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Série n'2
Exercice 1,

1) Soit y(z) une fonction continue sur [a, b]. Notons xg, Z1, ..., Tn une suite de points
distincts de ]a, b].
Notons y(z;, ;) = 8y [Zi, 5] , oo P (Boy 1y ccicnsersn) = ™Y [T0y £1y 0evvereresTin]
Montrer que pour tout k € {0,1,...,n}, on a Yz € [a, b]

y(z) = y(zo) + (z — zo)y(zo, T1) + ... + (T — To)(x — 31)...(x — 24 )y (7, To, T1, ..., Tk
2) On suppose que la fonction y(z) est de classe C™** sur [a,b].

Montrer que Vz € [a,b], 3c; € [a,b] tel que

A (2,

Y (T, Ty T1y ooy Tn) = m+1)!

3) Montrer que ¥ (z, x5, zy,....Z,) = ¥ (a:, B N 1:“) .
M,

(p+1) fois
Exercice 2.Soit f une fonction 4 fois continuement dérivable sur [a, b] dont on con-
nait la valeur en des points équidistants zo, 21, 23,23 o0 2y =a+1th i =0,1,2,3.
1) Donner une valeur approchée 4 I'aide du polynéme d’interpolation associé i la
suite (g, 2y, ¥;,23) des réels f'(z) oil = = x; et = # ;. Expliciter 'erreur commise
pour chacun des cas.
2) En déduire que :

@) = == af (z0) + b (ex) + of (2) + df (zs)] + BH £ (6

Déterminer o, 3,a,b, c,d.

3) Soit f: [1,4] — R telle que f(z) = % considérons la suite 22 = 1,2, = 2,2, =
3, zs = 4.

Déduire la valeur approchée de f'(1) et f’[%]
4) Donner une majoration de 'erreur pour chacun des deux cas.
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Exercice 3. Démontrer V'estimation du cours pour m = 4, i.e. si f € C®(R,R), alors
il existe une constante C telle que, ¥ h < hy,

ISA
F9(ao) - B0 < o2

Exercice 4. Soit f € C*(R, R) donnée, soit zo € R et h > 0 donnés. Soit z;, =

xo+ h, Ty = zg + 2h et soit g la fonction définie par: 3
A O
9(z) = f(xg) + —”;f—m[ﬂl[m - 29} + —%‘f‘}l[z — zg)(z — xy).

1) Vérifier que g(x;) = f(z;) pour j = 0,1,2 et en déduire qu'il existe & € [xo, 1]
et & € [y, 2] tels que f'(&) = g'(&) o ['(&) =9'(&1).
2) Soit r la fonction définie par r(z) = f(z) — g(z).

Déduire de 1) qu'il existe n € [£,£] tel que r"(n) = 0 et donc r(z) = f n*r®(t)dt =

[ o

3) Déduire de 2) que |f(z) — g(z)| < 2h* EEIiﬂﬂ] !f{:*:'{ﬂl si € [xp, 2] . Comparer
Tg.T2

avec le développement de Taylor.

Exercice 5. Soit f € C'([-1,+1],R) donnée et soit p le polyndme de degré 2 qui

interpole f en les points —1, 0,+1. Exprimer [ p(t)dt en fonction de f(—1), f(0)

et f(1). Vérifier que la formule ainsi obtenue coincide avec la formule de Simpson.

Exercice 6. 1) Appliquer les régles de Simpson et du trapéze pour n = 6 pour

calculer lintégrale de sin = entre 0 et 325 a partir des 7 valeurs donnés dans le tableau

suivant:

T filis T

T 0 13 5 3 12 p]
711 0.86603 0.96593 1.00000

12 B
sinz 0.00000 0.25882 0.50000 0.7

e

2) Comparer les a la valeur exacte.Que peut-on conclure.
Exercice 7. Le polyndme de Legendre de degré M est défini par

1 dM

Lyl(t) = A Af1 357 (2 - 1)M].

1) Déterminer Ly, L, Loet Ls.
+1
2) Montrer que pour i,j € N, i # j ona a(L;, L;) =f Li(t)L;(t) = 0.
i3
3) Montrer que L a exactement M zéros réels distincts tous compris dans |1, +1[.
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4) Montrer que la formule de Gauss-Legendre a M points est exacte pour les polynémes
de degré r = 2M — 1

Exercice 8. Soit a € Rdonné tel que 0 < @ < 1, s0it t; = —1, tp = —a, t3 =
a, tg = +1, et soit wy, wy, ws, w.;lqu&tre nombres réels. Nous considérons la formule

de quadraure définie par J(g) ZZ w;g(t;), on g € C ([-1, +1]) donnée.
i=1
41

1) Trouver wy, ws, ws, ws en fonction de o tel que J(p) = [ p((t)dt, pour tout
=1

polynéme p de degré 3. :
+

2) Existe-t-il o tel que J(p) = / p(t)dt, pour tout polynéme p de degré r, avec
=
ro 37

5i oui, quelle est la valeur maximale de r et que valent alors o et wy, ws, ws, wy?
Exercice 9. Soient ¢, = —1, ¢, =0, ¢3 = a, oi & € ]0, 1], trois points distincts fixés
dans V'intervalle [-1, 1].

Si g est une fonction continue définie sur [—1,+1], on considére la formule de quadra-

3
ture & trois points J(g) =Z w;glt;).

=]
ol w;, 7=1,2,3 sont les Ii-uids de la formule de quadrature.
1) Calculer les poids w;, ws, ws en fonction de a pour que la formule de quadrature
soit exacte pour des polyn6mes de degré 2.
2) Existe-t-il o pour que la formule de quadrature soit exacte pour des polynémes de
degré 37 Si oui, donner la valeur de o et les poids wy, wy, ws. Sinon, justifier votre
réponse. '
3) Existe-t-il & pour que la formule de quadrature soit exacte pour des polynémes de
degre 47 Si oui, donner la valeur de o et les poides wh, W, wy. Sinon, justifier votre
réponse.
Exercice 10. Soit —1 < t, < t; < +1. Etant donné ces deux points, nous cherchons
deux poids wy,w; qui définiront la formule de quadrature: J (g) = wig(ty) + wag(ta),

+1
pour approcher f g(t)dt, la fonction g étant continue sur [—1,+1]
-1

+1
1) Trouver les poids w;, wy en fonction de ¢,, 5 tels que J(p) = f p(t)dt pour tout

polynome p de degré 1. 1

2) Que deviennent les poids lorsque ¢, = —#,

3)On considére le cas ol t; = —1 et t, = +1. La formule est-elle exacte pour des
polyndmes de degré 2
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4) On considére le cas ol ) = —a et 3 = +a avec 0 < a < 1. Pour quelle valeur de
a, la formule de quadrature est-elle exacte pour des polynémes de degré 27

la formule de quadrature ainsi définie est-elle exacte pour des polyndmes de degré 37
la formule de quadrature ainsi défini est-elle exacte pour des polynomes de degré 47

Exercice 11. On définit la fonction g(z) = 3 : = YV € |—o00,1] g
1) Calculer F(z) = f glt)ydt z<l1 ’
0

2) Quelle est la valeur de F(z) en = = ;

3) Donner le degré et I'expression du polynome de Lagrange qui interpole g(z) aux

points (), %, 3"
4) Trouver les coefficients ¢y, ¢y, ¢, tels que pour tout polynéme P de degré < 2 on

ait:
2
f P(z) dz = coP(0) + 1 P(1) + c2 P(2)
L]

5) En utilisant un changement de variable, déduire de la formule précédente les coef-
ficients do, d;. dy tel que pour tout polynome Q de degré < 2 on ait:
2

@(:c} dz = dyQ (0) + dhQ (é-) +daQ (g)

Utiliser cette formule pour donner une valeur approchée de log 3
Exercice 12. Soitar € ]0,1] C R donné, soit t; = —a, t3 = 0, t3 = a, et soit
w1, we, ws, trois nombres réels. Nous considérons la formule de quadrature définie

3
par J(g) =Y wj g(ty),

j=1

o g € C([-1,+1];R) donnée.

+1

1) Trouver wy, ws, ws en fonction de a de sorte que J(p) = / plt)dt, pour tout
1
polyndme p de degré 2.
+1

2) Montrer qu'avec de tels poids J(p) = f p(t)dt pour tout polyndéme p de degré
-1

3. .
3) Existe-t-il & tel que la formule de quadrature soit exacte pour les polynomes de

degré 57 Si oui, calculer a et comparer avec les zéros du polynéme de Legendre de »
degré 3
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rection xXercices
Exercicel:

y(z) est une fonction continue sur [a, b], montrons que pour tout k € 10, 1,.....m} on
aVz € [a,b)]

y(z) = y(z) + (z ~ zo)y(zo, 1) + ... + (= 20)(z — T1)...(z — 2 )y (z, zq, 23, voey Ti )
On a:

y(z) = y(zo) + (z — zo) y (x, o)

Y (z,x0) = y(zo, 21) + (z - ) y (2, 29, ;)

y(z,zo,2;) = Y(To, 21, 22) + (z — x3) y(aT,Iu:IhIEJ

Y (z, 20,1, ... Th—1) = y(p, Ty X2, +enii) + (T — 1) y (2, 20, 24, 2, e YT )
On multiplie la seconde équation par(z — z;) la troisiéme équation par (x — xp) (x — x,)
et ainsi de suite la dernitre équation étant multipliée par (z — z)(x — Z1)eowrn (2 —

Tj-1),0n obtient:

y(z) = y(zo) + (z — zo) y (z, 20)

(z — 20) y (2, %0) = (% — o) y(20, 1) + ( — 7o) (z — 1)y (2, 2o, ;)

(z - xg) (x — ) yfzzﬁn.i—"l} =(z— Zo) (T — z1) y(=zo, Ty, To)+(z — Tp) (T — ;) (=22} g (2, 2.

( = zo)(z — 2y)..on (@ — Tee1)Y (2, o, T4, oo Lpmy) = (z — zo)(z — 2)........ (z —
T-1)y(zg, 71, T3, ..1..1:1:;,}-4-(z-—:.-:u](a:—.rlj.,......{r—x;,_;] (z — z) y (z, zp, T4, 24, vviiridDE )
On additionne le tout et aprés simplification on obtient:

y(z) = y{zu}-i-[::—x.;.}y{:cn,.-1.*1}+.........,...-f-{m—zﬂ}[x—-xl}.......,.{m ~Z1 )y (x, To, 21, ..., 24)

2) On a d’aprés la question précédente:
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y(z) = Pa(z) + n(x)y (z, %o, T1, veveees Tn) OU FPr(z) €86 le polynéme d’interpolation de 1
Newton associé aux points distincts To, Ty, ......Zn et 7 (z) = (2 — %o) (z — Z1) ceresness (T — T
Or on sait que V& € [a,b] , 3 ¢ € [a,b] tel que :

] - =

y(@) = Pa(z) + 7 (2) Tt 1}.1:*“* ' (c2) =
(n41)
, _ ¥y ()
Dot : y{I,Iu,iﬂl,...,En)-— W -a
3) Montrons par récurrenceque: é
yb}} {I: Iﬂ! zl ............ ] m“) = y (m‘ I--...-.-I, -'I:ﬂ, Il.,, 1,,-;.;13“)
(p+1}fois
p =
L . y (z + h, To, 21, .. a:,,} y (z, Zg, T1y 00y %n)
u [P LS R _h—vﬂ

Puisque la dlﬂ'érence relative est s}rmétnque 24 2 on obtient:

d y(z + h, Tp, Z1, .., Tn) — ¥ (Ta, T1y -1y T,y T)
Ly (3,20, 4,00 ) =Jim EAEALEL

d .
Ey{.m:mrzls vres Tn) =EE[1} y(z+ h, %0, 1, ., Tn, T)

d ;
d—‘ ($,Eu,£1, iy mn] 311;12% y{ﬂ: == h,ﬁ, T, .’.1..."1., ...,..""'.rn]

d
E"L"{m T, T1yeoy Tn) =Y {E,.T T, 1y o003 Tn)

Supposons que la propriété est vraie jusqu’a l'ordre p c.a.d y® (z, 2o, 21,......... S Ta) =

¥ LB, B...cnslh; By Ty n:,,) et montrons la 4 l'ordre p+ 1
( {p+1)fois

d
Y+ (z, 20, 24,........., Tn) = T=Y® (T, T0, T,......... Tn)

dr
%’{Hl}{m Ig, I1,......... y ) = Ey (:1:,3: ...... . MR T :rn)

{p+1)fms
y @) (z, 2, 21,..0..s Tn) =Y m, Tgy L1geneneBn | d’00 le résultat.
{p+2)fois

Exercice 2:

1) Cherchons le polynéme d'interpolation de Lagrange P;(z) de degré 3 associé a
f aux points rg, T, 79,23 OW 7; = a +ih, i=0,1,2,3

Soit (o, @1, tp2, tp3} la base de Lagrange associée & ces points, i

On a Ps(z) = 2 wi (z) f(z;) on
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pole) =~z (2 — 2) (3= 22) (& — )

p1{z) = 573 (2 — 20) (z — 22) (z — 23)

o3(2) = g (@ — 20) (2 = 21) (2~ 22)
Or on sait que: f(z) = Pi(z) + E(z) on E(z) = 11—[17 (x) f9(¢,), avec 7 (z) =

H (z — ;) et &; € [To, T3]

dcmc f'(z) = Pj(z) + E'(z), d’ou la valeur approchée du réel f'(z) c’est P3(x) avec
une erreur de E' ()

Dot 8 2 =z /') = 1 ¢ (@) () + g7 (@) [O(Ee)
iz, FE)= 5@ f(a) + 7 (o) [O(E) + 5w (&) FOE)

_1--3

2) 812 =20 f(a) = T ¢ an) £(2) + 7 (z0) SO (6w
Cherchons apj[zn} pour 3 =0,1,2,3 et {zu)
h(a) =~ (@~ o) (6 — 33) + (2 = 21) (8 = 2) + (2 = 1) (& — 7))
h(2) = s [l = 22) (@ — 29) + (2 = 20) (2 — 22) + (£ — 70) (2 = 73)
wy(z) = —'21 [(z — 1) (2 — 23) + (z — 20) (2 — 71) + (z — To) (¢ — T3))]
Ahlz) = g 2 - 5106 -G (s i) o~ )+ o il )
Do ¢h(a0) = —r, @4(50) = 3, ph(s0) =~y #i(@0) = g,  (3o) = ~6h°
Done f/(2o) = g [~11/(zo) + 18f(31) - 97 zs) + 2f (22)] — 3h*S ¥ (6s0)
Dot le résultat avec a« =6, a = —11, b= 18, ¢ = -0, d=2&tﬂ=—l

4
Exercice 3. f € C**?(R,R) = C°(R,R) (m =4).
D’aprés le cours , nous avons

8(f(z0)) = f(zo+ h) — 2f (o) + f(zo — ),

et
82 f(wo) = 6n(83 1 (20)) = 6 (6n (67 f (x0)) = 64 (64 S (x0)).
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Puisque I'opérateur 52 est linéaire et en utilisant I’égalité ci-dessus, nous obtenons

64 f (o) = &% f (o + k) — 263 f (z0) + 81 f (20 — h)

( or par définition 6xf(zo) = flzo + %) - f(xg — %}) donc nous avons

ﬁ:f[ﬂ:u} = f(zo+2h) —2f(zo+h)+ flzo) = 2f(xo + h) + 4 f(xo)
~2f(z0 — h) + f(zo) — 2f(zo — h) + f(zo — 2h)

ﬁ:.f[ﬂ:u} = f(Iﬂ -4~ Eh) — 4f(.’.£u + h} =+ ﬁf{Iﬂ] -+ f[::!-'ﬂ = 2’1} = ‘if{ﬂ!g -_— h:l
D’autre part, le D.L & 'ordre 6 de f au voisinage de zo nous assure que

3
flzo+2h) = f(zo)+ f’{mu}ﬁ}: + f"(x }{2 ) + fO)(z )(2;}
+19 (2o )(211) + Oz }(2:!] + {®(n, 1[2‘;}5’

fo—2h) = f(zo)— fzo)2h+ "z} — f0(a) B AL

+10(w0)Z fm(o:n}%il' 1O (m }{2;) .

& ' 1 h? (3) W (4) h' {5} L
f(zo+ h) = f(zo) + f(zo)h + f {EUJE +F (E'u)".:ﬁ + 1 (10}‘@ +J {mﬂ)ﬁ +
O (ng }Eﬁ'
f(‘tn = h) = f(zo) — f'(zo)h + f"(In]— " fm}{ﬂ—'u)— + f9 (ﬁn i f"’ﬂ{fﬂﬂ}"‘“‘

f{E] [r“)-él-’

ot (11, M2, M3, Na) € |20, &z + 2h[ x |20 — 2h, 2| X |20, 20 + R[ % Jzg — hyzo] .
Aprés substitution dans la formule de §} #(zo), nous obtenons (85 f(zo) = f(zo+2h)+
f(zo — 2h) — 4f (2o + h) — 4f(z0 — k) + 6f(20))

1 (@0) = 1 (@o)h* + [% (FOm) + FOm) — 5 (FOm) + f‘“’{m})] he

Soit hg € |0, +oof fixé et soit

Gt amay |F € ()|

Q0 zy—2hg<r<z4+3hg
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Guf(0) ) 2
Pour tout h < hy, nous avons donc o g [ (xp)| < ch®.

Exerciced:
feC®(R,R) donnée , soit s € Ret h >0, &y =x0+ h, Ta =29+ h
(@) = f(ao)+ 2Ly gy BN (o _ g5z )
ot Apf(ze) = f(zo+h) — fxzg) et f € C3R,R), z; = zo+ih (i=1,2)
1) Il est clair que g(zq) = f(zp). D’autre part, nous avons g(z;) = f(zg)+&nf(20) =
f(xo + h) = f(z1), et

g(xa) = f(mo) + 240, f(zo) + A f(z0)
g(x2) = 2f(zo + h) — f(zo) + AF f(zg).

or
AL f (o) = Dw(f(wo + k) — f(20)) = Daf (w0 + k) — Anf(wo)
A f(xo) = f(Iu + 2h) — f(zo + h) — f(zo + h) + f(z0)
AR f(zo) = flzo + 2h) — 2f(zo + h) + f(zp),
donc g(x2) = f(ze + 2h) = f(z3). Posons r(z) = f(x) — g(xz).
Puisque r(z¢) = r(z;) = f{ﬂg} = 0 et puisque r € C(R,R), on peut utiliser le
théoréme de Rolle pour obtenir

3o € Jxo, z1[ tel que r'((p) =0 ie. f'(¢o) = g'(Co),
3¢ € Jar, 22| tel que r'(G;) =0 e f'() = g'(G),

2) Puisque r'((s) = r'(¢1) = 0 et puisque r € C(R,R) on peut a nouveau utiliser le
théoréme de Rolle pour obtenir 3 € |, (| tel que 7'(n) =

Par conséquent, puisque r" est continue, nous avons r(z) = r”(z)—r"(n) = [ n*r'®(t)dt.
Puisque g est un polynéme de degré deux il est clair que r®(t) = fO(¢t) — gB)(t) =
FBt) et donc r"(z) = / n* fO) (t)dt.

3) Considérons par ExEmpie le cas ou x € [xp, 24 .
Le cas ol = € [x, 5] se traite de maniére analogue.

D'aprés 1) , r(z0) = 0 et donc f(z) - g(z) = r(z) = r(z) - r(zo) = f s

Par conséquent, |f{z) — g(=)| 'f.f Ir'(s)|ds ﬂ: max [r’{s} (%)
soit 5 € [zg, x;]. D'apres (a), r'({) = 0 et donc r"( ) =1'(8) — () = f’ r”(t)dt.
o

f:ﬂ [r"{t}ldtj < /: |r"(t)|dt < h max |r"(2)]. (w*)

E R G

Par conséquent, |r'(s)| <
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Soit t € [xg, x;] . D’padrs (b) "(t) = f n' f® (u)du, et par conséquent

T3

Efif”](u}iduii?h max |[r®(u)|. (x*+)

§r"{t]|i = TpSusTy

] ' £ (u)du

Les inégalités (), (**) et (* * x) impliquent donc
F(2) ~ 9(a)] < 20° mex |r¥(u)}.

TgEuST]

Comparons ce résultat avec la formule de Taylor.
Soit z € [z, 72) donné, puisque f € C*(R,R),3( € [zo, ] tel que

)
(@) = () + Lo @ — 20
ot G est le polynéme de degré deux défini par
Gla) = f(ao) + F'o)(x — 20) + o (@ — o).

Par conséquent, lorsque = € [z — z¢| , nous avons

( _
56~ 6@ = [F (e - anp| < P72 max |70,

ra=i<zg

£(x) ~ G(@) = 5h°_max |F(0)],

TpStErs
Interprétation: Nous avons donc & notre disposition deux polynomes de degré deux,
g et G , permettant d’approcher une fonction f € C*(R,R), au voisinage d’un point
g € [xg, 72 + 2h] Perreur maximale entre f et les polyndmes g et (7 est d’ordre trois
en h sur [zg, 2o + 2h] . Le polynome G fait appel aux dérivées premicre et seconde de
f au point zo. Par contre, le polynéme g fait appel & des approximations numériques
de ces dérivées.
Exerciceb:
Soit f € C ([-1,+1],R), alors le polynéme P de degré 2 qui interpole f en les points
g = _11 ty = Det tz = +1 s'écrit ainsi

p(t) = f(=L)po(t) + £(0)pa(t) + f(L)pa(t)

ol o, {1, w2 est la base de Lagrange de P; associées aux points tg = —1, &, =
0, t; = 1 et est explicitée dans le cours exemple 1.1 (chl). i.e.
1

1 P |
£=—2—— i) = 2 e =
po(t) = 5t° = 5t, @i(t) =1 -1, palt) = 5"+ 3t

SETUUP



23

un calcul simple donne

+1 +1

+1 +1
/ p(t)dt = f(~1) f eolt)dt + £(0) f er()dt + (1) f pa(t)dt
e | il

+1 1 +1 4 +1 1
f wo(t)dt = = f 1 (t)dt = 3 f we(t)dt = 3 et par conséquent
1

-1 3! -1

[ 20t = 351+ 241 + ).

+1

Il semble donc naturel d’approcher fit)dt par la quantité J{f) définie par
-1

T() = 3U=1)+45(0) + FQ))

Dans le chapitre 3, on appelera J(f) formule de quadrature. Par construction, J(f)

+1

intégre exactement les polyndmes de degré 2 au sens on / q(t)dt = J(q) Vg € P,.
iy
Cette formule de quadrature s’appellera formule de Simpson.

Exercice6:
On va appliquer les régles de Simpson et du trapaze pour n = 6 pour calculer inté-

grale de sin x entre 0 et g a partir des sept valeurs tabulées en la table suivante:

z 0 12 & i 3 o1 F
sinz 0.00000 025882 0.50000 0.70711 0.86603 0.96593 1.00000
Apreés calcul la régle du Trapéze a donné 0, 99429 et celle de Simpson 1, 00003
En comparant a la valeur exacte soit 1 on obtient:
Il — Jr|~ 5711073
11 = Jsimp| & 3 1073
On voit trés bien que la régle de Simpson est meilleure.

. , B e
Exercice 7. Soit M € ?&1 LdM{t] = DAL g™ [(#2 - 1)M)
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Loft) = g (8 = 1) = § % o (2% 26~ 1)
Lg{t]=i;[t2—1+212]—3 2_1,

Ia(t) = e (= 1Y) = = & s -
Ls(t) = é% [[t’ - 172+ t%{t” 1}2}

[ = 25 - 17+ LA

Ls(t) = % (” - 1)+ %t Lo(t)

Ly(t) =t(t* — 1)+ = [3&3— 1)

Li(t) = —4{31:&“—1+2:2 2} = 5t2 3)

;

Ls(t) = 5t( ~ 3)

24

+1
2) Montrons que (L;, L;) = [ Li(t)L;(t) = 0 si i # j, en effet, supposons i > j; on

obtient alors en intégrant par partte

+1 +1 .
1 d ;& i
(LﬁL,}—fL,-{thJ-{t]l WI-&—-{F—I) &~ 1ydt
-1 -1
1 e 3 di-1 23 dj-i—l ;
L e 2"“‘551?!.:??{ [dt‘“l{t Ny dt? {t - l}j] [ dt*“l{ d.ti“ (¢
Puisque (2 — 1)* a un zéro d'ordre i en 1 et en —1, la (i — 1)"*™* dérivée de (12 —
s'annule en ¢ = 1 et en t = —1. Ainsi nous obtenons
+1 +1
(-1) " di+l :
/Li{t}Lj[ﬂdt 2 2""“1'3'_?1 d‘ti-ll[ l}ldtj+l( = ”Jdt‘
-1 -1

En intégrant par partie j fois comme ci-dessus, nous obtenons:

R Al e . d¥
1={2i}!
_ =1 T ; - .
(Li, Lj) = 2 il | dpa-1 (t2 —1) _1 =0 (0<i-j—-1<i-1).

1)/dt)

1)*
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3) Soit ¢;,tz,...,t, les points strictement compris entre —1 et +1 en lesquels L,
change de signe.

Clairement ces points seront des zéros de Ly et on a donc s < M. Si on pose
p(t) = (t—t1)(t —ta).....(t — t,) alors p € P, et, puisque p change aussi de signe en les
points ¢;, 1 < j < s on obtient p(t)Ly(t) > 0 Vit e [~1,+1] ou p(t)Lu(t) <0 Vt e
[—1,+1]. Dans tous les cas, puisque p(t)Ly(t) #0, on a (p, Ly} # 0.

Puisque Lg, Ly, ..., Ly; forment une base de Py alors il existe ag, ay, ....., a, tels que

p(t) =Z a;L;(t) et en utilisant la partie 2) on obtient
=0

+1

0, La) =3 a5 [ L) Lar(t)dt = o (Lo, L.
=0 ol

+1
Puisque (p, Lys) = / P(t)La(t)dt # 0 on a nécessairement s = M et donc les M
1

zéros de Ly sont ¢y, 1a, ..., t,y.

4) Nous allons montrer que la formule de Gauss-Legendre a M points est exacte pour
M

les polynémes de degré r = 2M — 1. Pour cela, considérons J{g) =Z w;ig(t;) la
i=1

formule de Gauss-Legendre & M points et soit p un polynéme de degré 2M — 1, alors

nous pouvons définir pour t ¢ B

M
()= plt;)e;(t)

=1
Ol 1,%2,..., pn est la base de Lagrange de Pjs-1 associée aux points de Gauss
t1,ta, ..., L.
Autrement dit,  est donc I'interpolant de p de degré. M — 1 aux points de Gauss
1,13, ..., Epq.
Soit g(t) = p(t)—p(t) ¥t € R, alors deg(q) = 2M —1 tels que glt;)) =0; 5=1,.. M.
Ainsi ¢ est divisible par le polynéme v de degré M deéfini par: v(t) = (t — t;)(t —
t2)...(t —ty) Vit € R c-ad il existe un polynéme w de degré M — 1 tel que
g(t) = v(t)w(t) VvteR.
Puisque v est un polynéme de degre M qui s’annule en les M zéros de Ly qui est lui
méme un polyndéme de degré M, 3o € R tel que v(t) = aLly(t) VieR.
Puisque w est un polyndme de degré M — 1, il existe By, B, ..., Byr-1 tels que

M1
w(t) = BL;(1).

=0
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Ainsi donc,en utilisant la propriété d’orthogonalité des L;(t) (voir 2)),nous avons

+1 +1 M-=1 +1
fq{t]df = fu{t]w{t}dt. =a Z ﬁk/LM{z]Lk(f} =),
-1 -1

=1 i=0

donc nous avons prouvé que

oy

+1 +1

[pwie= [ 5

~1 -1

et en fin, par définition de 5, nous obtenons

+

1 M +1 M
POt =3 pit;) [ oy(t)dt = wiplty) = J(p).
=1

i=1 j=1

=

ce qui achéve la démonstration.

Exercice 8.
1) D’apres la formule du théoréme 3.2 du cours, nous obtenons

+1
wj =/‘P§(t}dtr
-1

ol les fonctions ¢;, j = 1,2,3 et 4 sont les polyndmes de la base de Lagrange de P,
associée aux points t; = —1, t, = -, ta=aett; = +1.
n — t.
Puisque o;(t) =TI —(E——’}- (Iei n = 3), alors nous avons
i;jl {tj =) ti}

3

4+ t—-a t-—1 t+1 -1 t—1

t) = . . = y
eu(t) -l+a -1l-a-1-1° #alt) —a+l—oa-a -a-1

et done

' 11— 302 “ 1
2 = 2
wi = /‘?1{5}"& =y Ioa = fﬂﬁ?zfﬂdf = ey

-1 =1 ¥

Pour des raisons de symétrie, w, = W et wy = wy. Par construction J(p) intégre
exactement tout polynome de degré 3.
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2) Tout polynéme de degré r peut s’écrire p(t) = at” + g(t) ou g est un polynéme de
degré r — 1 et a € R. Par conséquent,

Jpl=a Z wjit:; + J(g) et

=1

+1 +1 +1

fp(f}dt =a/f’dt+ fq{t]ldt.

=1 -1 s,
+1

Done, pour que J(p) = f p(t)dt pour tout plynéme p de degré r, il suffit que
-]

+1 +1

J(q) = f g(t)dt pour tout polynéme q de degré r — 1 et que J(t") = / trdt.
-1 -1

Nous procédons done par étapes pour déterminer le degré maximal du polyndme pour

lequel la formule de quadrature est exacte. ,

On a vu dans 1/ que la formule de quadrature est exacte pour les polynémes de degre

3. D’autre par

+1
Si J(t') = [ t*dt on obtient a = 1,_,_}'_5 et ainsi pour cette valeur de o, la formule de
~1

1

quadrature est exacte pour tout polynéme de degré 4 et nous obtenons W = Wy = g
e

et wp = wy = g— et la formule de quadrature s'écrit: J(g) = é-{g{-qu—g{ljj
5, .—1 1

= —) =+ g{—=1).

De méme il est facile de vérifier que cette formule est aussi exacte pour le polynéme

t5 puisque
+1
J(t*) =0 = / t5dt
-1
Par contre, elle ne I'est plus pour le plynéme ¢°.

En effet,

1 B ] 28
JE) = G+ 0 + () + (T2 = 28
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J(t%) # f tbdt =
Ainsi la réponse a la 2"—‘"‘“—‘ question de I'exercice est positive et on a r = 5.

Exercice 9:
1) D’aprés la formule du théordme 3.2 du cours, nous obtenons

+1

Wy - /“F’j{t}dt:

-1

o les fonctions ;, j = 1,2,et 3 sont les polynémes de la base de Lagrange de P,
associée auxpemtstl ==], th=0ctiz=a

Puisque ¢;(t) _.=1 ((: — t‘.}}
T e

(t—ta)(t—t5) t(t—a)

(Ici n = 2), alors nous avons

i e e e
B t)(t—ts) _ (t+1)(t—e)

L (t2 — tl)(tg - tg} -

‘F‘E{t} A {t v tl](t = tﬂ} ey (t 2 ; ]'Jt'

E:ts, - tl](ta — t:) i (e + 1)&‘
+1 1 +1 1 ta ﬂftz +1
uh = f pa(t)dt = —— 2 —ta= [— - —]

+1 1 [# £ %
s 2 o v S| el s AR Y
wy = f_lt+L1 a)t — a a[3+(l a}z at],l
N 9 1 T Lol 1 (l-a) _-1{3_2({
2= |37 T2 37 2 - "
+1 3 27+1
=;f 2 S [L+E_}
ala+1) S o ala+1) {3 2f_,
1 [1 b 1} 2
ala+1) |3 2 3 2] 3afa+1)
2)Par construction, J(p) intégre exactement tout polynéme p de degré 2.
+1
Pour que J(p) = f p(t)dt pour tout p € Py, il suffit de vérifier que J(t*) = "
~1 2

']

+1
f t*dt; en effet

=g
J(ﬁsj = —uq + Waﬂs
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et, d’autre part tﬂdt == [t‘]+I =0,
-1

donc J(t) = —w; + wze® = {]
aE=let&#—lTa=l
donc wy = wy = 3 et wy = 3 d’on on obtient la formule de quadrature de Simpson.

2
3) pour r =4 ,on a t‘dt = % J(t*) = = donc il n'exixte pas de o Pour que la

-1
formule de quadrature soit exacte pour les pnl;mﬂmes de degré 4.

Exercice 10:

Soit —1 <t; <3 <1et J(g) =wig(t) + waglta)
+1

1) Cherchons les poids wy,ws en fonction de t; et t; tel que J(p) = fpl[t} dt pour
-1
tout pul;;.rnﬂme p de degré 1 Les valeurs de w; et wy en fonction de ¢; et t3 tel que
41

Z wip(t;) f p(t)dt pour tout p € P, sont données par
j=1

+1

Wi = f{_ﬂ‘(t}dt,
%"

otl les fonctions g;, i = 1,2 sont leﬂ pu]yn&nmes de la base de Lagrange de P; associée
[t ti)

1;;} lLt'J = '!:}

aux points t;, t; Puisque ¢;(t) = (Ici n = 1). Alors nous avons

dnnc

Wy = f walt df = =

E)Blfl = —iq B.lﬂl'ﬁwj_—-.ug—l

3} Sih:—l Etf:lzlﬂ.lGI‘SW'l = Wy = 1,
+1

2
a-t-on J(t?) = f t2dt = [ﬁ']Jr1 E? or J(t*) = 2 donc la formule n’est pas exacte

pour les pnl}'nﬁme de deg:ré 2
4)Sit; = —aetty=aalorsw, =w; =1
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cherchons a pour que la formule de quadrature soit exacte pour les polynomes de
+1

degré2 J(t?) = / Pdt = () +wy)a? = % Comme 0 < a < 1, on a J(p) =
=1

+1
f p(t)dt ¥p € P, si et seulement si o = vi/_ La formule de quadrature J(g) =
-1
1 1
7% ) 79| —= ] est donc exacte pour les polynome de degré r = 2. De plus
o(-75) +o () =t o S e 2y e

+1
, lorsque p(t) = t*, on a J(p) = f p(t)dt = 0, la formule de quadrature J(g) =
-1

1 1 ;
1 —= | est exacte pour des polynéme de degré r = 3. On vérifie sans
I G LT a——

peine que cela n’est pas le cas pour des degrés r plus élevés en prenant par exemple
p(t) = t4,

Exercice 11:

On définit la fonction g(z) = : i.r Vz € |-o0,1]
1) F(z) = —log(1 — z)
2) F[—;—} = log3
1 2 .
3) Le polynéme de lagrange qui interpole g en trois points 0, -, = est de degré 2 et il

[} 31 3
est donné par; Py(z) = E:t:l +1

4) On pose p(z) = 1,p(z) = et p(z) = z*, on trouve le systéme suivant:
r 2

fld.rﬂg:ﬂﬂ+c1+ﬂ2
0

2

5) On peut effectuer le changement de variable = = 3y on a: f plz) dz =3 [ q(y) dy

0

Eeqmdﬂmdltéﬁdrﬂﬂdgﬂdz=$, dlzg

Utilisons cette formule pour donner une valeur approchée de log 3

=

Ly ]
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2
3

F(z) =log3 = /gl{y} dy
(1]

(=] ]

2 "2
3 3 3 9

Or fg{y} dy est approchée par /Pgl[yjdy = doP(0) +d1 P> (E) +da Py (E) Donc
0 0

1
on trouve log 3 & 5

Exercice 12 .

1)Soit a € ]0,1] C R. Les valeurs de w; en fonction o tel que J(p) =Z wig(t;) =
=1

+1
f p(t)di pour tout p € Py sont données par
-1

+1

w; = /tp,-{f}[ft,

=]

ol les fonctions ;, i = 1,2, 3 sont les polynoémes de la base de Lagrange de B, associée
. 2 i i — f.i 4
aux points t; = —a, t3 = 0, t3 = a. Puisque wi(t) =11 H (Ici n = 2). Alors
i=] i
i 7 ;S

nous avons
{t}—£ t—o (t t+at—-a
st W 2 TV ot -
donc
+1 1
= tidt = —
'y /_ ‘F’lf} 902’
+ 2l
— fﬂ: = —

Pour des raisons de symétrie, wy = w,. Par construction, J (p) intégre exactement
tout polyndme p de degré 2.

+1
2) Pour que J(p) = f p(t)dt pour tout p € Py, il suffit de vérifier que J) =

-1
+1

tdt; en effet

-1

J(t3) = wi{—=a)® 4+ .0 + wye® = 0,
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et, d’autre part ] t3dt = - t“] [ t*dt = = Lt"]Jrl =N,
+1

3) Nous avons J(p) = f p(t)dt pour tout p € Py, si J(t!) = t4dt. Puisque
-1

-1
+1

2,
J(t*) = wi(—a)? + w.0 + w3a® = 2w;al, et puisque f $hdt = 5 il suffit done que
=1
4 ]' H a 3
wa® = = clest a dire o = % €1]0,1].
+1

Finalement nous vérifions facilement que J(t°) = / t%dt = 0 et donc la formule de
=4

quadrature est exacte pour un polyntme de degré 5 lorsque o = \/ 5

] 3
D’aprés P'exercice 7. 1/, le polynéme de Legendre Lj est donné par Ls(t) = Et{t2 - g},

: 3
il s’annulle donc pout t = 0et t = + = La formule de quadrature correspondant

au choix a = ﬁ est donc la formule de Gauss-Legendre & 3 points. Elle est bien
exacte pour les polynfme de degré r =2x 3—1=35.

oy

&Y e T
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