t) Vi€ IR (4.12)

Définition 1.2 : On dira que le polyndme p défini par (4.12) est
'interpolant de f de degré » aux points t, t, t, ...., t,.

Exemple 3 : Soit f(t) = ¢". Trouver l'interpolants de s de degré 2
aux points ty= -1, 1=0, = 1.

Soit maintenant une fonction :[s, b} — IR continue et donnée sur
un intervalle [s,5]. Soit » un entier positif et considérons le cas ou
tous les points [4,4], 0 < j < n, sont équidistribués dans [4,4], c’est a
dire t;=a+ jh, 0 < j < n,avec h =21 Soit p I'interpolant de f de degré
n aux points ¢, t, t, ..., t, que nous noterons p, pour montrer qu’il
dépend bien de » choisi au départ. D’aprés (4.12), p, est défini par

pu(t) =X f(t))e;(t) Vi € IR (4.13)
ol (¢o, ... ¢ -, ,) €st la base de Lagrange de 1p, associée aux
points ¢, t, b, ..., t,. On peut montrer le résultat suivant :

4.4 Existance et unicité de l'interpolant

1.51 Théoréme 1 : Il existe un polyndme p, unique de degré
< n, interpolant f en (n+1) points, c’est a dire tel que :
pte) = f(t) pour  0<k<mn.
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4.4. Existance et unicité de l'interpolant

Preuve : Existence:

Soit
IO S [y (t=t; ) (E=tiey)oomn(E—t,)
Li(t) = =)t =n) s Ty oy B
pu(t) =X5_ o f(£;)L;(t) pour 0<j<m, onalrL(t) =¢;
et par conséquent pu(t)) = f(t).
Unicité :

Supposons qu’il existe deux polyndémes p, et 4, de degré <n,
interpolant f aux points t, #, t, ..., t,, €n posant

dn= pn—q,, ON arrive a une contradiction. En effet, 4, est un polyndme
de degré < net par conséquent il peut avoir au plus » zéros, mais
d’autre part d,(t) =0, pour 0<k<n ce qui voudrait dire que 4,
aurait » +1 zéros d’ou la contradiction donc p,=q,,.

1.5.2 Erreure d’interpolation.

1.5.2.1 Théoreme : Soit p, le polyndme interpolant de f aux
points a = xp< x< ....... < x,=b, si f est de classe ¢! sur [4,b] alors :

a. vx € [a,b], il existe © = ©(x) e [4, 1] tel que :

en(x) = f(x) = p,u(x) = (F"(©)/(n + 1)), 4 (x)

avec
P (x) = zy'l:O(X - xi)
b. En posant
M, 11 = max ‘f(”“)(@)‘
x€la,b]
On obtient :
max F(x) = pa ()] < gy  max |1 (x)]
xe[ [u,b}

et en particulier :

M, o \n+l
;g[%ﬂf() ()| <Gt —a) ™
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4.4. Existance et unicité de l'interpolant

Lemme 1: Soit f une fonction définie sur [4,4] a valeurs dans Ir
dérivable sur [s,5], si f possede au moins » +2 zéros distincts sur
a,b], alors f'= fV possede au moins » +1 zéros distincts sur [4,].

Il suffit d’appliquer le théoréme de Rolle entre deux zéros
consécutifs de f.

Corolaire 1 : soit f une fonction de classe c"t! sur [a,b]. Si f
possede au moins n+2 zéros distincts sur [4,4] alors ) possede
au moins 1 zéros sur [a,b].

Il suffit de faire une récurrence en appliquant le Lemme 1
précédent.

Preuve du théoréme : Si x = v, le résultat est évident.

(x

Six+#x, pOSONS;  R(t) = f(t) — p, () - L2 1, 4 8).

on vérifie alors que R € c**' [4,4] et que :

R(x) = f(x) = p,(x) ~ L2 T,y (1) =0, i=1,2,m

et
R(x) =e,(x) —e,(x) =0.

Par conséquent, R admet au moins n+2 zéros distincts sur
a,b], en appliquant le corolaire précédent, on montre que r(*1
possede au moins 1 zéros sur [4,4], c’est a dire qu’il existe © ¢ [4,]
tel que R+ (@)=0,

et donc:

en(x) = (F"(©)/(n + 1), (x)

ce qui implique que )
max [T, (x

x€(a,b]
max len(x)] <= garmr—Muta-
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4.4. Existance et unicité de l'interpolant

2 Interpolation de Newton :

2.1.1 Définition : différences divisées soit f une fonction définie
sur [s,b] a valeurs dans ir dérivable sur [s,b] contenant (n+1) points
distincts ¢, ¢, to, ..., tn.

On définit les différences divisées d’ordre i de f aux points (x,)
comme suit :

flxo] = f(xo)
_fx)=f(x)
flxo ] =5
f [xO, .X‘l, ....... , xl] — f[xl,xz ......... xiLi—_fj[Czo,xl ......... xi_l] pour l Z 2

Exemple : xo= —1,x=1,x=1,f(x) =2, f(x;) = 1 f(x,) = -1,
on obtient :
flxo]=2
f[x0, 1] = —1
fla]=1
flxo]=-1
flxx]=-2
f [x0, x1, x2] = —0.5.

2.1.2 Propriétés: La valeur d’une différence divisée est indépendante
de 'ordre de x;

f [X(), xl] :%: f [xlrx()] — f(xg) 4 f(xy)
f(x) f(x) + ( f(x)

(x9g—x1)(xg—x2) (x1—x0)(x1—x2) Xy —xg)(xy—x1)

f [X(), xl/xZ] = = f [X(), xl,xz]
= f[x1, %2, x0] = f [x2,x1, Xx0] -

De facon générale :

f [xO, x1, ....... , xl] — f[xl,xz ......... xilci—;fy[c.zo,xl ......... xi,l]
_ f(xo) f(x) f(xi)
- (xo—xl)(xo—x;)) ...... (xo—x;) + (xl—xo)(xl—xQ; ......... (xy—x;) RIRURE + (x;—x0) (2¢j—%2) ccenvne (x;—xi_1)
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4.4. Existance et unicité de l'interpolant

2.1.3 Interpolant de Newton: On appelle interpolant de newton
le polyndéme p, donné par :

pn(x) = f [xo] +f [x0, 1] (¥ = x0) + f [x0, %1, %2] (% = %) (¥ = x) +- ..
...... + f[x0, %1, Xp] (x — xg) (x — x9).cc(x —x,,_5)(x —x, ).

Exemple ¢oxo=-1,f(x) =2,x,=0,f(xy) =1L x,=1, f(x,) = —1.

flxol=2

f[x0,x2] = —1
flx1, 2] = -2

f [x0, %1, x2] = —0.5

pu(x) =1 —1.5x — 0.5x7.

2.1.5 Base de Newton : Soient ¢y, t;, t,..., t, (n+1) points deux
a deux distincts d'un intervalle [s,b] de IR et les polyndmes N;
définis par

No(x) =1,N;(x) = (x — xo)

Ni(x) = (x —x5) (x — x7)ceeene (x—x, ,)(x—x,_1) i=1,2,...,n

3.1.6 Les polynomes N; ont les propriétés suivantes : 1. N; est
un polynoéme degré i
2. Pouri>1, N;(x) admet ty, t;, t, ..., ,_; cOmme racines.

3. La famille {Ny(x),.....,N, (x)} est une base de 1pr, dite base de
Newton.

Preuve : 1. est évidente d’aprés la définition de N;(x)
2. est évidente d’aprés la définition de N;
3. Il suffit de montrer que la famille {Ny(x), ..., N, (x)} est libre.

Soient ¢, c;, .......,c, des constantes telles que
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4.4. Existance et unicité de l'interpolant

Z?:o CiNi(x) =0
comme les x; sont supposés deux a deux distincts, on a

0=Y",ciNi(xy) = cq
0=Y",ciNi(x;) = cgNo(xq) + c;Ni(xy) = ¢;(x;—x9) = ¢;= 0, Cal x1# x

0=Y",ciNi(x,) =c,Ni(x,) = c,(x,—x0)(x,—x1)..cn... (x,—xy—2)(x,—xp-1) = ¢c,= 0,
car les x; sont deux a deux distincts.
d’ou le résultat.

2.1.7 Théoréme : Soit f une fonction numérique définie sur un
intervalle [4,5].

Soit p, un polyndme interpolant de f en (n+1) points xg, x, ........, x,€ [a,b] .

a. on peut exprimer p,(x) comme combinaison linéaires des
Ni(x) de la base de Newton :

pu(x) = Ei_o DiNi(x).

on obtient le systéme triangulaire inférieur suivant :
pn(xg) = Dy = f(xp)
pn(x1) = Dy+D1N1(xy) = f(x)

pn(x,) = Dy+D1Ni(x,) + D,Na(x,,) + ........ + D,Ny(x,) = f(x,)

\ 7

Les p; solutions du systeme (s,) sont données par
Do= £ [x0]
D= f [xo, x2]

D= _ flxxg,e., x,] —flx0,%1,0eeeens Xi 1) _ f [x0; ...,xi] pour i>0.

—X0
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4.4. Existance et unicité de l'interpolant

2.1.8 Exemple : Soit la fonction f telle que

x 0.15 2.30 3.15 4.85 6.25 7.95

f(x) | 4.79867 | 4.49013 | 4.2243 | 3.47313 | 2.66674 | 1.51909

Les coeffficients du polyndme interpolant de f dans la base de
Newton sont :

Dy=4.798670, D1= —0.143507, D,= —0.056411, D3= 0.001229,
D4= 0.000104,

Ds= —0.000002.
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Chapitre 5
Dérivation et intégration numerique

5.1 Dérivation numérique

Dans ce paragraphe, la fonction n’est bien stir pas connue par
une formule explicite mais :

- ou bien par ses valeurs sur un ensemble discret (en supposant
que les points sont assez proches pour que la notion de dérivée
ait un sens).

- ou bien, le plus souvant, par algorithme de calcul ou une
formule compliquée qui permet, au moins en théorie, de la calculer
en tout point. On suppose bien str que la dérivée n’est pas
accessible par un procédé analogue.

5.1.1 Dérivée premiere :

Supposons qu’on veuille calculer une valeur approchée de
f (x;).Une premiere idée, consiste a remplacer f par un polyndme
d’interpolation au voisinage du point x; et on dérive celui-ci.
Les formules vont varier en fonction du nombre des points
qu’on choisit pour écrire le polyndme d’interpolation (en général
2 ou 3).

Dans toute la suite, on supposera s connue ou calculable aux
points ..., x5, x;_1, x;, .....qu'on supposera proches. On notera i;= x;.;—x;.
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5.1. Dérivation numérique

5.1.1 Formules a deux points : Le polyndme d’interpolation
sur les deux points x;,x;,, s’écrit :

p(x) = f(x;) + f [xi, xia] (x — x7)

On a donc p'(x) = f[x;, x11], ce qui fournit la formule a droite

f/(xi) 2f(xi+1)—f(xi) (5.1)

Xip1—Xi

On a bien str aussi la formule a gauche

f/(xi) 2f(xi)—f(xz;l) (5.2)

Xi—Xi—1

5.1.2 Formules a de 3 points : On choisit d'interpoler sur les
points x; 1, x;, x;,1 (ce qui est normalement plus satisfaisant). Dans
ce cas on a

p(x) = fOx) + flxi xipal (= %) + f i, % Xia ] (8 = 29 (x = %) (5.3)

Donc
p(x) = f i, 3] f [xioa 2 %] (x = x;24) (x—xi-1)
ce qui fournit, apres simplification la formule centrée avec :
hi= Xi1—x; (5.4)
(o) sl L) (5.5)

Remarque : La formule ci-dessus n’est autre la moyenne des
deux formules décentrés dans le cas équidistants (4= x;,1—x).

5.1.3 Erreur: Pour le calcul théorique de l’erreur commise quand
on remplace f(x,) par d"une des formules approchées ci-dessus

ona-.:
)~ FEE |<M2-
I, 2 .
{f (xi)—% §M3g max{f |
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5.2. Intégration numérique.

5.1.2 Dérivées d’ordre supérieure :

Le principe est exactement le méme, il faut simplement prendre
garde que le degré du polyndme d’interpolation soit suffisant
pour que sa dérivée n-ieme soit non nulle !

Par exemple, pour la dérivée seconde, on choisit en général
d’interpoler sur 3 points, ce qui donne

Dérivée seconde : points équidistants

f” (xi) gf(xi+1)+f(;;é‘—1)+2f(xi)

avec une erreur

f//(xi) . f(xi+1)+f(;fé‘_1)+2f(xi) g M4%

5.2 Intégration numérique.

5.2 Généralités: Nous avons pour but de calculer numériquement
des intégrales définis. Soit f : [s,5] - IR une fonction continue donnée
sur [a,b]. Nous désirons approcher numériquement la quantité

1P f(x)dx (5.2.1)

Pour ce faire, nous commencons par partitionner [4,5] en petits
intervalles [x; x;1], i =0,1,2...., N tels que :

a<x0< X< e <xn<b (5.2.2)
Soit

h= max |xjq1—x;
0<i<N-_1 i+1 i
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5.2. Intégration numérique.

Le réel positif caractérisant la finesse de la partition. Il est clair
que, N augmente, nous pouvons nous placer les points x; de
sorte a ce que i soit petit. Lorsqu’aucune raison nous incite a
choisir des intervalles de longueurs différentes, nous posons

h=tetx=a+ihi=01,..,N.

Etant donné la partition (5.2.2), il est naturel d’écrire :

JP f(x)dx = NGt [ f(x)dx (5.2.3)

ce sont ainsi les intégrales

S+ f(x)dx

que nous allons approcher dans la suite par des formules appelées
“formules de quadrature”. Mentionnons encore que souvant,
pour donner des formules de quadrature sur un intervalle standart
(par exemple [-1,1],0n exécute un changement de variable de la
forme :

F=2 2% (5.2.4)

Xit1—Xi

qui, a x € [x;, x;14], fait correspendre ¢ € [-1,1] Avec ce changement
de variable, nous obtenons :

x = xi+(x;—x) L (5.2.5)
et par la suite

Jot f(x)dx = (xi“—xi)% f_ll gi(t)dt (5.2.6)

8i(t) = flxt(xi—x) ), t €[-1,1] (5.2.7)
Nous somme maintenant en mesure de définir la notion de la
formule de quadrature pour approcher numériquement ' g;(t)dt
¢; étant une fonction continue sur [-1,1].
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5.2. Intégration numérique.

Définition 5.1 : Si g est une fonction sur [-1,1], la formule de
quadrature pour approcher numériquement :

I&) = Y wigi(t)) (5.2.8)

est définie par la donnée de M points -1 < #;< .... < ty< 1 appelées
points d’intégration et M nombres réels w, ..., wy appelés poids
de la formule de quadrature. Ces M points et M poids devront
étre cherchés de fagon a ce que j(s,) soit une approximation
numérique de [’ g;(t)dt.

Nous remarquons que la formule (5.2.8) est linéaire. En effet,
si g; et 1; sont deux fonctions continues données sur l'intervalle
[-1,1] et si « et g € IR, nous vérifions facilement que :

J(git+li) = af (g;) + BI(1;)-

Exemple 5.1 : Un exemple classique est la formule a 2 points
(M=2):

t1: —1, t2: 1,w1: 1, Wy— 1
et donc
J(g:) = gi(=1) +g;(1) (5.2.9).

Nous remarquons que j(g;) correspond a 1’aire du trapeze hachuré
de la figure (5.2) Par conséquent, approcher /' ¢:(t)dt par j(s;) correspond
a approcher l'aire sous le graphe de g par l'aire du trapeze
hachuré. Pour cette raison, la formule de quadrature (5.2.9) est
appelée “formule du trapeze”.

fig.
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5.2. Intégration numérique.

Dans les sections suivantes, nous construisons d’autres formules
de quadrature que la formule du "trapeze”.

Dans, l'égalité (3.7) nous approchons | g;(t)dt par j(g,). Ainsi la
quantité [+ f(x)dx est approchée par :

(xi+12—xi) Z;\il wif (x4 (Xip1 — x7) H1) (3.11)

et donc nous allons approcher |’ f(x)dx par la formule dite “formule
composite” :

Ly(f) =ZN7" By M £+ (xien — x5) 1) (3.12)

Exemple 3.2: t=-1,t=1,w;=1,w,=1. La formule composite (3.12)
s’écrit :

Li(f) = EN  B) 17 () 4 f(x4q)] (3.13).

La formule composite (3.1) est facile a interpréter graphiquement,
la quantité L,(f) correspond a l'aire hacuée de la fig. 3.2

Fig 3.2 Formule du trapeze.pour approcher |’ f(x)dx dans le cas
N =4.

En régle générale nous pouvons procéder de la maniere suivante
pour approcher la quantité | f(x)dx par la quantité ,(f) ; on définit
une formule de quadrature par la donnée de m points < ... < ty
et M poids wy,.... wy (ces points et ces poids sont reprertoriés
dans des tables numériques ou logiciels de calcules) ; on partitionne
I'intervalle [4,5) en intervalles [x;, x;,1] les x; satisfaisant (3.2) et on
calcule L,(f) par la formule composite (3.12).

Avant de montrer comment construire des formules de quadrature,
définissons une propriété de j(g,).
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5.2. Intégration numérique.

Définition 3.2: On dira que la formule de quadrature :

J(&:) fzjzl w;gi(t;).

Pour calculer numériquement ', g;(t)dt est exacte pour tout polyndme
de deg r >0 5i J(p) =/, p(t)dt, pour tout polyndme de deg < .

Lorsque la formule de quadrature.j(g;) satisfait la propriété de
la définition (3.2), il est possible d’estimer ’erreur entre la valeur
exacte |’ f(x)dx et la valeur approchée L,(f), pour autant que f soit
assez réguliere.

Théoreme 3.1: Supposons que le formule de quadrature :

J(gi) = it L wigi(t)

pour calculer numériquement J’ g;(t)dt soit exacte pour des polyndmes
deg =r. Soit f une fonction donnée sur [4,b], soit L,(f) la formule
composite définie par (3.12) et soit 1 la quantité définie par (3.3).
Alors si f est assez réguliere (i.e (r + 1) fois continliment dérivable
sur [+,0], il existe une constante ¢ indépendante du choix des
points x; telle que :

2 f)dx = Ly(f)| < cnr? (3.14)

Exemple 3.3: Considérons I'exemple de la formule du trapeze
(3.10) ainsi que la formule composite L,(f) (3.13) qui en découle.
Clairement si p est un polyndme de deg = r = 1,c’est a dire p(t) = a + pt

« et g € IRl est facile de vérifier que lorsque la formule de quadrature
définie par (3.10), alors

J(p) = !, p(t)dt
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5.3. Poids d'une formule de quadrature.

Ainsi la formule du trapeze (3.10) pour calculer numériquement
f}l gi(t)dt est exacte pour tout polyn@me de deg =r=1.

Si l'intervalle [4,4] est divisé en en N parties égales i.e n =ty
xi=a+ih,i=0,1,.., N et si f est c2 [4,p], alors le théoreme (3.1) fournit
I’estimation d’erreur suivante :

[7 f(0dx — L (f)| < Ch® (3.15)

ou c ne dépend ni de N ni de 1. L'estimation (3.15) indique qu’en
principe, lorsqu’on utilise la formule (3.13) pour approcher numériquement
J! f(x)dx, 'erreur est divisée par 4 chaque fois que N est multiplié
par 2!

En fait, 'inégalité (3.14) montre que , lorsque la partition est
finie (1 petit), I’erreur obtenue en approchant j” f(x)dx par L,(f) est
petite. Cette erreur devient d’autant plus petite avec 1 et que r
est grand.

Il est donc légitime de chercher des points d’intégration ¢; et
wj,j=1,..,M; de sorte que la formule de quadrature j(.) soit exacte
pour des polyndmes de deg = r aussi élevé que possible.

5.3 Poids d’une formule de quadrature.

Dans cette section, nous supposons donnés M points d’integration
distincts dans [-1, 1]

1 << e < Ey< +1
et nous cherchons a déterminer les poids w;, j=1,..,M, de sorte

que la formule de quadrature j(s) o rM, w;g(t;) soit exacte pour
des polyndmes de deg = r aussi élevé que possible.

Pour réaliser cet objectif, considérons la base de Lagrange ¢y, ¢, ..., o
de 1p\_jassociée aux points t, ..., ty.
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5.3. Poids d'une formule de quadrature.

Par définition, ¢, est le polyndme de deg = M — 1 défini par :

() (=t (—te )=ty ) (=) o
k() = o)) (T PRy =ty W (v j=1..M (3.16)

Soit ¢ : [-1,1] — IR une fonction continue donnée. Son interpolant

g de deg = M 1 aux points #, ..., t est défini par :

~

g(t) =xi g(t))e;(t)

Il semble naturel de remplacer ' g(t)dt par J* g(t)dt,puisque
JLg(tydt =M g(t) I, @j(t)dt,

nous constatons qu’il suffit de poser

wi=[" @;(t)dt

pour que j(5) = Zle]g( ) soit une approximation de /' g(t)dt

Théoreme 3.2: Soit #< .... <ty M points distincts de [-1,1] et soit
(91,02, ., om) 1a base de Lagrange de 1r)_, assoviée a ces M points.
Alors la formule de quadrature :

J(g) = LM wig(t))
est exate pour les polyndmes de deg = M -1 si et seulement si

=1 @j(t)dt,j=1,.,M (3.17)

Preuve : i) Montrons que si la formule de quadrature j(.) est
exate pour les polyndmes de deg = M -1, alors on a les relations
(3.17). Puisque

J(g) =X wip(t)) = [, p(t)dt
pour tout polyndme p € 1p,,_,, nous pouvons choisir p = ¢, k=1,..,M

et nous obtenons
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5.3. Poids d'une formule de quadrature.

J(or) =EM  wjon(t) = [, @i(t)dt

puisque g(t;) = 5., nous avons bien,
we= [, oi(t)dt

ii) Montrons maintenant que si les relations (3.17) sont satisfaites,
alors la formule de quadrature j(.) est exate pour les polynémes
de deg =M —1.

Soit p € 1P,,_, que nous développons dans la base de Lagrange
de 1Py_; associé aux points t, ..., ty, i.e

p(t) = Z;'Vil P(tj)(P]'(t)

Ainsi donc
f_ll p(t)dt = Z?il P(t]’) f_ll @;j(t)dt :Zé\g P(t]’)w]‘: I(p)-

Remarque 3.1 : Les relations (3.17) nous permettent donc de
calculer les poids wy, k = 1,.., M, d"une formule de quadrature,étant
donné les points d’intégration ¢, ....,ty.De plus, v, ¢ (t) est le
polyndme de deg = M —1 qui vaut 1 aux points #, ...., t, et est donc
la fonction identique a 1.

Par conséquent, nous obtenons, en utilisons (3.17)

M wi= [ (XM, e(t))dt = [1 dt = 2.

Ce qui prouve que la somme des poids caclculés par (3.17) est
toujours égale a 2.
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5.3. Poids d'une formule de quadrature.

Exemple3.4: M=21t=-15=1(formule du trapeézes) et explicitons
la base de Lagrange ¢, ¢, associée aux points t, ,:

o1(t) = 0.5(1—t) et o1 (1) = 0.5(1+1)

La relation (3.17) s’écrit :

wi=[1 oi(t)dt =1 et wy= [ a(t)dt = 1.

Le théoreme 3.2 nous assure que les formules de quadratures

construites grace a (3.17) sont exactes pour les polyndmes de deg
=r, avec r plus grand que M - 1.

Dans la suite nous verrons qu’il se peut que ces formules de
quadratures soient exactes pour les polyndmes de deg = r, avec r
plus grand que m - 1.

3.3 Formule du rectangle : La formule du rectangle est une
formule a un seul point (M=1) : t=0

La base de Lagrange de 1pr, associée a t; est donnée par

o1(t) =1 vt €[-1,1]

Ainsi (3.17) nous donne
w1= f}l p1(t)dt =2

et la formule du rectangle devient

J(g) = 28(0) (3.18)

On interprete la formule du rectangle (3.18) de la fagon suivante :

Elle consiste a remplacer ! g(t)dt par I’aire du rectangle de base
(—1,1] et de hauteur ¢(0) (fig3.3), d’ot1 son nom. Selon le théoreme
3.2, cette formule de quadrature est exacte pour tout polyndome
de degré o, mais en fait elle est meillleure, elle est exacte pour
tout polyndme p € 1p, défini par p(t) = at + g,0i «, 3 € IR.

Il est alors facile de vérifier que ' p(t)dt = 28 = 2p(0).

Sinous utilisons la formule du rectangle dans la formule composite

(3.12), nous obtenons
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5.3. Poids d'une formule de quadrature.

Lu(f) = L85 (xipa — i) f(F) (3.19)
et I’estimation (3.14) du théoreme (3.1)

17 Fx)dx = L (f)| < cn? (3.20)

L'interprétation géométrique de (3.19) est la suivante :
On somme les aires des rectangles dont la base est le segment
[x;, xi41] €t dont la haureur est 7(¢,), ol ¢ est le milieu de [x;, ;1]

fig 3.3 Formule du rectangle sur [-1,1]

3.4 Formule de Simpson: Laformule de Simpson est une formule
a trois points : M =3,t;= —1,t,=0,t;= 1.

La base de Lagrange ¢, ¢», ¢; de 1P, associée aux 3 points t, t,, 3
s’écrit

@1(t) = 0.5(8=1), @, (t) = (1 —17), p5(t) = 0.5(2+1)

Les relations (3.17) deviennent alors :

wi= [ @1(t)dt =%, wo= [ @y (t)dt =3, ws= [ @3(t)dt =}

La formule de Simpson s’écrit donc :

J(g) =38(=1)+358(0)+38(1) (3.21)

Elle est une moyenne pondérée entre la formule du trapeze
(poids }) et la formule du rectangle (poids 2).5i nous utilisons cette
formule de quadrature dans (3.12), nous obtenons :

Li(f) =ZN5t o) [ £() 4+ 4f (5415 + f(x 1)) (3.22)
D’apres le théoreme 3.2, la formule de Simpson est exacte
pour tout polyndme de deg = =2. En fait, elle est exacte pour
tout polyndme de deg = = 3.
En effet, si g(t) = £, alors j(g) = 0 et [* g(t)dt = 0. L'estimation (3.14)
du théoreme 3.2 devient donc :
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5.3. Poids d'une formule de quadrature.

! F(hat = Ly(f)| < cn.

La formule de Simpson donne une erreur d’ordre »*. Cette
formulle est souvent utilisée dans la pratique car L,(f) converge
rapidement vers |’ f(t)dt lorsque 1 — o.

UM Merci denousrendrevisite sur F S

e Jol 2 i http://fso.umpoujda.com/

HAMME!




	 Résolution de systèmes linéaires Méthode direct
	Position du problème:
	 Méthode de Gauss
	 Elimination de Gauss sur un exemple:
	 Algorithme d'élimination
	 Matrice élémentaire de Gauss
	 Elimination da Gauss avec changement de Pivot
	 Méthode de Gauss avec pivot total
	 Factorisation LU

	 Méthode de Choleski
	 Description de la méthode
	 Théorème: Décomposition de Choleski


	 Méthodes itératives pour la résolution des systèmes linéaires
	 Rappels: normes, rayon spectral
	 Méthodes itératives:
	 Définitions et propriétés

	 Description des méithodes classiques

	 Approximation des solutions de l'equation non linéaire f(x)=0
	 Rappels et notations:
	  Méthode de Newton et méthode de la corde
	 Méthode de Newton (ou Newton-Raphson): 

	 Méthode de dichotomie:
	 Méthode de la fausse position (Fegula Falsi)

	 Problèmes d'interpolation
	 Position du problème:
	 Interpolation de LAGRANGE
	Interpolation d'une fonction continue par un polynôme
	 Existance et unicité de l'interpolant

	 Dérivation et intégration numérique
	 Dérivation numérique
	 Dérivée première:
	 Dérivées d'ordre supérieure:

	 Intégration numérique.
	 Poids d'une formule de quadrature.


