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4.Circuits séquentiels

Plan

•Chapitre 1 
•Algèbre binaire
•Écriture et simplification des fonctions 
logiques

George Boole (1815-1864) est un mathématicien autodidacte 
anglais qui voulait faire un lien entre la logique (étude de la 
validité du raisonnement) et la représentation symbolique utilisée 
en mathématique.

Il a écrit deux ouvrages sur le sujet :
• Mathematical Analysis of Logic (1847)
• An Investigation of the Laws of Thought (1854)

Ces travaux n’ont pas connu d’intérêt particulier auprès de la 
communauté mathématique et scientifique de son époque, mis à
part chez les logiciens

Algèbre de Boole
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Algèbre de Boole

• C’est 70 ans plus tard que les travaux de Boole gagnent 
l’intérêt de tous, lorsque Claude Shannon fait le lien entre 
l’algèbre de Boole et la conception des circuits.

• Claude Shannon montre que l’algèbre de Boole peut-être 
utilisée pour optimiser les circuits. Cette nouvelle avenue 
de recherche va ouvrir la voie à l’ère numérique.

« En utilisant l’algèbre de Boole avec le système 
binaire, on peut concevoir des circuits capables 
d’effectuer des opérations arithmétiques et logiques

• Boole repose sur des axiomes, des postulats et des 
théorèmes qu’il faut connaître par coeur !

Algèbre de Boole

Propositions vraie ou fausses
et opérateurs sur ces préposition

Algèbre de Boole

• Systèmes binaires: Vrai=1, Faux=0

• C’est le cas des systèmes numériques (circuits logiques)
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• L’ordinateur est constitué de circuits logiques
• Élément de base est le transistor, deux états: 

Bloqué=0, Conducteur=1.

Transistor Porte logique Circuit logique
Unité d’un 

système informatique

Algèbre binaire

Définitions:

• ÉÉtats logiquestats logiques : : 0 et 1, Vrai et Faux

• Variable logiqueVariable logique :: Symbole pouvant prendre comme valeur 
des états logiques (A, b, c, ...)

• OpOpéérateurs logiquesrateurs logiques: Or, And, Not, ... 

• Fonction logiqueFonction logique :: Expression de variables et d’opérateurs 
logiques. ( f = not(a) or (b OR c and d)
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Éléments de base

•• Variables dVariables d’’entrentrééee
– Les variables d’entrée sont celles sur lesquelles on peut 

agir directement. Ce sont des variables logiques 
indépendantes.

•• Variable de sortieVariable de sortie
– Variable contenant l’état de la fonction après l’évaluation 

des opérateurs logiques sur les variables d’entrée.

•• Simplification dSimplification d’’une fonction logiqueune fonction logique
– Trouver la représentation (l’écriture) la plus simple de la 

fonction réalisée: Algèbre de Boole

Algèbre de Boole sur [0,1] = algèbre binaire
Structure d’algèbre de boole

• 2 lois de composition interne (Or, And)
• 1 application unaire (Not)

2 Lois de Composition Interne : ET, OU

Somme (OU, Réunion) s = a + b = a or b
Produit (ET, intersection) s = a . b = ab = a and b

Nb: a+b se lit « a OU b » pas « a PLUS b »

Application unaire :

Not (complémentation, inversion) s = a = not(a)
NB: a se lit « a barre » ou « non a »
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Fonctions logiques

Fonction logique à n variables f(a,b,c,d,...,n)

[0,1]n          [0,1]

- Une fonction logique ne peut prendre que deux valeurs (0, 1)
- Les cas possibles forment un ensemble fini (card = 2n)

La table de fonction logique = table de vérité

Définition :  (a, b, c, ..., n) = vecteur d’entrée

s = a

Table de vérité

s = a + b s = a . b
S est vrai si a OU b

est vrai.
S est vrai si a ET b

sont vrais.
S est vrai 

si a est faux

a b   s
0 0   0
0 1   1
1 0   1
1 1   1

a b   s
0 0   0
0 1   0
1 0   0
1 1   1

a     s
0     1
1     0 

• Table de vérité: Enumération ligne par ligne des 
valeurs prises par f en fonction des valeurs de ses 
paramètres.

OrOr AndAnd NotNot
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Notes sur les tables de vérité

f (a, c, d, .., n) fonction logique à N entrées
sera représentée par :

• une table à 2N lignes
a b c     f(a,b,c)

0 0 0 0 
0 0 1        1
0 1 0        0
0 1 1        0
1 0 0        1
1 0 1        0
1 1 0        0
1 1 1        1

Propriétés

• Commutativité
• a+b = b+a
• a.b = b.a
• Associativité
• a+(b+c) = (a+b)+c
• a.(b.c) = (a.b).c
• Distributivité
• a.(b+c) = a.b+a.c
• a+(b.c) = (a+b).(a+c)

• Idempotence
• a+a = a
• a.a = a

• Absorption
• a+a.b = a

• a.(a+b) = a
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Démonstration distributivité

a      b      c      b+c    a.(b+c)     a.b a.c a.b+a.c

0      0      0        0         0              0      0        0
0      0      1        1         0              0      0        0  
0      1      0        1         0              0      0        0
0      1      1        1         0              0      0        0
1      0      0        0         0              0      0        0
1      0      1        1         1              0      1        1
1      1      0        1         1              1      0        1
1      1      1        1         1              1      1        1

= ?

?
a.(b+c) = a.b+a.c

Propriétés (2)

• Élément neutre
• a+0 = a
• a.1 = a
• Élément absorbant
• a+1 =1
• a.0 = 0
• Inverse
• a+a = 1
• a.a = 0

• Théorème de DE Morgan
• a+b = a . b

• a.b = a + b
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Équations logiques

On exprime f(a, b, c, ...) par une expression en a, b, c.. et des 
opérateurs logiques.

Exemple: f = a+b.c.(d+e)

Principe de dualité: Une expression reste vraie si on 
interverti les 1 par des 0 et les ET par des OU

Exemple:   si a+b=1 alors a.b=0

Je suis riche si je suis bien payé et que je ne dépense pas tout 
mon argent = Je suis pauvre si je ne suis pas bien payé ou que 
je dépense tout mon argent

Les opérateurs NAND, NOR

s = a+b

S est vrai si ni a, ni b
ne sont vrais.

NOR (No-OR ou NI)

s = a.b

S est vrai si a OU b
est faux.

NAND (No-AND)

a b   s
0 0   1
0 1   1
1 0   1
1 1   0

a b   s
0 0   0
0 1   0
1 0   0
1 1   1
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s = a    b = a.b + a.b

S est vrai si a OU b
est vrai mais pas les deux.

XOR (Ou-Exclusif) vaut 1 si a est différent de b
Opérateur de différence (disjonction)

L’opérateur : XOR

a b   s
0 0   0
0 1   1
1 0   1
1 1   0

XOR est associatif s = a    b    c   .....   n

vaut 1 si le nombre de variable à 1 est impaire. 

a    1 = a         a    0 = a

a c b c a b
a x b x a b

⊕ = ⊕ ⇔ =
⊕ = ⇔ = ⊕

Propriétés

Propriétés du XOR

XNOR 

XNOR XOR vaut 1 si 

s a b a b a b a b

a b

= ⊕ = ⊕ = ⊕ =

= =
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Définitions: Apparition d’une variable = Lettre
Produit de variables sous forme simple
ou complémentées = Monôme
Somme de monômes = Polynôme

z = a + b.c.(d + e)         Expression algébrique

= a + b + c + (d + e)   Développement

= a + b + c + d . e       Polynôme de 4 monômes 
de 1 et 2 lettres

Écriture des équations logiques

Fonctions logiques et formes canoniques

• On appelle «minterme»
de n variables, l’un des 
produits de ces variables 
ou de leurs 
complémentaires.

• On appelle «maxterme»
de n variables, l’une des 
sommes de ces variables 
ou de leurs 
complémentaires.

{ } 4 variables  , , ,
est un minterme
est un autre minterme

n'est pas un minterme

exemple n a b c d
m a b c d
m a b c d
m a b c

=
= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
= ⋅ ⋅

est un maxterme
est un autre maxterme

n'est pas un maxterme

M a b c d
M a b c d
M a b c

= + + +
= + + +
= + +

f fonction logique de n variables
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f x y z x y z x y z x y z( , , ) . . . . . .= + +

Première forme canonique ou forme normale disjonctive

Minterme

f x y z x y z x y z( , , ) ( ).( )= + + + +

Deuxième forme canonique ou forme normale conjonctive

Maxterme

Une fonction est sous forme canonique (ou normale) si 
chaque terme contient toutes les variables. L’écriture sous 
forme canonique est unique. 

Exemples :

Formes canoniques

Si la fonction n’est pas sous forme normale
i.e. une des variables (au moins) ne figure pas dans un des termes

La fonction est sous une forme simplifiée

f x y z xyz xyz xyz

xy z z xyz

y x xz

y x z

( , , )

( )

( )

( )

= + +

= + +

= +

= +

Première forme canonique

Forme simplifiée

Forme simplifiée 

Forme simplifiée

Formes canoniques
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Première forme canonique = expression des 1 de la fonction

Deuxième forme canonique = expression des 0 de la fonction

Les deux formes canoniques sont équivalentes

On choisit celle qui donne le résultat le plus simple
peu de 0 => deuxième forme / peu de 1 => première 
forme 

Formes canoniques: Choix

Objectif : Fabriquer un système
• à moindre coût
• rapide
• fiable
• peu consommateur

Méthodes : Algébriques
Graphiques
Programmables

Résultat : on cherche la forme minimale d’une fonction
nombre minimal de monômes/nombre minimal de lettre par 
monôme

Possibilité de plusieurs formes minimales: formes équivalentes

Simplification des fonctions
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Applications des principes et propriétés de l’algèbre de Boole

Identités remarquables : 

1               
2                

3            

a b a b b (a+b) ( a+b)=b
a + a.b = a a.(a+b) = a

a + a.b = a+b a.( a b) a b

. . .

.

+ =

+ =

Démonstrations : 1 et 2 trivial

3 :  a a b a a a b a a a b a a a b a b+ = + + + = + + = +. . . . . ( ).( )
                     a           0

Simplification algébrique

Règles de simplification :
(Mintermes adjacents = 1 seule variable qui change)

1 : Deux mintermes adjacents      Il reste l’intersection commune
1’: Deux maxtermes adjacents        Il reste la réunion commune

a b c a b c a b c c a b

a b c a b c a b c c a b

. . . . . .( ) .

( ).( ) ( )( )

+ = + =

+ + + + = + + = +

2: On peut ajouter un terme déjà existant à une expression logique. 
pas de coefficient en algèbre de Boole.

3: On ne change pas le résultat en multipliant l'un des termes par 1 ou 
en ajoutant 0. 

Méthode algébrique toujours possible mais démarche intuitive 
qui dépend de l’habileté et de l’expérience. 

Simplification algébrique
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Exercice 1

Remplissez la table de vérité suivante pour prouver le théorème 
de DeMorgan :

0

0

0

1

1

1

1

0                  

1

1

0

0

1

0

1

0

1

1

1

0

Considérons la fonction F définie par la table de vérité suivante :

1111
1011
1101
0001
1110

0010
0100
0000
Fzyx

zyxzyxzyxzyxF +++=
Mintermes

xzzyyx

)zz(yx)yy(zx)xx(zy

)zyxzyx()zyxzyx()zyxzyx(

zyxzyxzyxzyxF

++=

+++++=

+++++=

+++=

Exercice 2
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Exercice 3

• On désire concevoir un circuit qui permet de gérer les notes 
des examens, on donne: Examen final (45  %), Examen Partiel 
(35 %), TPs (20 %). 

• Un étudiant est admis s’il dispose d’un pourcentage >= 55 %).
– Exemple: Final=11, Partiel=8, Tps=10 F=1, P=0, T=1 ⇒ Pourcentage 

= 65 % R=1 (étudiant admis).

• Donner la table de vérité.
• Donner la fonction logique correspondante. Simplifier le 

fonction obtenue. 

Simplification graphique: Karnaugh

• La méthode de Karnaugh permet de visualiser une fonction 
et d’en tirer naturellement une écriture simplifiée.

• L’élément de base de cette méthode est la table de Karnaugh
qui représente toutes les combinaisons d’états possibles pour 
un nombre de variables donné.

• La table de Karnaugh est un outil graphique qui permet de 
simplifier de manière méthodique des expressions 
booléennes. 

• La construction des tables de Karnaugh exploite le codage de 
l’information et la notion d’adjacence
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Principe:
Mettre en évidence sur un graphique les mintermes
(ou maxtermes) adjacents. Transformer les adjacences logiques
en adjacences «géométriques».

Trois phases:
Transcrire la fonction dans un tableau codé, recherche des 
adjacents pour simplification équations des groupements 
effectués

Description: Table de vérité vs Tableau de Karnaugh
1 ligne                          1 case
n variables                    2n cases

Karnaugh – simplification graphique

Diagrammes de Karnaugh

• Avec n = 2:
– Entrées A et B
– 4 cases
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Diagrammes de Karnaugh

• Avec n = 3:
– Entrées C, B et A
– 8 cases

Remarque: Une seule variable change d’état entre 2 cases 
adjacentes

Diagrammes de Karnaugh

• Avec n = 4:
– Entrées D, C, B et A
– 16 cases
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Diagrammes de Karnaugh

• Avec n = 5:
– Entrées x, y, z, t et u
– 32 cases

00      01      11     10

0

a b c      f
0 0 0     0
0 0 1 1
0 1 0     1
0 1 1     1
1 0 0     0
1 0 1     0
1 1 0     0 
1 1 1     0

Exemple: Depuis une table de vérité

bc
a

1

10 11

0 0 0 0

Simplification graphique
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Exemple (Karnaugh)

0
C

0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B A S
Entrées Sortie

0
0
1
1

1
1

0

0

BA
00 01 11 10

0

1

C

0 1 3 2

4 5 7 6

0

0

0

1

1

0

1

1

TABLE DE VÉRITÉ
DIAGRAMME DE KARNAUGH

00      01      11      10

0

Exemple 2: Par une première forme canonique (Par les 1)

bc
a

1

f a b c a b c a b c a b c( , , ) . . . . . .= + +

1 1

1

Simplification graphique
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00      01      11      10

0

Exemple 2: Par une deuxième forme canonique (Par les 0)

bc

a

1

f a b c a b c a b c a b c( , , ) ( ).( ).( )= + + + + + +

0

0 0

Simplification graphique

Règles de simplification 

1 : Les groupements comportent une puissance de deux cases,

2 : Les 2k cases forment un rectangle,

3 : On élimine variable(s) qui change(nt) d’état 
Groupement de 2k cases On élimine k variables 
2 cases on élimine 1 variable;
4 cases on élimine 2 variables; 
8 cases on élimine 3 variables;  

4 : Il faut utiliser au moins une fois chaque 1, le résultat est donné
par la réunion logique de chaque groupement,

5 : Expression minimale si :
• les groupements les plus grands possibles
• utiliser les 1 un minimum de fois

Simplification  graphique
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S = AB + AB, simplification algébrique S = A (B +B) = A 

Exemple 1

Karnaught:
Groupement de 2 cases: on élimine variable qui change d’état 
(B) S=A

Exemple 2

111
101
110
000
SBA

Premier groupement: On élimine B  

Deuxième groupement: On élimine A

S = A + B
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00      01     11     10

0

bc

a

1

10 01

1 1 1 0

Tous les 1 sont groupés !

Equation : F a b c a b c( , , ) .= +

Exemple 3

00      01     11     10

0

bc

a

1

10 01

1 1 1 0

Par les 0

Equation : F a b c a c b c( , , ) ( ).( )= + +

Exemple 4
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Exemple 5

Z X

S = x + Z

01111
00111
11011
00011
11101
10101
11001
10001
01110
00110
11010
00010
01100
10100
01000
10000
Stzyx

Exemple 6

00 01 11 10

00

01

11

10

xy
zt

1

1

1

1

1

1 1

1

1

1

1

1

11

1

1
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Exercice 1

Exercice 2
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Circuits logiques

Circuit logique =  Ensemble de portes logiques reliées entre elles
correspondant à une expression algébrique. 

Porte logique (correspond à un opérateur logique)

A

B
Y

Y = A + B

Porte Or

A

B
Y

Porte And

Y = A . B

A Y

Porte Not

Y = A

Portes dérivées

A

B
Y

A

B
Y

A

B
Y

Porte Nor Porte Nand

Porte Xor

Y = A + B Y = A. B

BAY ⊕=
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Conception d’un circuit logique

1. Identifier les entrées et les sorties de la 
fonction.

2. Construire la table de vérité.
3. Identifier la fonction à partir de la table de

vérité.
4. Simplifier la fonction.
5. Dessiner le schéma du circuit.

Réalisation de circuits logiques

Exemple:

Circuit logique correspondant à l’expression algébrique: 

(A+B).(A+C)

Exercice 1
Donner le circuit (Exercice 3, simplification algébrique).
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Exercice 2

Pompe

Électrovanne

C1

C2

Lorsque le niveau d’eau est inférieure au niveau 1 (Capteur C1), on 
déclenche la pompe pour remplir le réservoir.
Lorsque Niveau d’eau > Niveau 2, on commande l’électrovanne pour 
vider le réservoir. 

1. Donner le circuit équivalent (sans simplification)

2. Donner le circuit simplifié.

Niveau 2

Niveau 1
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Circuits combinatoires
et Séquentiels

Prof. Abdelhakim El Imrani

Université Mohammed V
Faculté des Sciences
Département de Mathématiques et Informatique

SMI-4

Types de circuits logiques

• Circuits combinatoire

• Circuits séquentielles
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Circuits combinatoires

Les fonctions de sortie s’expriment selon des expressions 
logiques des seules variables d’entrée.

A, B, C, …. F(A, B, C, ….)

Multiplexeur - Demultiplexeur

Multiplexeur
– 2n entrées, 1 sortie
– Selon une adresse (n bits), la  sortie prend la valeur de l‘une des entrées

Démultiplexeur
– 1 entrée, X sorties
– Selon une adresse (n bits), une des X sorties prend la valeur de l'entrée

Application:  Conversion Série/Parallèle; Parallèle/Série
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Multiplexeur 4 à 1

I311

I201

I110

I000

OutS0S1

I0

I1

I2

I3

S1 S0

4 -1

MUX
Out

Multiplexeur 8 à 1
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Exemple: Multiplexeur 8-1

Demultiplexeur 1-4

-

-

In

-

O1

-

-

-

In

O0

-

In

-

-

O2

In11

-01

-10

-00

O3S0S1

O0

O1

O2

O3

S1 S0

4 -1

MUX
In

- : non utilisé



5

Exemple: Démultiplexeur 1-4

Demultiplexeur 1-8
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Décodeur

O0

O1

O2

O3

I0

I1

Décodeur

2 - 4

100011
010001
001010
000100

O3O2O1O0I0I1

• Active une des X sorties selon un code
• Entrée sur n bits
• Nombre de sorties : 2n

• Une seule sortie est mise à 1 selon la configuration des entrées 
• Application: Sélection des circuits mémoire

Exemple: Décodeur 2 à 4

Exemple: Décodeur 3-8
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I0

I1

I2

I3

Encodeur

4 - 2

O0

O1

1
1
0
0

O1

1
0
1
0

O0

1000
0100
0010
0001
I3I2I1I0

• Active un code selon l'une des X entrées actives
• 2n entrées, 1 entrée active (valeur 1), les autres sont toutes

désactivées (valeur 0)
• Sortie : sur n bits

Encodeur

Exemple: Encodeur 4-2

Circuit de décalage

Décalage de position d'un bit (à droite ou à gauche) sur les n bits

Les lignes de sorties (S0 à S7) reflète les 8 bits d'entrée (D0 à D7) 
après décalage d'un bit à droite pour C=1 ou à gauche pour C=0.

C Exemple
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Un additionneur est un circuit capable de faire l’addition de
deux nombres de n bits. Une addition génère deux résultats.
• La somme 
• La retenue 

Additionneur

0111

1001

1010

0000

SRBA

SortieEntrée

Exemple: addition de 2 bits

Somme (S) = A      B

Retenue (R) = AB

Demi-additionneur

Additionneur complet
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Exemple: Additionneur 4 bits

A          1    0    1     1    

B          0    1    1     1 

1    0    0    1     0

+

Additionneur complet
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Additionneur complet

Comparateur
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Réalisation avec des comparateurs 1 bit

Comparateur n bits

Unité arithmétique et logique (UAL)
Effectue les opérations de base (arithmétiques et logiques). un 
code opération détermine la partie du circuit qui va effectuer les 
opérations.

Exemple: UAL (1 bit)

Selon code (r0,r1),  le circuit calcule AB, A + B, B ou l’addition de A et B.
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Circuits séquentiels
Les fonctions de sortie dépendent non seulement de l’état des 
variables d’entrée mais également de l’état antérieur de certaines 
variables de sortie (propriétés de mémorisation)

Table de vérité : on trouve en plus des entrées, la valeur de sortie 
à l’état précédent

Horloge (Clock)

• Les bascules sont généralement commandées par horloge
• Horloge : composant passant indéfiniment et régulièrement 

d’un niveau haut à un niveau bas (succession de 1 et de 0), 
chaque transition s’appelle un top. 

Période 

Fréquence = nombre de changement par seconde en hertz (Hz)
Fréquence = 1/période
Une horloge de 1 hertz a une période de 1 seconde
……………………………1 megahertz……………………..1 millisec
……………………………1 gigaHz……………………………..1 nanoSec

0 1 2
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Circuits synchrone et asynchrone

• Circuit synchrone
– Tous les éléments/composants du circuit devant être 

synchronisés le sont avec le même signal d'horloge

• Circuit asynchrone
– Tous les éléments/composants du circuit devant être 

synchronisés ne le sont pas avec le même signal d'horloge

Les bascules

• Les circuits séquentiels de base sont les bascules
• Particularité : deux états stables = conservation de l’état de 

leur sortie même si la combinaison des signaux d’entrée l’ayant 
provoquée disparaît.

• Une bascule (flip-flop) a pour rôle de mémoriser une information
élémentaire (mémoire à 1 bit). 

• Une bascule possède deux sorties complémentaires Q et Q. 

• La mémorisation fait appel à un système de blocage (latch), 
dont le principe est représenté de la façon suivante.

• Application: Registres, Compteurs, etc.
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Les bascules

Q

Q

A

B

⎪⎩

⎪
⎨
⎧

=⇒=⇒=⇒=⇒=

=⇒=⇒=⇒=⇒=

)0Q()1A()1Q()0B()0Q(

)1Q()0A()0Q()1B()1Q(

Une bascule ne peut donc être que dans deux états:

)0Q,1Q( ==

Les interconnexions interdisent les deux autres combinaisons :  

Q=Q=0 ou Q=Q=1. 

"1" : " 0" : )1Q,0Q( ==

• Les bascules les plus fréquemment utilisées sont réalisées 
avec deux portes NOR ou NAND. 

Les bascules RS

R

S

Q

Q

(R) Set: Mise à 1

(S) Reset: Mise à Zéro

Schéma simplifié
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Sortie inchangée

Set: Mise à 1

Reset: remise à zéro

État interdit

Les bascules RS

Bascule RS synchrone ou RST

H = 1  lecture
H = 0  mémorisation

Commandé par un signal horloge
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Bascule D

Pour éliminer l’état interdit S=R=1 Q=Q

Principe: saisir l’information lors du changement d’état de 
l’horloge

Bascule sur front d’horloge

Bascule D            Front montant Front descendant

1 1

0

01 1

0

0

1
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Versions condensées

Bascule D

Bascule JK asynchrone

• JK = variante de RS

• Semblable à RS mais ajoute le cas R=S=1

• Si J = K = 1 alors Qn+1 = Qn
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Utilisation des bascules

Les bascules sont utilisées pour créer des circuits: 

• Compteurs
• Registres

• Mémorisation d'un mot mémoire, décalage vers la 

droite/gauche du mot ...

• Mémoires (SRAM)

Exemple: compteur cyclique sur 3 bits
• Valeur en décimal sur 3 bits
• Incrémentation de +1 à chaque période d'horloge
• Repasse à 0 après 7

Les compteurs

Ensemble de n bascules interconnectées: 

• Peuvent mémoriser des mots de n bits. 

• Au rythme d'une horloge ils peuvent décrire une séquence 
déterminée c'est-à-dire une suite d'états binaires. 

• De nombreuses applications industrielles: 
– Comptage du nombre de révolutions d'un moteur, 

– Division de fréquences, 

– Conversions de code, Conversion A/N et N/A, etc.

• Compteur binaire est dit modulo N lorsqu'il peut compter jusqu'à N-1, 
la Nième impulsion remet le compteur à zéro. N=2n, où n représente 
le nombre d'étages. 

- Compteurs asynchrones

- Compteurs synchrones
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Exemple: Compteur modulo 8

Un compteur modulo 8 démarre à 0 et compte dans l’ordre 
binaire naturel de 0 à 7. 

Exemple: Compteur modulo 8

Utilisation de 3 bascules D:
• Principe

• Chaque bascule prend en entrée D un signal d'horloge
• Fournit en sortie un signal d'horloge de fréquence divisée par 2

• En mettant en série les 3 bascules
• 3 signaux d'horloge à 3 fréquences différentes
• Représente les combinaisons de bits pour les valeurs de 0 à 7

Compteur asynchrone
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Chronogramme du compteur 3 bits

• Version idéale, ne prend pas en compte les temps de 
propagation à travers les bascules

Compteur synchrone

• Les bascules reçoivent en parallèle le même signal d'horloge. 

D0 = 1
D1 = Q0
D2 = Q0.Q1
Dn = Q0.Q1....Qn-1

Exemple: Compteur modulo 8
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Registres

• Registres : Mémoires du microprocesseur de X bits (8, 16, 32, etc.)

• Composant localisé dans un processeur pour stocker des 

informations lors de l'exécution d'un programme par ce processeur 

(instruction, donnée, état du processeur, etc.)

Exemple: Registre 4 bits

• 4 bascules D stockent les 4 bits

• 4 bits en entrée pour écrire le mot

• 4 bits en sortie pour récupérer la valeur du mot

• Une entrée L (pour « load ») précise si on conserve la valeur du 

mot stocké (valeur 0) ou écrit le mot avec les 4 bits en entrée 

(valeur 1).

Exemple: Registre 4 bits

Supposons que l'on ait 4 bits D0, D1, D2, D3 à transférer vers les sorties 
d'un registre R0, R1, R2, R3. 

Le transfert est fait en deux étapes:

1. Les valeurs de Di , i = 0, ….., 3 sont transférées vers les sorties Q 
des 4 bascules D

2. Une impulsion sur la ligne Read permet le transfert vers la sortie 
des portes ET

Registre Parallèle/Parallèle 4 bits
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Bascules interconnectées de façon à ce que l'état logique de la bascule 
de rang i puisse être transmis à la bascule de rang i+1.

Exemple:
Les bascules sont commandées par le même signal horloge H. Sachant 
que dans une bascule D, l'état suivant n+1 de la sortie Q est égale à
l'état présent Dn de l'entrée D, on a donc:
An+1 = DAn = information à l'entrée
Bn+1 = DBn = An
Cn+1 = DCn = Bn

Registre à décalage

Chargement de la valeur 1010 dans un registre 4 bits
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