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Plan du cours

 Introduction générale

 Types abstraits de données: TAD

 Première partie : Structures de Données Linéaires

 Listes

 Piles 

 Files

 Deuxième partie: Structures de Données non 

Linéaires

 Arbres

 Tables de hachage

Graphes
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Objectif  Principal:

Méthodologie de construction de programmes par 
abstraction
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Introduction générale(suite)

 La programmation modulaire est très conseillée:

- Elle consiste en la constitution de parties « sous-

programmes », indépendantes les unes des autres

- Ces sous programmes (ou modules) pouvant être réutilisés
même dans d’autres programmes.

- lorsqu’on utilise un module, peu importe pour l’utilisateur

la façon dont les opérations sont programmées. Mais il
importe de connaître les opérations que l’on peut faire sur

les données.

4



ah-fsr-v2.0

Introduction générale (suite)

 Exemple: en langage C on connaît bien la fonction 

« scanf » mais on ne sait pas comment elle est 

implémentée.

 Mais :Un module n’est rien si l’on dispose pas de   

structures de données appropriée pour stocker ses données.

Plus précisément:

Algorithme + Structures de donnés= Programme

5
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Types Abstraits de 

Données (TADs)

Spécification & Implémentation

6
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Terminologie

 Spécification: Définition formelle du 
comportement d’une structure de 

données

 Dit ce que doit faire la structure de données

 Ne dit pas comment faire (choix de 
l’implémentation)

 Précis et rigoureux

 Doit éviter de poser des contraintes 
d’implémentation.
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Motivations

 Par analogie avec les types primitifs tels que:

 Le type int : représente un entier.

 IL  est fourni avec des opérations : + -

/ * %.

Il n’est pas nécessaire de connaître la représentation interne 

ou les algorithmes de ces opérations pour les utiliser.

 En faire de même avec des types plus complexes et 

indépendamment du langage de programmation.

 Mettre en place  un type dont la représentation interne est 

cachée

 Définir les opérations nécessaires pour manipuler les données

8
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Motivations(suite)

Autrement dit:

 La conception d’un algorithme est indépendante de 

toute implantation

 La représentation des données n'est pas fixée ; celles-ci 

sont considérées de manière abstraite

 On s’intéresse à l’ensemble des opérations sur les données, 

et aux propriétés des opérations, sans dire comment ces 

opérations sont réalisées

9
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Définition d’un TAD

 Définition: Un TAD (Data Abstract Type) est un ensemble de valeurs muni 

d’opérations sur ces valeurs, sans faire référence à une implémentation particulière.

 Exemples :

 Dans un algorithme qui manipule des entiers, on s’intéresse, non pas à 

la représentation des entiers, mais aux opérations définies sur les 

entiers :  +, -, *, /

 Type booléen, ensemble de deux valeurs (faux, vrai) muni des 

opérations : non, et, ou

 Un TAD est caractérisé par :

 sa signature : définit la syntaxe du type et des opérations ;

 sa sémantique : définit les propriétés des opérations.

10
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Signature d’un TAD

Comporte :
 Le nom du TAD ;

 Les noms des types des objets utilisés par le TAD ;

 Pour chaque opération, l’énoncé des types des objets 
qu’elle reçoit et qu’elle renvoie.

Décrite par les paragraphes :
 Type

 Utilise

 Opérations

11

11



ah-fsr-v2.0

Signature d’un TAD

Exemple : TAD Booléen

Type Booléen

Opérations

vrai : → Booléen

faux : → Booléen

non : Booléen → Booléen

et : Booléen x Booléen → Booléen

ou : Booléen x Booléen → Booléen

12

Nom du 

TAD

Nom de l'opération

Deux arguments 

de type Booléen

Type valeur de 

retour
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Sémantique d’un TAD

Précise :
 Les  domaines de définition (ou d’application) des 

opérations ;

 Les propriétés des opérations.

Décrite par les paragraphes :
 Préconditions

 Axiomes

13
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Exemple 1 de TAD

(TAD Booléen)

Type Booléen

Opérations

vrai : → Booléen

faux : → Booléen

non : Booléen → Booléen

et : Booléen × Booléen → Booléen

ou : Booléen × Booléen → Booléen

Préconditions

Axiomes

Soit, a, b : Booléen

non(vrai) = faux

non(non(a)) = a

vrai et a = a

faux et a = faux

a ou b = non(non(a) et non(b))

14

Aucune 
précondition
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Exemple 2 de TAD (TAD Vecteur)

Type Vecteur

Utilise Entier, Elément

Opérations 

vect : Entier → Vecteur

changer_ième: Vecteur x Entier x Elément → Vecteur

ième : Vecteur x Entier → Elément

taille : Vecteur → Entier

Préconditions

vect(i) est_défini_ssi i ≥ 0

ième(v,i) est_défini_ssi 0 ≤ i < taille(v)

changer_ième(v,i,e) est_défini_ssi 0 ≤ i< taille(v)

Axiomes

Soit, i, j : Entier, e : Elément, v : Vecteur

si 0 ≤ i < taille(v) alors ième(changer_ième(v,i,e),i) = 
e

si 0 ≤ i < taille(v) et 0 ≤ j < taille(v) et i ≠ j 

alors ième(changer_ième(v,i,e),j) = ième(v,j)

taille(vect(i)) = i

taille(changer_ième(v,i,e)) = taille(v)

15
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Opérations

Trois catégories d'opérations (ou de primitives) 

 De Constructions : type spécifié apparaît, uniquement, comme résultat ;

 D’Observations : type spécifié apparaît, uniquement, comme argument ;

 De Transformations  : type spécifié apparaît, à la fois, comme argument et 

comme résultat ;

Constante : opérateur sans argument

16
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Opérations Partielles

 Une opération peut ne pas être définie partout

 Cela dépend de son domaine de définition

 Ceci est traité dans le paragraphe Préconditions

 Exemple :

Opérations ième et changer_ième du TAD Vecteur

17
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Réutilisation des TADs

 Quand on définit un type, on peut réutiliser des 

types déjà définis

 La signature du type défini est l'union des signatures 

des types utilisés enrichie des nouvelles opérations

 Le type hérite des propriétés des types qui le 

constituent 

 Exemples :

 Types Entier et Elément utilisés par le TAD Vecteur

18
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Choix des Axiomes

 Le système d'axiomes doit être :

 non contradictoire (consistance) 

 complet (complétude suffisante) 

19
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Notion de Structure de 

Données
On dit aussi structure de données concrète

Correspond à l’implémentation d’un TAD

Composée d’un algorithme pour chaque 
opération, plus éventuellement des données 
spécifiques à la structure pour sa gestion

 Un même TAD peut donner lieu à plusieurs 
structures de données, avec des performances 
différentes

20
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Implémentation d’un TAD

 Pour implémenter un TAD :

 Déclarer la structure de données retenue pour représenter 
le TAD : L’interface

 Définir les opérations primitives dans un langage particulier : 
La réalisation

 Exigences :

 Conforme à la spécification du TAD ;

 Efficace en terme de complexité d’algorithme.

 Pour implémenter, on utilise :

 Les types élémentaires ou de base (entiers, caractères, ...)

 Les pointeurs ;

 Les tableaux et les enregistrements ;

 Les types prédéfinis.

 Plusieurs implémentations possibles pour un même TAD

21
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Implémentation d’un TAD en 

C Utiliser la programmation modulaire (voir  cours Programmation) :

 Programme découpé en plusieurs fichiers, même de petites 
tailles (réutilisabilité, lisibilité, etc.)

 Chaque composante logique (un module) regroupe les 
fonctions et types autour d'un même thème. 

 Pour chaque module truc, créer deux fichiers : 

 fichier truc.h : l'interface (la partie publique) ; contient la 
spécification de la structure ;

 fichier truc.c : la définition (la partie privée) ; contient la 
réalisation des opérations fournies par la structure. Il contient au 
début l'inclusion du fichier truc.h

 Tout module ou programme principal qui a besoin d'utiliser les 
fonctions du module truc, devra juste inclure le truc.h

 Un module C implémente un TAD :

 L'encapsulation : détails d'implémentation cachés ; l'interface est 
la partie visible à un utilisateur

 La réutilisation : placer les deux fichiers du module dans le 
répertoire où l'on développe l'application.

22
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Structures de 

Données Linéaires

listes,  Piles & Files 
23
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Classification 

Classification des structures de données

 Une structure de données linéaire est une structure 

dans laquelle les éléments (ou données) sont reliés 

séquentiellement.

 Une structure de données non linéaires permettent de 

relier un élément à plusieurs autres éléments.

24
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Structures de Données 

Linèaires

 Étude des structures de données linéaires : listes,  piles et 
files 

 Une structure linéaire est un arrangement linéaire 
d'éléments liés par la relation successeur

 Exemple : Un tableau (la relation successeur est implicite). 

 Pour chaque structure, on présente :

 une définition abstraite ;

 les différentes représentations en mémoire ; 

 une implémentation en langage C ; 

 quelques applications.

25
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Les Listes 

26
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Notion de Liste (List) (1)

 Généralisation des piles et des files

 Structure linéaire dans laquelle les éléments peuvent être traités les uns à la suite 

des autres 

 Ajout ou retrait d'éléments n’importe où dans la liste 

 Accès à n'importe quel élément

 Une liste est une suite finie, éventuellement vide, d'éléments de même 

type repérés par leur rang dans la liste

 Chaque élément de la liste est rangé à une certaine place

 Exemple :

 une liste de 5 entiers L = <4, 1, 7, 3, 1> (place de rang 1 contient la valeur 4)

 une liste vide L2 = <>

27
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Notion de Liste (List) (2)

 Les éléments d'une liste sont donc ordonnés en 
fonction de leur place

On définit une fonction notée succ qui, 
appliquée à toute place sauf la dernière, fournit 
la place suivante

 Le nombre total d'éléments, et par conséquent 
de places, est appelé longueur de la liste

Une liste vide est d'une longueur égale 0

28
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Exemples de Liste
29

Liste vide

Accès à l'élément de rang 3 

dans une liste à n éléments

Suppression de l'élément au rang 2 

→ longueur(liste) =n-1

Ajout de l'élément x au rang 3 

→ longueur(liste) =n+1

29
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Type Abstrait Liste (1)

Type Liste

Utilise Elément, Booléen, Place

Opérations

liste_vide : → Liste

longueur : Liste → Entier

insérer : Liste x Entier x Elément → Liste

supprimer : Liste x Entier → Liste

kème : Liste x Entier → Elément

accès : Liste x Entier → Place

contenu : Liste x Place → Elément

succ : Liste x Place → Place

Préconditions

insérer(l,k,e) est-défini-ssi 1 ≤ k ≤ longueur(l)+1

supprimer(l,k) est-défini-ssi 1 ≤ k ≤ longueur(l)

kème(l,k) est-défini-ssi 1 ≤ k ≤ longueur(l)

accès(l,k) est-défini-ssi 1 ≤ k ≤ longueur(l)

succ(l,p) est-défini-ssi p ≠ accès(l,longueur(l))

30

k = longueur(l) + 1

signifie ajout en fin de liste
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Type Abstrait Liste (2)
Axiomes

Soit, e : Elément, l, l' : Liste, k, j : Entier

si l = liste_vide alors longueur(l) = 0

sinon si l = insérer(l',k,e) alors longueur(l)=longueur(l')+1

sinon soit l = supprimer(l',k)alors longueur(l)=longueur(l')-1

si 1 ≤ j < k alors kème(insérer(l,k,e),j) = kème(l,j)

sinon si j = k alors kème(insérer(l,k,e),j) = e

sinon kème(insérer(l,k,e),j) = kème(l,j-1)

si 1 ≤ j < k alors kème(supprimer(l,k),j) = kème(l,j)

sinon kème(supprimer(l,k),j) = kème(l,j+1)

succ(l,accès(l,k)) = accès(l,k+1)

contenu(l,accès(l,k)) = kème(l,k)

si 1 ≤ k < j ≤ longueur(l) alors 

contenu(l,accès(supprimer(l,j),k)) = contenu(l,accès(l,k))

si 1 ≤ j ≤ k ≤ longueur(l) alors 

contenu(l,accès(supprimer(l,j),k) = contenu(l,accès(l,k+1))

si 1 ≤ j < k ≤  1+longueur(l) alors 

contenu(l,accès(insérer(l,k,e),j) = contenu(l,accès(l,j))

si 1 ≤ k = j ≤ 1+longueur(l) alors 

contenu(l,accès(insérer(l,k,e),j) = e

si 1 ≤ k < j ≤ 1+longueur(l) alors 

contenu(l,accès(insérer(l,k,e),j) = contenu(l,accès(l,j-1))

31
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Extension Type Abstrait Liste
Extension Type Liste

Opérations

concaténer : Liste x Liste → Liste

est_présent : Liste x Elément → Booléen

Préconditions

Axiomes 

Soit, e : Element, l, l' : Liste, k, j : Entier

longueur(concaténer(l,l')) = longueur(l) + longueur(l')

si k ≤ longueur(l) 

alors kème(concaténer(l,l'),k)= kème(l,k)

sinon kème(concaténer(l,l'),k)= kème(l',k-longueur(l))

si longueur(l) = 0 alors est_présent(l,e) = faux

sinon si e = kème(l,1) alors est_présent(l,e) = vrai

sinon est_présent(supprimer(l,1),e)= est_présent(l,e)

32
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Opérations sur une Liste (1)

 liste_vide : → Liste

 Opération d'initialisation ; la liste créée est vide

 longueur : Liste → Entier

 Retourne le nombre d'éléments dans la liste

 insérer : Liste x Entier x Elément : → Liste

 insérer(L,j,e): liste obtenue à partir de L en remplaçant la 
place de rang  j par une place contenant e, sans modifier places 
précédentes et en décalant places suivantes

 supprimer : Liste x Entier : → Liste

 supprimer(L,j): liste obtenue à partir de L en supprimant la 
place de rang j et son contenu, sans modifier places précédentes 
et en décalant places suivantes

33
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Opérations sur une Liste (2)

 kème : Liste x Entier → Elément

 Fournit l'élément de rang donné dans une liste

 accès : Liste x Entier → Place

Connaître la place de rang donné : accès(L,k) est la 
place de rang k dans la liste L

 contenu : Liste x Place → Elément

Connaître l'élément d'une place donnée. contenu(L,p) 
= e : dans la liste L, la place p contient l'élément e

 succ : Liste x Place → Place

 Passer de place en place. succ(L,p) = p' : dans la liste 
L, la place qui succède à la place p est la place p'. 
Opération indéfinie si place en entrée est la dernière place 
de la liste

34
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Opérations Auxiliaires sur une Liste

concaténer : Liste x Liste → Liste

 Accroche la deuxième liste en entrée à la fin de la première liste

 est_présent : Liste x Elément → Booléen

 Teste si un élément figure dans une liste

35
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Représentation Contiguë 

d'une Liste

 Les éléments sont rangés les uns à côté des autres dans 
un tableau

 La ième case du tableau contient le ième élément de la liste

 Le rang est donc égal à la place ; ce sont des entiers

 La liste est représentée par une structure(ou 
enregistrement):

 Un tableau représente les éléments

 Un entier représente le nombre d'éléments dans la liste

Note  :La longueur maximale, MAX_LISTE, de la liste doit être 
connue

36
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Ajout dans une Liste Contiguë

Exemple (1)

37

Valeur à ajouter  au 

deuxième rang

Liste avant insertion de la valeur 5

Faire de la place par 

Décalage vers la droite

10tab

0 1 2 3 4 5 6 7

15207

5
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Ajout dans une Liste Contiguë

Exemple (2)

38

Liste après insertion de la valeur 5

Valeur ajoutée au 

deuxième rang

10tab

0 1 2 3 4 5 6 7

152075
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Suppression dans une Liste Contiguë

Exemple (1)
39

Valeur 10 à supprimer 

(premier rang)

Liste avant suppression de la valeur 10

Faire un décalage vers la 

gauche d'un rang

10tab

0 1 2 3 4 5 6 7

2075

10

15
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Suppression dans une Liste Contiguë 

Exemple (2)
40

Liste après suppression de la valeur 10

5tab

0 1 2 3 4 5 6 7

207 15

40
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Représentation contigüe d’une Liste

 Rappel sur la notion  :Enregistrement

L’enregistrement est l’outil principal de construction de structures de 

données complexes.

Il permet de regrouper dans une structure l’ensemble des 

caractéristiques associées à une entité.

 Exemple: si un client est caractérisé par un nom, une adresse et un 

code postale alors la notion d’enregistrement permettra de 

regrouper dans une seule structure l’ensemble de ces 

caractéristiques, pourtant de natures différentes

 Autrement dit: une enregistrement permet de regrouper des entités 

hétérogènes mais liés logiquement les unes des autres. 

41
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 Définition1:un enregistrement est un ensemble d’éléments de types 

différents repérés par un nom. Ses éléments sont appelés des 

champs 

 Définition2: un enregistrement (appelé aussi structure dans certains 

langages) est un type complexe construit à partir de types plus 

simples.

 IL existe trois catégories d’enregistrement (ou structures ):

Structure anonyme: elle n’est pas réutilisable puisqu’elle ne possède 

pas de nom:

Exemple: Struct {

float re;

float im;         

} C1, C2.

42

Représentation contigüe d’une Liste
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 L’accès aux champs s’effectue ainsi:

C1.re=4.5

C1.im=6

 Une autre utilisation de ce type d’enregistrement suppose sa 

redéfinition.

 Donc pour pouvoir la réutiliser, il faut la  munir d’un nom.

 Structure semi-nommée

Struct Complexe {

float re;

float im;

} C1, C2

43

Représentation contigüe d’une Liste
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 Structure nommée:

 le type Complexe  peut être construit et nommé ainsi:

typedef   struct {

float  re;

float  im;

} Complexe;

S’il est nécessaire de déclarer cela se fera comme suit:

Complexe   C1, C2;

 Composition d’enregistrement:

 Exemple:

 //définition du type Adresse

44

Représentation contigüe d’une Liste
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 //définition du type Adresse

 Typedef struct {

int numero;

char nomRue[50]

char codePostal[5]

char ville[20]

} Adresse

 // définition du type client

 Typedef struct {

char nom[15]

char prenom[15]

Adresse adresse;

}   Client

45

Représentation contigüe d’une Liste
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 L’accès aux champs de ces structures imbriquées 

peut nécessiter plusieurs occurrences de l’opérateur 

point(.)

 Exemple:

//déclaration de trois variables

Client  A, B, C;

L’affectation d’un numéro de rue dans le champ 

numéro du champ adresse d’un client ‘A’ se fera 

comme suit:

A.adresse.numero=105 ;

46

Représentation contigüe d’une Liste
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Liste Contiguë (Contiguous List)
47

/* Liste contiguë en C */

// taille maximale liste

#define MAX_LISTE 10

// type des éléments

typedef int Element;  

// type Place

typedef int Place;

// type Liste

typedef struct {

Element tab[MAX_LISTE]; 

int taille; 

} Liste;

0 1 2 3 4 5 6 7 8 9

10 6 30 40 50tab

taille 5

Liste

Tableau de taille 

maximale = 10

Nombre d'éléments 

dans la liste

La place du rang 3 

contient la valeur 40

47
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Spécification d'une Liste Contiguë
/* fichier "TListe.h" */

#ifndef _LISTE_TABLEAU

#define _LISTE_TABLEAU

// Définition du type liste (implémentée par tableau)

#define MAX_LISTE 100 /* taille maximale de la liste */

typedef int element;  /* les éléments sont des int */

typedef int Place;  /* la place = le rang (un entier) */

typedef struct {

element tab[MAX_LISTE];  /* les éléments de la liste */

int taille;   /* nombre d'éléments dans la liste */

} Liste;

// Déclaration des fonctions gérant la liste

Liste liste_vide (void);

int longueur (Liste l);

Liste inserer (Liste l, int i, element e);

Liste supprimer (Liste l, int i);

element keme (Liste l, int k);

Place acces (Liste l, int i);

element contenu (Liste l, Place i);

Place succ (Liste l, Place i);

#endif

48

type Liste : une structure 

à deux champs
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Algorithme : option1:Modélisation contigüe statique

 Constante Max_Liste=1000

Type Liste=Structure

Tab[Max_Liste]: Element

Taille: entier

Fin strucure

 /*insertion  d’un élément dans une liste L*/

 Fonction insérer (Var L:Liste, rang: entier, e:Element): 
entier

 Var i : entier
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Début

SI rang <1 ou rang>(L.taille+1) ou L.taille=Max_liste alors

Erreur

Finsi

Pour i depuis L.taille JSQ rang faire Pas-1

L.tab[i]  L.tab[i-1]

Finpour // Cette boucle décale les élts à droite de la rang

L. tab[rang-1]  e // insertion de l’élèment e à sa place

L.taille  L.taille+1

Retourne (L)   

FIN                    

50
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Représentation Chaînée d'une Liste

 Les éléments ne sont pas rangés les uns à côté 
des autres

 La place d'un élément est l'adresse d'une structure qui 
contient l'élément ainsi que la place de l'élément 
suivant 

 Utilisation de pointeurs pour chaîner entre eux les 
éléments successifs 

 La liste est représentée par un pointeur sur une 
structure en langage C 

 Une structure contient un élément de la liste et un 
pointeur sur l'élément suivant

 La liste est déterminée par un pointeur sur son premier 
élément

 La liste vide est représentée par la constante 
prédéfinie NULL

51
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Ajout dans une Liste Chaînée Exemple 1
52

5

10 20

Valeur à ajouter 

entre les deux  

cellules

L

Liste avant insertion de la valeur 5
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Ajout dans une Liste Chaînée

Exemple (2)

53

10 20

L

Création d'une nouvelle cellule

contenant la valeur 5 et mise à jour des liens

5
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Ajout dans une Liste Chaînée

Exemple (3)

54

1010 205

L

Liste après insertion de la valeur 5
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Suppression dans une Liste Chaînée

Exemple (1)
55

Supprimer la  

valeur 5

10 205

L

Liste avant suppression de la valeur 5
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Suppression dans une Liste Chaînée

Exemple 2°

56

10 205

L Mettre à jour les liens et Libérer espace 

occupé par la cellule contenant la 

valeur 5
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Suppression dans une Liste Chaînée

Exemple (3)
57

10 20

L

Liste après suppression de la valeur 5
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Liste Chaînée (Linked List)
58

L

List

e

10 6

50

/* Liste chaînée en C */

// type des éléments

typedef int element; 

// type Place

typedef struct Cellule* Place; 

// type Cellule

typedef struct Cellule {

element valeur;

struct Cellule *suivant;

} Cellule;

// type Liste

typedef Cellule *Liste;

Premier élément de la 
liste pointée par L

Cellule contenant 
la valeur 30

Pointeur sur 
cellule suivante

Pointeur 
NULL

Dernier élément de 

la liste
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Spécification d'une Liste Chaînée
/* fichier "CListe.h" */

#ifndef _LISTE_CHAINEE

#define _LISTE_CHAINEE

// Définition du type liste (implémentée par pointeurs)

typedef int element;  /* les éléments sont des int */

typedef struct cellule *Place;  /* la place = adresse cellule */

typedef struct cellule {

element valeur;  /* un éléments de la liste */

struct cellule *suivant;   /* adresse cellule suivante */

} Cellule;

typedef Cellule *Liste;

// Déclaration des fonctions gérant la liste

Liste liste_vide (void);

int longueur (Liste l);

Liste inserer (Liste l, int i, element e);

Liste supprimer (Liste l, int i);

element keme (Liste l, int k);

Place acces (Liste l, int i);

element contenu (Liste l, Place i);

Place succ (Liste l, Place i);

#endif

59

type Liste : un pointeur 

de Cellule
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Réalisation d'une Liste Chaînée (1)

Liste liste_vide(void) {

return NULL;

}

int longueur(Liste l) {

int taille=0;

Liste p=l;

while (p) {

taille++;

p=p->suivant;

}

return taille;

}

Liste inserer(Liste l, int i, element e) {

// précondition :1 ≤ i < longueur(l)+1

if (i<1 || i>longueur(l)+ 1 {

printf("Erreur : rang non valide !\n"); 

exit(-1); 

} 

Liste pc = (Liste)malloc(sizeof(Cellule));

pc->valeur=e;

pc->suivant=NULL;

if (i==1){

pc->suivant=l; 

l=pc;

} 

else {

int j;

Liste p=l;

for (j=1; j<i-1; j++)

p=p->suivant;

pc->suivant=p->suivant;

p->suivant=pc;

}

return l;

}

Place acces(Liste l, int k) {

// pas de sens que si 1 ≤ k ≤ longueur(l)      

int i;

Place p;

if (k<1 || k>longueur(l)) {

printf("Erreur: rang invalide !\n");

exit(-1);

}

if (k == 1)

return l;

else {

p=l;

for(i=1; i<k; i++)

p=p->suivant;

return p;

}

}
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Réalisation d'une Liste Chaînée (2)

element contenu(Liste l, Place p) {

// pas de sens si longueur(l)=0 (liste vide)

if (longueur(l) == 0) {   

printf("Erreur: liste vide !\n"); 

exit(-1); 

}

return p->valeur;

}

Place succ(Liste l, Place p) {

// pas de sens si p dernière place de liste

if (p->suivant == NULL) {  

printf("Erreur: suivant dernière place!\n"); 

exit(-1); 

} 

return p->suivant;

}

element keme(Liste l, int k) {

// pas de sens que si 1 <= k <= longueur(l)

if (k<1 || k>longueur(l)) {

printf("Erreur : rang non valide !\n");

exit(-1);

}

return contenu(l, acces(l,k));

}

Liste supprimer(Liste l, int i) {

// précondition : 1 ≤ i ≤ longueur(l)

int j;

Liste p;

if (i<1 || i>longueur(l)) {

printf("Erreur: rang non valide!\n");

exit(-1);

}

if (i == 1) {

p=l;

l=l->suivant;

}

else {

Place q;

q=acces(l,i-1);

p=succ(l,q);

q->suivant=p->suivant;

}

free(p);

return l;

}
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Remarques (1)

Ajout au milieu d'une liste connaissant la place 

qui précède celle où s'effectuera l'ajout
 ajouter : Liste x Place x Elément → Liste

 ajouter(L,p,e) :  liste obtenue à partir de L en ajoutant une place 

contenant l'élément e, juste après la place p

Enlever un élément d'une liste connaissant sa 

place
 enlever : Liste x Place → Liste

 enlever(L,p) : liste obtenue à partir de L en supprimant la place p et son 

contenu
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Liste ajouter(Liste l, 

Place p, element e) {

Liste pc;

pc=(Liste)malloc(sizeof(Cellule));

if (pc == NULL) {

printf("Erreur: Problème de "    

"mémoire\n"); 

exit(-1);

}

pc->valeur = e;

pc->suivant = p->suivant;

p->suivant = pc

return l;

}

Liste enlever(Liste l, Place p) {

// p pointe élément à supprimer 

Place pred; // pred pointe avant p 

if (p == l)    

l = succ(l,p);

else {   

pred=l;   

while (succ(l,pred) != p)     

pred = succ(l,pred);   

pred->suivant = p->suivant; 

} 

free(p);

return l;

}
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Variantes de Listes Chaînées 

 Liste avec tête fictive 

 Liste chaînée circulaire

 Liste doublement chaînée

 Liste doublement chaînée circulaire

 Liste triée
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Liste avec Tête Fictive

Eviter d'avoir un traitement particulier pour le 

cas de la tête de liste (opérations d'insertion 

et de suppression)
 Mettre en tête de liste une zone qui ne contient pas de valeur et reste 

toujours en tête
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Liste Circulaire

Le suivant du dernier élément de la liste est le 

premier élément  
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Liste Doublement Chaînée

Faciliter le parcours de la liste dans les 

deux sens
 utiliser un double chaînage ; chaque place repérant à la fois la place 

qui la précède et celle qui la suit

67

Pointeur vers le précédent de 
l'élément e3

Pointeur vers le suivant de 
l'élément e3
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Liste Triée

 Dans cette liste, il existe un ordre total sur les clés

 L’ordre des enregistrements dans la liste respecte l’ordre sur les clés

68
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Complexité

n désigne le nombre d'éléments d'une liste
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Notion de Pile (Stack)

 Les piles sont très utilisées en informatique

 Notion intuitive :

 pile d'assiettes, pile de dossiers à traiter, …

 Une pile est une structure linéaire permettant de stocker et de 

restaurer des données selon un ordre LIFO (Last In, First Out ou 

« dernier entré, premier sorti ») 

 Dans une pile :

 Les insertions (empilements) et les suppressions (dépilements) sont 

restreintes à une extrémité appelée sommet de la pile. 

2



Exemple de Pile

            

        sommet D   

      sommet C  C sommet C 

    sommet E  E  E  E 

  sommet A  A  A  A  A 
sommet B  B  B  B  B  B 

 

3
Empiler B

Empiler A

Empiler E

Empiler C

Empiler D

Dépiler D



Type Abstrait Pile 

Type Pile

Utilise Elément, Booléen

Opérations
pile_vide : → Pile

est_vide : Pile → Booléen

empiler : Pile x Elément → Pile

dépiler : Pile → Pile

sommet : Pile → Elément

Préconditions
dépiler(p) est-défini-ssi est_vide(p) = faux

sommet(p) est-défini-ssi est_vide(p) = faux

Axiomes 
Soit, e : Element, p : Pile

est_vide(pile_vide) = vrai

est_vide(empiler(p,e)) = faux

dépiler(empiler(p,e)) = p 

sommet(empiler(p,e)) = e 
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Opérations sur une Pile

 pile_vide : → Pile

 opération d'initialisation ; la pile créée est vide

 est_vide : Pile → Booléen

 teste si pile vide ou non

 sommet : Pile → Elément

 permet de consulter l'élément situé au sommet ; n'a pas de sens 
si pile vide

 empiler : Pile x Elément → Pile

 ajoute un élément dans la pile

 dépiler : Pile → Pile

 enlève l'élément situé au sommet de la pile ; n'a pas de sens si 
pile vide
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Représentation d'une Pile

 Représentation contiguë (par tableau) :

 Les éléments de la pile sont rangés dans un tableau

 Un entier représente la position du sommet de la pile

 Représentation chaînée (par pointeurs) :

 Les éléments de la pile sont chaînés entre eux (voir listes chaînées)

 Un pointeur sur le premier élément désigne la pile et représente le 

sommet de cette pile 

 Une pile vide est représentée par le pointeur NULL
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Pile Contiguë

6

5

4

10 3

20 2

5 1

50 0

7

3
sommet

elements

Pil

e

/* Pile contiguë en C */

// taille maximale pile

#define MAX_PILE 7

// type des éléments

typedef int Element;  

// type Pile

typedef struct {

Element elements[MAX_PILE]; 

int sommet; 

} Pile;Tableau de taille 
maximale 7



Spécification d'une Pile 

Contiguë/* fichier "Tpile.h" */

#ifndef _PILE_TABLEAU

#define _PILE_TABLEAU

#include "Booleen.h"

// Définition du type Pile (implémentée par un tableau)

#define MAX_PILE 7  /* taille maximale d'une pile */

typedef int Element;  /* les éléments sont des int */

typedef struct {

Element elements[MAX_PILE]; /* les éléments de la pile */

int sommet;  /* position du sommet */

} Pile;

// Déclaration des fonctions gérant la pile

Pile pile_vide ();

Pile empiler ( Pile p, Element e );

Pile depiler ( Pile p );

Element sommet ( Pile p );

Booleen est_vide ( Pile p );

#endif

8

type Pile : une 

structure à deux 

champs



Réalisation d'une Pile Contiguë

/* fichier "Tpile.c" */

#include "Tpile.h"

// Définition des fonctions gérant la pile

// initialiser une nouvelle pile

Pile pile_vide() {

Pile p; 

p.sommet = -1;

return p;

}

// tester si la pile est vide

Booleen est_vide(Pile p) {

if (p.sommet == -1) return vrai;

return faux;

}

// Valeur du sommet de pile

Element sommet(Pile p) {

/* pré-condition : pile non vide ! */

if (est_vide(p)) { 

printf("Erreur: pile vide !\n"); 

exit(-1);

}

return (p.elements)[p.sommet];

}

// ajout d'un élément

Pile empiler(Pile p, Element e) {

if (p.sommet >= MAX_PILE-1) {

printf("Erreur : pile pleine !\n"); 

exit(-1);

}

(p.sommet)++;

(p.elements)[p.sommet] = e;

return p;

}

// enlever un élément

Pile depiler(Pile p) {

/* pré-condition : pile non vide !*/

if (est_vide(p)) {

printf("Erreur: pile vide !\n"); 

exit(-1);

}

p.sommet--;

return p;

}

9



Exemple d'Utilisation d'une Pile Contiguë

/* fichier "UTpile.c" */

#include <stdio.h>

#include "Tpile.h"

int main () {

Pile p = pile_vide();

p = empiler(p,50);

p = empiler(p,5);

p = empiler(p,20);

p = empiler(p,10);

printf("%d au sommet après empilement de 50, 5, 20 et"

" 10\n", sommet(p));

p = depiler(p);

p = depiler(p);

printf("%d au sommet après dépilement de 10 et 20\n",  

sommet(p));

return 0;

}
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Pile chaînée
11

p

Pil

e

10 20

50

/* Pile chaînée en C */

// type des éléments

typedef int element;  

// type Cellule

typedef struct cellule {

element valeur;

struct cellule *suivant;

} Cellule;

// type Pile

typedef Cellule *Pile;

Sommet de la pile 

pointée par  p

Cellule contenant 

la valeur 5

Pointeur sur cellule 
suivante

Pointeur 
NULL



Complexité

 Les opérations sur les piles sont toutes en O(1)

 Ceci est valable pour les deux représentations proposées
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Applications d'une Pile

Exemples (1)
 Vérification du bon équilibrage d’une expression 

parenthèsée : 

 Pour vérifier qu'une expression parenthèsée est équilibrée, à 
chaque rencontre d'une parenthèse ouvrante on l'empile et à 
chaque rencontre d'une parenthèse fermante on dépile ;

 Evaluation des expressions arithmétiques postfixées 
(expressions en notation polonaise inverse) :

 Pour évaluer une telle expression, on applique chaque opérateur 
aux deux opérandes qui le précédent. Il suffit d'utiliser une pile 
dans laquelle les opérandes sont empilés, alors que les opérateurs 
dépilent deux éléments, effectuent l'opération et empilent le 
résultat. Par exemple, l'expression postfixée 2 3 5 * + 1 – s'évalue 
comme suit : ((2 (3 5 *) +) 1 –) = 16 ;

 Conversion d’une expression en notation infixe 
(parenthèsée) en notation postfixée ;
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Applications d'une Pile

Exemples (2)

Gestion par le compilateur des appels de 
fonctions :
 les paramètres, l’adresse de retour et les variables locales sont stockés dans 

la pile de l’application

Mémorisation des appels de procédures 
imbriquées au cours de l’exécution d’un 
programme, et en particulier les appels des 
procédures récursives ;

Parcours « en profondeur » de structures 
d'arbres (voir arbres) ;
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Les Files (Queues)
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Notion de File (Queue)

 Les files sont très utilisées en informatique

 Notion intuitive :
 File d'attente à un guichet, file de documents à imprimer, …

 Une file est une structure linéaire permettant de stocker et de 
restaurer des données selon un ordre FIFO (First In, First Out ou
« premier entré, premier sorti ») 

 Dans une file :
 Les insertions (enfilements) se font à une extrémité appelée queue de 

la file et les suppressions (défilements) se font à l'autre extrémité 
appelée tête de la file
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Exemple de File

            

        queue    

      queue   D queue  

    queue   C  C  D 

  queue   E  E  E  C 
queue   A  A  A  A  E 

tête B tête B tête B tête B tête B tête A 
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Enfiler B

Enfiler A

Enfiler E

Enfiler C

Enfiler D

Défiler B



Type Abstrait File 

Type File

Utilise Elément, Booléen

Opérations

file_vide : → File

est_vide : File → Booléen

enfiler : File x Elément → File

défiler : File → File

tête : File → Elément

Préconditions

défiler(f) est-défini-ssi est_vide(f) = faux

tête(f) est-défini-ssi est_vide(f) = faux

Axiomes 

Soit, e : Element, f : File

est_vide(file_vide) = vrai

est_vide(enfiler(f,e)) = faux

si est_vide(f) = vrai alors tête(enfiler(f,e)) = e

si est_vide(f) = faux alors tête(enfiler(f,e)) = tête(f)

si est_vide(f) = vrai alors défiler(enfiler(f,e)) = file_vide

si est_vide(f) = faux 

alors défiler(enfiler(f,e)) = enfiler(défiler(f),e)
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Opérations sur une File

 file_vide : → File

 opération d'initialisation ; la file créée est vide

 est_vide : File → Booléen

 teste si file vide ou non

 tête : File → Elément

 permet de consulter l'élément situé en tête de file ; n'a pas de 
sens si file vide

 enfiler : File x Elément → File

 ajoute un élément dans la file

 défiler : File → File

 enlève l'élément situé en tête de file ; n'a pas de sens si file vide
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Représentation d'une File

 Représentation contiguë (par tableau) :

 Les éléments de la file sont rangés dans un tableau

 Deux entiers représentent respectivement les positions de la tête et de la queue 
de la file

 Représentation chaînée (par pointeurs) :

 Les éléments de la file sont chaînés entre eux (voir listes chaînées)

 Un pointeur sur le premier élément désigne la file et représente la tête de cette 
file 

 Un pointeur sur le dernier élément représente la queue de file 

 Une file vide est représentée par le pointeur NULL
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Représentation Contiguë d'une File

(par tableau simple)

 tête de file : position précédant premier élément

 queue de file : position du dernier élément

 Initialisation : tête  queue  -1

 Inconvénient : on ne peut plus ajouter des éléments dans la file, alors 
qu'elle n'est pas pleine !
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Représentation Contiguë d'une File

(par tableau simple) (1)22

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

6

6

0 1 2 3 4 5 6 7 8 9

10 20 30 40 50tab

tete

queue

1

6

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

-1

-1

0 1 2 3 4 5 6 7 8 9

5 2 10 20 30 40 50tab

tete

queue

-1

6File initialement vide de 

taille maximale = 10
(1)

(3) (4)

File après ajout de 5, 2, 

10, 20, 30, 40 et 50
(2)

File après suppression 

de 5 et 2

File après suppression 

de 10, 20, 30, 40 et 50



Représentation Contiguë d'une File

(par tableau simple) (2)23

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

6

6

(5)

File vide

0 1 2 3 4 5 6 7 8 9

5 15 10tab

tete

queue

6

9 File après ajout de 

5, 15 et 10
(6)

0 1 2 3 4 5 6 7 8 9

10tab

tete

queue

8

9 On ne peut plus 

ajouter dans la file !!
(8)

0 1 2 3 4 5 6 7 8 9

10tab

tete

queue

8

9 File après 

suppression 5 et 15
(7)



File Contiguë24

/* File contiguë en C */

// taille maximale file

#define MAX_FILE 10

// type des éléments

typedef int Element;  

// type File

typedef struct {

Element tab[MAX_FILE]; 

int tete; 

int queue;

} File;

0 1 2 3 4 5 6 7 8 9

10 20 30 40 50tab

tete

queue

1

6

File

Tableau de taille 

maximale 10

Position qui précède le 

premier élément de la file

Position du dernier 

élément de la file



Spécification d'une File Contiguë

/* fichier "Tfile.h" */

#ifndef _FILE_TABLEAU

#define _FILE_TABLEAU

#include "Booleen.h"

// Définition du type File (implémentée par un tableau simple)

#define MAX_FILE 10  /* taille maximale d'une file */

typedef int Element;  /* les éléments sont des int */

typedef struct {

Element tab[MAX_FILE]; /* les éléments de la file */

int tete;  /* position précédant premier élément */

int queue; /* position dernier élément */

} File;

// Déclaration des fonctions gérant la pile

File file_vide ();

File enfiler ( File f, Element e );

File defiler ( File f );

Element tete ( File f );

Booleen est_vide ( File f );

#endif

25
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Réalisation d'une File 

Contiguë
/* fichier "Tfile.c" */

#include "Tfile.h"

// Définition des fonctions gérant la file

// initialiser une nouvelle file

File file_vide() {

File f; 

f.queue = f.tete = -1;

return f;

}

// tester si la file est vide

Booleen est_vide(File f) {

if (f.tete == f.queue) return vrai;

return faux;

}

// valeur en tête de file

Element tete(File f) {

/* pré-condition : file non vide ! */

if (est_vide(f)) { 

printf("Erreur: file vide !\n"); 

exit(-1);

}

return (f.tab)[f.tete+1];

}

// ajout d'un élément

File enfiler(File f, Element e) {

if (f.queue == MAX_FILE-1) {

printf("Erreur: on ne peut ajouter !\n"); 

exit(-1);

}

(f.queue)++;

(f.tab)[f.queue] = e;

return f;

}

// enlever un élément

File defiler(File f) {

/* pré-condition : file non vide !*/

if (est_vide(f)) {

printf("Erreur: file vide !\n"); 

exit(-1);

}

f.tete++;

return f;

}
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Représentation Contiguë d'une File

(par tableau simple avec décalage)

 Décaler les éléments de la file après chaque suppression

 Inconvénient : décalage très coûteux si la file contient plusieurs 

d'éléments

27



Représentation Contiguë d'une File

(par tableau simple avec décalage) 28

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

-1

-1

0 1 2 3 4 5 6 7 8 9

10 2

0

30 40 50tab

tete

queue

-1

4

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

-1

-1

0 1 2 3 4 5 6 7 8 9

5 2 10 20 30 40 50tab

tete

queue

-1

6File initialement vide de 

taille maximale = 10
(1)

(3) (4)

File après ajout de 5, 2, 

10, 20, 30, 40 et 50
(2)

File après suppression 

de 5 et 2

File après suppression 

de 10, 20, 30, 40 et 50



Représentation Contiguë d'une File

(par tableau simple avec décalage) 29

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

-1

-1

(5)

File vide

0 1 2 3 4 5 6 7 8 9

5 15 10tab

tete

queue

-1

2 File après ajout de 

5, 15 et 10
(6)

0 1 2 3 4 5 6 7 8 9

10 5 6 20 8 35 25 33 4 80tab

tete

queue

-1

9
Après ajout de 5, 6, 20, 8, 

35, 25, 33, 4 et 80, File 

pleine!!(8)

0 1 2 3 4 5 6 7 8 9

10tab

tete

queue

-1

0 File après 

suppression 5 et 15
(7)



Représentation Contiguë d'une File

(Par tableau circulaire)

Gérer le tableau de manière 

circulaire : suivant de l'élément à la 
position iest l'élément à la position (i+1) 

modulo MAX_FILE

Convention : file autorisée à contenir

MAX_FILE-1 éléments

Initialisation : tête  queue  0

30



File Contiguë Circulaire

(Exemple)

31



Représentation d'une File Contiguë 

circulaire(1)32

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

7

7

0 1 2 3 4 5 6 7 8 9

10 20 30 40 50

tete

queue

2

7

0 1 2 3 4 5 6 7 8 9

tete

queue

0

0

0 1 2 3 4 5 6 7 8 9

5 2 10 20 30 40 50tab

tete

queue

0

7
File initialement vide 

qui peut contenir au 

plus 9 éléments

(4)

File après ajout de 5, 2, 

10, 20, 30, 40 et 50
(2)

File après suppression 

de 5 et 2

File après suppression 

de 10, 20, 30, 40 et 50



Réalisation d'une File Contiguë 

Circulaire (2)

33

0 1 2 3 4 5 6 7 8 9

tete

queue

7

7
File vide

0 1 2 3 4 5 6 7 8 9

10 5 15tab

tete

queue

7

0 File après ajout de 

5, 15 et 10
(6)

0 1 2 3 4 5 6 7 8 9

10 5 6 20 8 35 25 33 15tab

tete

queue

8

7
Après ajout de 5, 6, 20, 8, 

35, 25,  et 33, 

File pleine!!(8)

0 1 2 3 4 5 6 7 8 9

10 15

tete

queue

8

0 File après 

suppression 5



Réalisation d'une File Contiguë Circulaire
34

/* fichier "TCfile.c" */

#include "Tfile.h"

// Définition des fonctions gérant la file

// initialiser une nouvelle file

File file_vide() {

File f; 

f.queue = f.tete = 0;

return f;

}

// tester si la file est vide

Booleen est_vide(File f) {

if (f.tete == f.queue) return vrai;

return faux;

}

// valeur en tête de file

Element tete(File f) {

/* pré-condition : file non vide ! */

if (est_vide(f)) { 

printf("Erreur: file vide !\n"); 

exit(-1);

}

return (f.tab)[(f.tete+1) % MAX_FILE];

}

// ajout d'un élément

File enfiler(File f, Element e) {

if (f.tete == (f.queue+1) % MAX_FILE) {

printf("Erreur : file pleine !\n"); 

exit(-1);

}

f.queue=(f.queue+1) % MAX_FILE;

(f.tab)[f.queue] = e;

return f;

}

// enlever un élément

File defiler(File f) {

/* pré-condition : file non vide !*/

if (est_vide(f)) {

printf("Erreur: file vide !\n"); 

exit(-1);

}

f.tete=(f.tete+1) % MAX_FILE;

return f;

}



File chaînée
35

tete

Fil

e

10 20

50

/* File chaînée en C */

// type des éléments

typedef int element;  

// type Cellule

typedef struct cellule {

element valeur;

struct cellule *suivant;

} Cellule;

// type File

typedef struct {

Cellule *tete;

Cellule *queue;

} File;

Tête de la file 
pointée par tete

Cellule contenant 
la valeur 30

Pointeur sur 
cellule suivante

Pointeur 
NULLqueue

Queue de file 

pointée par queue



Complexité

 Les opérations sur les files sont toutes en O(1)

 Ceci est valable pour les deux représentations : file contiguë circulaire et 

file chaînée
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Applications d'une File

Exemples
Gestion des travaux d’impression d’une 

imprimante :
 Cas d'une imprimante en réseau, où les tâches d'impressions arrivent 

aléatoirement de n'importe quel ordinateur connecté. Les tâches sont 
placées dans une file d'attente, ce qui permet de les traiter selon leur ordre 
d'arrivée

Ordonnanceur (dans les systèmes 
d’exploitation) :
 Maintenir une file de processus en attente d’un temps machine ; 

Parcours « en largeur » d’un arbre (voir arbres)
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Cours
Structures de 

données

Arbres (Trees)
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Objectifs

�Etudier des structures non 
linéaires
�Arbres binaires
�Arbres binaires de recherche
�Arbres maximiers ou Tas
�Arbres équilibrés

2



C
ontenu

�
Introduction

�
Term

inologie
�

A
rbres binaires

�
A

rbres binaires de recherche
�

A
rbres m

axim
iers ou Tas

�
A

rbres équilibrés

3



A
rb

res (Trees)
Introduction

4



N
otion d

'A
rb

re (Tree)

�
Les arbres sont les structures de données les plus 
im

portantes en inform
atique

�
C

e sont des structures non linéaires
qui perm

ettent 
d’obtenir des algorithm

es plus perform
ants que 

lorsqu’on utilise des structures de données linéaires 
telles que les listes et les tableaux

�
Ils perm

ettent une organisation naturelle des 
données

5



N
otion d

'A
rb

re (Tree)
Exem

p
les

�
O

rganisation des fichiers dans les systèm
es 

d'exploitation ;

�
O

rganisation des inform
ations dans un systèm

e de bases 
de données ;

�
Représentation de la structure syntaxique des 
program

m
es sources dans les com

pilateurs ;

�
Représentation d'une table de m

atières ;

�
Représentation d'un arbre généalogique ;

�
… 6



A
rb

res (Trees)
Term

inologie
7



Term
inologie (1)

�
Un arb

re est un ensem
b

le d
'élém

ents ap
pelés nœ

uds (ou som
m

ets),
liés p

ar une relation (d
ite d

e "p
a

renté")ind
uisant une structure 

hiérarchiq
ue p

a
rm

i ces nœ
ud

s. 

�
Un nœ

ud
, com

m
e tout élém

ent d
'une liste, p

eut être d
e n'im

p
orte 

q
uel type.

8



Term
inologie (1) (suite)

�
D

'une m
a

nière p
lus form

elle, une structure 
d

'a
rb

re d
e typ

e d
e b

a
se T est :

�
soit la

 structure vide
;

�
soit un noeud

 d
e typ

e T, a
p

p
elé racine, a

ssocié à
 un nom

b
re fini d

e structures 
d

'a
rb

re d
isjointes d

u typ
e d

e b
a

se T a
p

p
elées sous arbres

�
C

'est une d
éfinition récursive ; la

 récursivité est 
une p

rop
riété d

es a
rb

res et d
es a

lgorithm
es 

q
ui les m

a
nip

ulent

�
Une liste

est un ca
s p

a
rticulier d

es a
rb

res 
(arbre dégénéré), où tout noeud

 a
 a

u p
lus un 

sous a
rb

re

9



Illustra
tion &

 Exem
p

le

�
Pour illustrer une structure 
d

'a
rb

re, on m
od

élise le 
p

lus souvent un nœ
ud

 
p

a
r une inform

a
tion 

inscrite d
a

ns un cercle et 
les liens p

a
r d

es tra
its.

�
Par convention, on 

d
essine les a

rb
res a

vec la
 

ra
cine en ha

ut et les 
b

ra
nches d

irigées vers le 
b

a
s. 

10

L
a racine

E
xem

ple d'arbre form
é de 7 

nœ
uds (des entiers)



Term
inologie (2)

�
La term

inologie utilisée dans les structures 
d'arbres est em

pruntée :
�

aux arbres généalogiques :
�

Père ;

�
Fils ;

�
Frère ;

�
Descendant ;

�
…

�
et à la botanique : 
�

Feuille ;

�
Branche ;

�
…

11



Term
inologie (3)

�
Fils (ou enfants) :
�

C
haque nœ

ud d'un arbre pointe vers un ensem
ble éventuellem

ent 
vide d'autres nœ

uds ; ce sont ses fils (ses enfants). 
�

Sur l'exem
ple précédent, le nœ

ud 5 a deux fils : 1 et 3, le nœ
ud 1 a 

un fils : 4, et le nœ
ud 3 a trois fils : 2, 6 et 7.

�
Père :
�

Tous les nœ
uds d'un arbre, sauf un, ont un père et un seul. Un nœ

ud p 
est père du nœ

ud n si et seulem
ent si n est fils de p.

�
Par exem

ple, le père de 2 est 3, celui de 3 et 5.

�
Frères :
�

Deux nœ
uds ayant le m

êm
e père. 

�
Les nœ

uds 2, 6 et 7 sont des frères.

�
Racine :
�

Le seul nœ
ud sans père. 

�
5 est la racine de l'arbre précédent.

12



Term
inologie (4)

�
Feuilles (ou nœ

uds term
inaux, ou nœ

uds externes) :
�

C
e sont des noeuds sans fils. 

�
Par exem

ple, 4, 2, 6 et 7.

�
N

œ
ud interne :

�
Un noeud qui n'est pas term

inal. 
�

Par exem
ple, 1, 3 et 5.

�
Degré d'un noeud :
�

Le nom
bre de fils de ce noeud. 

�
Sur l'exem

ple, 5 est de degré deux, 1 est de degré un, 3 est de 
degré trois et les feuilles (4, 2, 6, 7) sont de degré nul.

�
Degré d'un arbre (ou arité) :
�

Plus grand degré des nœ
uds de l'arbre. Un arbre de degré n est dit 

n-aire
�

Sur l'exem
ple, l'arbre est un arbre 3-aire.

13



Term
inologie (5)

�
Taille d'un arbre :
�

Le nom
bre total des nœ

uds de l'arbre. 
�

Sur l'exem
ple, l'arbre est de taille 7.

�
C

hem
in :

�
Une suite de noeuds d'un arbre (n

1 , n
2 , …

, n
k ) tel que n

i = père(n
i +1) pour 1≤i≤k-

1 est appelée chem
in entre le nœ

ud n
1 et le nœ

ud n
k . 

�
La longueur d'un chem

in est égale au nom
bre de nœ

uds qu'il contient m
oins 

1. 
�

Sur l'exem
ple, le chem

in qui m
ène du nœ

ud 5 au nœ
ud 6 est de longueur 2.

�
Branche :
�

Un chem
in qui com

m
ence à la racine et se term

ine à une feuille.
�

Par exem
ple, les chem

ins (5, 1, 4), (5, 3, 2), (5, 3, 6) et (5, 3, 7).

�
A

ncêtre :
�

Un nœ
ud A

 est un ancêtre d'un nœ
ud B s'il existe un chem

in de A
 vers B. 

�
Par exem

ple, les ancêtres de 2 sont 2, 3 et 5

�
Descendant :
�

Un nœ
ud A

 est un descendant d'un nœ
ud B s'il existe un chem

in de B vers A
.

�
Sur l'exem

ple, 5 adm
et les 7 nœ

uds de l'arbre com
m

e descendants.

14



Term
inologie (6)

�
Sous arbre :
�

Un sous arbre d'un arbre A
 est constitué de tous les 

descendants d'un nœ
ud quelconque de A

. 
�

Les ensem
bles de noeuds {3, 2, 6, 7} et {2} form

ent deux sous 
arbres de l'exem

ple précédent.

�
Hauteur (ou profondeur, ou niveau) d'un noeud :
�

Longueur du chem
in qui relie la racine à ce nœ

ud. 
�

La racine est elle m
êm

e de hauteur 0, ses fils sont de hauteur 
1, et les autres noeuds de hauteur supérieure à 1.

�
Hauteur d'un arbre :
�

Plus grande profondeur des nœ
uds de l'arbre supposé non 

vide, c'est-à-dire h(A
) = M

ax{h(x) ; x noeud de A
}

�
L'arbre de l'exem

ple est de profondeur 2. 
�

Par convention, un arbre vide a une hauteur de -1.

15



Term
inologie (7)

�
A

rbre dégénéré ou filiform
e :

�
Un arbre dont chaque nœ

ud a au plus au fils 

16



Term
inologie (7)

�
A

rbre ordonné :
�

Un arbre où la position respective des sous arbres reflète une relation 
d'ordre. En d'autres term

es, si un nœ
ud a k fils, il existe un 1er fis, un 2èm

e 
fils, …

, et un kèm
e fils.

�
Les deux arbres de la figure qui suit sont différents si on les regarde 
com

m
e des arbres ordonnés, m

ais identiques si on les regarde com
m

e de 
sim

ples arbres.

17



Term
inologie (8)

�
A

rbre binaire :
�

Un arbre où chaque noeud a au plus deux fils. 

�
Q

uand un nœ
ud de cet arbre a un seul fils, on précise s'il s'agit 

du fils gauche
ou du fils droit. 

�
La figure qui suit m

ontre un exem
ple d'arbre binaire dans 

lequel les nœ
uds contiennent des caractères. 

18



Term
inologie (9)

�
A

rbre binaire com
plet :

�
A

rbre binaire dont chaque niveau est rem
pli.

19



Term
inologie (10)

�
A

rbre binaire parfait (ou presque com
plet) :

�
A

rbre binaire dont chaque niveau est rem
pli sauf 

éventuellem
ent le dernier

�
Dans ce cas les nœ

uds term
inaux (feuilles) sont groupés 

le plus à gauche possible. 

20



Term
inologie (11)

�
Facteur d'équilibre d'un nœ

ud d'un arbre 
binaire :
�

Hauteur du sous arbre partant du fils gauche 
du nœ

ud m
oins la hauteur du sous arbre 

partant de son fils droit.

�
A

rbre binaire équilibré (au sens des 
hauteurs) :
�

Un arbre binaire tel que pour chaque nœ
ud, 

la valeur absolue du facteur d'équilibre est 
inférieure ou égal à un. 

�
Sur l'exem

ple qui suit, on place à côté de 
chaque nœ

ud son facteur d'équilibre.

21
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A
rb

res Bina
ires 

(Bina
ry Trees)
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D
éfinition

�
Un arbre binaire

A
est :

�
soit vide (A

 = ( ) ou
A

 = ø), 

�
soit de la form

e
A

 = <r, A
1, A

2>,c-à
-d

 com
p

osé :

�
d

'un nœ
ud

 ra
p

p
elé

racine
contena

nt un élém
ent 

�
et d

e d
eux a

rb
res b

inaires d
isjoints A

1
et A

2, a
p

p
elés 

resp
ectivem

ent sous arbre gauche
(ou fils gauche) et sous 

arbre droit(ou fils droit).
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Exem
p

le d
'a

rb
re b

ina
ire
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Typ
e A

b
stra

it A
rb

re_Bina
ire

T
y
p
e
A
r
b
r
e
_
B
i
n
a
i
r
e

U
t
i
l
i
s
e
N
o
e
u
d
,
 
E
l
é
m
e
n
t
,
 
B
o
o
l
é
e
n

O
p
é
r
a
t
i
o
n
s

a
r
b
r
e
_
v
i
d
e
 
:
 
→

A
r
b
r
e
_
B
i
n
a
i
r
e

e
s
t
_
v
i
d
e
 
 
 
:
 
A
r
b
r
e
_
B
i
n
a
i
r
e
 
→

B
o
o
l
é
e
n

c
o
n
s
 
 
 
 
 
 
 
:
 
N
o
e
u
d
 
x
 
A
r
b
r
e
_
B
i
n
a
i
r
e
 
x
 
A
r
b
r
e
_
B
i
n
a
i
r
e
 
→

A
r
b
r
e
_
B
i
n
a
i
r
e

r
a
c
i
n
e
 
 
 
 
 
:
 
A
r
b
r
e
_
B
i
n
a
i
r
e
 
→

N
o
e
u
d

g
a
u
c
h
e
 
 
 
 
 
:
 
A
r
b
r
e
_
B
i
n
a
i
r
e
 
→

A
r
b
r
e
_
B
i
n
a
i
r
e

d
r
o
i
t
e
 
 
 
 
 
:
 
A
r
b
r
e
_
B
i
n
a
i
r
e
 
→

A
r
b
r
e
_
B
i
n
a
i
r
e

c
o
n
t
e
n
u
 
 
 
 
:
 
N
o
e
u
d
 
→

E
l
é
m
e
n
t

P
r
é
c
o
n
d
i
t
i
o
n
s

r
a
c
i
n
e
(
A
)
 
e
s
t
-
d
é
f
i
n
i
-
s
s
i
e
s
t
_
v
i
d
e
(
A
)
 
=
 
f
a
u
x

g
a
u
c
h
e
(
A
)
 
e
s
t
-
d
é
f
i
n
i
-
s
s
i
e
s
t
_
v
i
d
e
(
A
)
 
=
 
f
a
u
x

d
r
o
i
t
e
(
A
)
 
e
s
t
-
d
é
f
i
n
i
-
s
s
i
e
s
t
_
v
i
d
e
(
A
)
 
=
 
f
a
u
x

A
x
i
o
m
e
s

S
o
i
t
,
 
r
 
:
 
N
œ
u
d
,
 
A
1
,
 
A
2
 
:
 
A
r
b
r
e
_
B
i
n
a
i
r
e

r
a
c
i
n
e
(
<
r
,
 
A
1
,
 
A
2
>
)
 
=
 
r

g
a
u
c
h
e
(
<
r
,
 
A
1
,
 
A
2
>
)
 
=
 
A
1

d
r
o
i
t
e
(
<
r
,
 
A
1
,
 
A
2
>
)
 
=
 
A
2
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O
p

éra
tions sur un A

rb
re 

Bina
ire (1)

�
a
r
b
r
e
_
v
i
d
e
:
 
→

A
r
b
r
e
_
B
i
n
a
i
r
e

�
op

éra
tion d

'initia
lisa

tion; crée un a
rb

re b
ina

ire vide.

�
e
s
t
_
v
i
d
e

:
 
A
r
b
r
e
_
B
i
n
a
i
r
e
→

B
o
o
l
é
e
n

�
teste si un a

rb
re b

inaire est vide ou non.

�
c
o
n
s
  
:
 
N
o
e
u
d
 x
 
A
r
b
r
e
_
B
i
n
a
i
r
e
x
 
A
r
b
r
e
_
B
i
n
a
i
r
e
→

A
r
b
r
e
_
B
i
n
a
i
r
e

�
cons(r,G

,D
)construit un a

rb
re b

inaire d
ont le sous a

rb
re 

ga
uche est G

et le sous a
rb

re d
roit est D

, et rest le nœ
ud

 
ra

cine q
ui contient une d

onnée d
e typ

e Elém
ent.

�
r
a
c
i
n
e
 :
 
A
r
b
r
e
_
B
i
n
a
i
r
e
→

N
o
e
u
d

�
si A

est un a
rb

re b
ina

ire non vide a
lors r

a
c
i
n
e
(
A
)

retourne 
le nœ

ud
 ra

cine d
e A, sinon un m

essa
ge d

'erreur.
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O
p

éra
tions sur un A

rb
re 

Bina
ire (2)

�
g
a
u
c
h
e

:
 
A
r
b
r
e
_
B
i
n
a
i
r
e
 
→

A
r
b
r
e
_
B
i
n
a
i
r
e

�
si A

est un a
rb

re b
ina

ire non vid
e a

lors g
a
u
c
h
e
(
A
)

retourne le sous a
rb

re 
ga

uche d
e A, sinon un m

essa
ge d

'erreur.

�
d
r
o
i
t
e

:
 
A
r
b
r
e
_
B
i
n
a
i
r
e
 
→

A
r
b
r
e
_
B
i
n
a
i
r
e

�
si A

est un a
rb

re b
ina

ire non vid
e a

lors d
r
o
i
t
e
(
A
)

retourne le sous a
rb

re 
d

roit d
e A, sinon un m

essa
ge d

'erreur.

�
c
o
n
t
e
n
u

:
 
N
o
e
u
d
 
→

E
l
é
m
e
n
t

�
p

erm
et d’a

ssocier à
 cha

q
ue noeud

 d
'un a

rb
re b

ina
ire une inform

a
tion d

e 
typ

e Elém
ent.
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O
p

éra
tions A

uxilia
ires

E
x
t
e
n
s
i
o
n
 
T
y
p
e

A
r
b
r
e
_
B
i
n
a
i
r
e

U
t
i
l
i
s
e

E
n
t
i
e
r
,
 
B
o
o
l
é
e
n

O
p
é
r
a
t
i
o
n
s

t
a
i
l
l
e

:
 
A
r
b
r
e
_
B
i
n
a
i
r
e
→

E
n
t
i
e
r

h
a
u
t
e
u
r
 :
 
A
r
b
r
e
_
B
i
n
a
i
r
e
→

E
n
t
i
e
r

f
e
u
i
l
l
e
 :
 
A
r
b
r
e
_
B
i
n
a
i
r
e
→

B
o
o
l
é
e
n

P
r
é
c
o
n
d
i
t
i
o
n
s

A
x
i
o
m
e
s

S
o
i
t
,
 
r
 
:
 
N
o
e
u
d
,
 
A
1
,
 
A
2
 
:
 
A
r
b
r
e
_
B
i
n
a
i
r
e

t
a
i
l
l
e
(
a
r
b
r
e
_
v
i
d
e
)
 
=
 
0

t
a
i
l
l
e
(
<
r
,
 
A
1
,
 
A
2
>
)
 
=
 
1
 
+
 
t
a
i
l
l
e
(
A
1
)
 
+
 
t
a
i
l
l
e
(
A
2
)

ha
u
t
e
u
r
(
a
r
b
r
e_
v
i
d
e
)
 
=
 
-1

s
i
 
h
a
u
t
e
u
r
(
A
1
)
 
>
 
h
a
u
t
e
u
r
(
A
2
)
 
a
l
o
r
s
 
h
a
u
t
e
u
r
(
<
r
,
 
A
1
,
 
A
2
>
)
 
=
 
1
+
h
a
u
t
e
u
r
(
A
1
)

s
i
n
o
n
 
h
a
u
t
e
u
r
(
<
r
,
 
A
1
,
 
A
2
>
)
 
=
 
1
 
+
 
h
a
u
t
e
u
r
(
A
2
)

s
i
 
e
s
t
_
v
i
d
e
(
A
)
 
=
 
f
a
u
x
 
e
t
 
e
s
t
_
v
i
d
e
(
g
a
u
c
h
e
(
A
)
)
 
=
 
v
r
a
i
 

e
t
 
e
s
t
_
v
i
d
e
(
d
r
o
i
t
(
A
)
)
 
=
 
v
r
a
i

a
l
o
r
s
 
f
e
u
i
l
l
e
(
A
)
 
=
 
v
r
a
i

s
i
n
o
n
 
f
e
u
i
l
l
e
(
A
)
 
=
 
f
a
u
x
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Pa
rcours d

'a
rb

re b
ina

ire 
�

Un parcours d'arbre perm
et d'accéder à chaque nœ

ud de l'arbre :
�

Un traitem
ent (test, affichage, com

ptage, etc.), dépendant de l’application 
considérée, est effectué sur l’inform

ation portée par chaque nœ
ud

�
C

haque parcours de l'arbre définit un ordre sur les nœ
uds

�
O

n distingue :
�

Les parcours de gauche à droite (le fils gauche d'un nœ
ud précède le fils 

droit) ;

�
Les parcours de droite à gauche (le fils droit d'un nœ

ud précède le fils 
gauche).

�
O

n ne considèrera que les parcours de gauche à droite

�
O

n distingue aussi deux catégories de parcours d'arbres : 
�

Les parcours en profondeur
;

�
Les parcours en largeur. 
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Pa
rcours en p

rofond
eur

�
Soit un arbre binaire A

 = <r, A
1, A

2>

�
O

n définit trois parcours en profondeur de cet arbre :
�

Le parcours préfixe ;

�
Le parcours infixe ou sym

étrique ;

�
Le parcours postfixe ou suffixe.
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Pa
rcours en p

rofond
eur

Pa
rcours p

réfixe
�

En abrégé RG
D

(Racine, G
auche, Droit)

�
C

onsiste à effectuer dans l'ordre :
�

Le traitem
ent de la racine r ;

�
Le parcours préfixe du sous arbre gauche A

1 ;

�
Le parcours préfixe du sous arbre droit A

2.

�
L'ordre correspondant s'appelle l'ordre préfixe
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Pa
rcours en p

rofond
eur

Pa
rcours infixe ou sym

étriq
ue

�
En abrégé G

RD
(G

auche, Racine, Droit)

�
C

onsiste à effectuer dans l'ordre :
�

Le parcours infixe du sous arbre gauche A
1 ;

�
Le traitem

ent de la racine r ;

�
Le parcours infixe du sous arbre droit A

2.

�
L'ordre correspondant s'appelle l'ordre infixe
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Pa
rcours en p

rofond
eur

p
a

rcours p
ostfixe ou suffixe

�
En abrégé G

DR
(G

auche, Droit, Racine)

�
C

onsiste à effectuer dans l'ordre :
�

Le parcours postfixe du sous arbre gauche A
1 ;

�
Le parcours postfixe du sous arbre droit A

2 ;

�
Le traitem

ent de la racine r.

�
L'ordre correspondant s'appelle l'ordre suffixe
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Exem
ple d

e Pa
rcours en p

rofond
eur

(a
fficha

ge d
u contenu d

es nœ
ud

s)
34

L
e parcours préfixe affiche les nœ

uds dans l'ordre : 1, 2, 4, 5, 3, 6, 8, 9, 12, 13, 7, 10, 11
L

e parcours infixe affiche les nœ
uds dans l'ordre : 4, 2, 5, 1, 8, 6, 12, 9, 13, 3, 10, 7, 11

L
e parcours postfixe affiche les nœ

uds dans l'ordre : 4, 5, 2, 8, 12, 13, 9, 6, 10, 11, 7, 3, 1



Pa
rcours en la

rgeur

�
O

n explore les noeuds :
�

niveau par niveau, 

�
de gauche à droite, 

�
en com

m
ençant par la racine. 

�
Exem

ple : 
�

Le parcours en largeur de l'arbre de la figure précédente 
affiche la séquence d'entiers suivante : 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13
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Rep
résenta

tions d
'un a

rb
re 

b
ina

ire

�
Représentation par tableau (par contiguïté)

�
Représentation par pointeurs (par chaînage) 
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Rep
résenta

tion contiguë d
'un 

a
rbre b

ina
ire

�
O

n caractérise un arbre binaire par :
�

sa taille (nom
bre de nœ

uds) ;
�

sa racine (indice de son em
placem

ent dans le tableau de nœ
uds) 

�
un tableau de nœ

uds. 

�
C

haque nœ
ud contient trois données : 

�
une inform

ation de type Elém
ent ;

�
deux entiers (indices dans le tableau désignant respectivem

ent 
l'em

placem
ent des fils gauche et droit du nœ

ud). 
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Rep
résenta

tion contiguë d
'un 

a
rbre b

ina
ire

#
d
e
f
i
n
e 
N
B
_M
A
X_
N
O
E
U
D
S 
1
5

t
y
p
e
d
e
f 
i
n
t 
E
le
m
e
n
t
;

t
y
p
e
d
e
f 
s
t
ru
c
t 
n
o
e
u
d
 {

E
l
e
m
e
nt
 
v
al
;

i
n
t
 
f
g;

i
n
t
 
f
d;

}
 
N
o
e
u
d;

t
y
p
e
d
e
f 
N
o
eu
d
 T
a
b
N
[
N
b_
M
A
X_
N
OE
U
D
S
]
;

t
y
p
e
d
e
f 
s
t
ru
c
t 
a
r
b
r
e
 {

i
n
t
 
n
b_
n
o
eu
d
s;

i
n
t
 
r
ac
i
n
e;

T
a
b
N
 
le
s
_
no
e
ud
s
;

}
 
A
r
b
r
e_
B
i
na
i
re
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Exem
p

le d
e Rep

résenta
tion contiguë

39

 
a

 
 

c
 

 

d
 

 

b
 

 e
 

 

f  
g
 

 

k
 

 
l  

m
 

 

10 
2 

 
 

0 
1 

2 
3 

4 
5 

6 
7 

8 
9 

10 
11 

12 
13 

14 
val 

 
d 

a 
g 

b 
c 

 
f 

m 
e 

l 
 

k 
 

 

fg 
 

-1 
4 

-1 
1 

12 
 

-1 
-1 

7 
8 

 
-1 

 
 

nb_noeuds 

racine 

les_noeuds 

fd 
 

9 
5 

-1 
-1 

10 
 

-1 
-1 

3 
-1 

 
-1 

 
 

 



A
utre rep

résentation contiguë d
'un a

rbre 
b

ina
ire

�
Repose sur l'ordre hiérarchique (num

érotation des 
nœ

uds niveau par niveau et de gauche à droite)

�
O

n rappelle que pour stocker un arbre binaire de 
hauteur h, il faut un tableau de 2

h+1-1 élém
ents 

�
O

n organise le tableau de la façon suivante : 
�

Le noeud racine a pour indice 0 (en langage C
) ;

�
Soit le noeud d’indice i dans le tableau, son fils gauche a 
pour indice 2i +1, et son fils droit a pour indice 2(i+1).

�
Représentation idéale pour les arbres binaires 
parfaits. En effet, elle ne gaspille pas d'espace. 
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A
utre rep

résentation contiguë d
'un 

a
rbre b

ina
ire (Exem

p
les)

 
a  

c  

d
 

 

b
 

 

f  

k
 

 
l  

h  
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Rep
résenta

tion cha
înée d

'un 
a

rbre b
ina

ire

�
C

haque nœ
ud a trois cham

ps :
�

val (l'élém
ent stocké dans le noeud) ;

�
fg

(pointeur surfils gauche) ;
�

fd
(pointeur sur fils droit).

�
Un arbre est désigné par un pointeur sur sa 
racine

�
Un arbre vide est représenté par le pointeur 
N

ULL
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Rep
résenta

tion cha
înée en C

 d
'un a

rbre 
b

ina
ire

t
y
p
e
d
e
f
 
i
n
t
 
E
l
e
m
e
n
t
;

t
y
p
e
d
e
f
 
s
t
r
u
c
t
 
n
o
e
u
d
 
*
P
n
o
e
u
d
;

t
y
p
e
d
e
f
 
s
t
r
u
c
t
 
n
o
e
u
d
 
{

E
l
e
m
e
n
t
 
v
a
l
;

P
n
o
e
u
d
 
f
g
;

P
n
o
e
u
d
 
f
d
;

}
 
N
o
e
u
d
;

t
y
p
e
d
e
f
 
N
o
e
u
d
 
*
A
r
b
r
e
_
B
i
n
a
i
r
e
;
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Exem
p

le d
e Rep

résenta
tion cha

înée 
d

'un a
rbre b

ina
ire

44
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Réa
lisa

tion cha
înée  d

'un a
rbre b

ina
ire

A
r
b
r
e
_
B
i
n
a
i
r
e
 
a
r
b
r
e
_
v
i
d
e
(
)
 
{

r
e
t
u
r
n
 
N
U
L
L
;

}B
o
o
l
e
e
n
 
e
s
t
_
v
i
d
e
(
A
r
b
r
e
_
B
i
n
a
i
r
e
 
A
)
 
{

r
e
t
u
r
n
 
A
 
=
=
 
N
U
L
L
 
;

}P
n
o
e
u
d
 
n
o
u
v
e
a
u
_
n
o
e
u
d
(
E
l
e
m
e
n
t
 
e
)
 
{

/
/
 
f
a
i
r
e
 
u
n
e
 
a
l
l
o
c
a
t
i
o
n
 
m
é
m
o
i
r
e
 
e
t
 
p
l
a
c
e
r
 
l
'
é
l
é
m
e
n
t
 
e

/
/
 
e
n
 
c
a
s
 
d
'
e
r
r
e
u
r
 
d
'
a
l
l
o
c
a
t
i
o
n
,
 
l
e
 
p
o
i
n
t
e
u
r
 
r
e
n
v
o
y
é
 
e
s
t
 

N
U
L
L

P
n
o
e
u
d
 
p
 
=
 
(
P
n
o
e
u
d
)
 
m
a
l
l
o
c
(
s
i
z
e
o
f
(
N
o
e
u
d
)
)
;

i
f
 
(
p
 
!
=
 
N
U
L
L
)
 
{

p
-
>
v
a
l
 
=
 
e
;

p
-
>
f
g
 
=
 
N
U
L
L
;

p
-
>
f
d
 
=
 
N
U
L
L
;

}r
e
t
u
r
n
 
(
p
)
;

}
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Réa
lisa

tion cha
înée d

'un a
rb

re b
ina

ire
46

A
r
b
r
e
_
B
i
n
a
i
r
e

c
o
n
s
(
N
o
e
u
d
 
*
r
,
 

A
r
b
r
e
_
B
i
n
a
i
r
e

G
,
 

A
r
b
r
e
_
B
i
n
a
i
r
e

D
)
 
{

r
-
>
f
g

=
 
G
 
;

r
-
>
f
d

=
 
D
 
;

r
e
t
u
r
n
 
r
 
;

}N
o
e
u
d
 
r
a
c
i
n
e
(
A
r
b
r
e
_
B
i
n
a
i
r
e

A
)
 
{

/
/
 
p
r
é
c
o
n
d
i
t
i
o
n
 
:
 
A
 
e
s
t
 
n
o
n
 
v
i
d
e
 
!

i
f
 
(
e
s
t
v
i
d
e
(
A
)
)
 
{

p
r
i
n
t
f
(
"
E
r
r
e
u
r
 
:
 
A
r
b
r
e
 
v
i
d
e
 
!
\
n
"
)
;

e
x
i
t
(
-
1
)
;

}r
e
t
u
r
n
 
(
*
A
)
 
;

}

A
r
b
r
e
_
B
i
n
a
i
r
e

g
a
u
c
h
e
(
A
r
b
r
e
_
B
i
n
a
i
r
e

A
)
 
{

/
/
 
p
r
é
c
o
n
d
i
t
i
o
n
 
:
 
A
 
e
s
t
 
n
o
n
 
v
i
d
e
 
!

i
f
 
(
e
s
t
v
i
d
e
(
A
)
)
 
{

p
r
i
n
t
f
(
"
E
r
r
e
u
r
 
:
 
A
r
b
r
e
 
v
i
d
e
 
!
\
n
"
)
;

e
x
i
t
(
-
1
)
;

}r
e
t
u
r
n
 
A
-
>
f
g
 
;
 
/
*
 
o
u
 
b
i
e
n
 
(
*
A
)
.
f
g
;
 
*
/
 

}A
r
b
r
e
_
B
i
n
a
i
r
e

d
r
o
i
t
e
(
A
r
b
r
e
_
B
i
n
a
i
r
e

A
)
 
{

/
/
 
p
r
é
c
o
n
d
i
t
i
o
n
 
:
 
A
 
e
s
t
 
n
o
n
 
v
i
d
e
 
!

i
f
 
(
e
s
t
v
i
d
e
(
A
)
)
 
{

p
r
i
n
t
f
(
"
E
r
r
e
u
r
 
:
 
A
r
b
r
e
 
v
i
d
e
 
!
\
n
"
)
;

e
x
i
t
(
-
1
)
;

}r
e
t
u
r
n
 
A
-
>
f
d

;
 
/
*
 
o
u
 
b
i
e
n
 
(
*
A
)
.
f
d
;
 
*
/
 

}E
l
e
m
e
n
t

c
o
n
t
e
n
u
(
N
o
e
u
d
 
n
)
 
{

r
e
t
u
r
n
 
n
.
v
a
l
;

}



Exem
p

les d
'A

p
p

lica
tions d

'A
rb

re 
Binaire

�
Recherche dans un ensem

ble de valeurs : 
�

Les a
rb

res b
ina

ires d
e recherche ;

�
Tri d’un ensem

ble de valeurs : 
�

Le
p

a
rcours G

RD
d’un a

rb
re b

ina
ire d

e recherche ;
�

Un a
lgorithm

e d
e tri effica

ce utilisa
nt une structure d

e ta
s ;

�
Représentation d’une expression arithm

étique :
�

Un p
a

rcours G
D

R
p

our a
voir une nota

tion p
ostfixée ;

�
M

éthodes de com
pression :

�
Le cod

a
ge d

e H
uffm

a
n

utilisa
nt d

es a
rb

res b
ina

ires ;
�

La
 com

p
ression d’im

a
ges utilisa

nt d
es q

ua
d

trees (a
rb

res q
ua

terna
ires, 

ou cha
q

ue nœ
ud

 non feuille a
 exa

ctem
ent q

ua
tre fils) ;

�
…
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A
rb

res d
e Recherche Eq

uilibrés 
Exem

p
les (3)

�
Les B arbres :
�

A
rbres de recherche équilibrés qui sont conçus pour être efficaces sur 

d'énorm
es m

asses de données stockées sur m
ém

oires secondaires ; 

�
C

haque nœ
ud perm

et de stocker plusieurs clés ;

�
G

énéralem
ent, la taille d'un nœ

ud est optim
isée pour coïncider avec la 

taille d'un bloc (ou page) du périphérique, en vue d'économ
iser les 

coûteux accès d'entées sorties.

�
…
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Arbres Binaires de 

Recherche

(Binary Search Trees)
Pr F.Omary

2019-2020

1



Notion d'Arbre binaire de 

recherche

 C'est un arbre binaire particulier :

 Permet d'obtenir un algorithme de recherche proche 

dans l'esprit de la recherche dichotomique ;

 Pour lequel les opérations d'ajout et de suppression d'un 

élément sont aussi efficaces.

 Cet arbre utilise l'existence d'une relation d'ordre sur 

les éléments, représentée par une fonction clé, à 

valeur entière.

2



Arbre binaire de recherche

Définition

 Un arbre binaire de recherche (binary search tree en anglais), en 
abrégé ABR, est un arbre binaire tel que pour tout nœud :

 les clés de tous les noeuds du sous-arbre gauche sont inférieures ou égales à la 
clé du nœud,

 les clés de tous les noeuds du sous-arbre droit sont supérieures à la clé du 
nœud.

 Chaque nœud d'un arbre binaire de recherche désigne un élément 
qui est caractérisé par une clé (prise dans un ensemble totalement 
ordonné) et des informations associées à cette clé. 

 Dans toute illustration d'un arbre binaire de recherche, seules les clés 
sont représentées. On supposera aussi que toute clé identifie de 
manière unique un élément.

3



Arbre binaire de recherche

Exemple

4

L'arbre de la figure 

suivante est un arbre 

binaire de recherche

Cet arbre représente 

l’ensemble :
E = {a, d, e, g, i, l, q, t}

muni de l’ordre alphabétique



Arbre binaire de recherche

Remarque

5

 Plusieurs représentations possibles 

d’un même ensemble par un arbre 

binaire de recherche

 En effet, la structure précise de 

l’arbre binaire de recherche est 

déterminée :

 par l’algorithme d’insertion utilisé,

 et par l’ordre d’arrivée des éléments. 

 Exemple : 

 L’arbre binaire de recherche de la 

figure qui suit représente aussi 

E = {a, d, e, g, i, l, q, t}



Opérations sur les arbres binaires 

de recherche 

 Le type abstrait arbre binaire de recherche, noté 
Arbre_Rech, est décrit de la même manière que le type 

Arbre_Binaire

 On reprend les opérations de base des arbres binaires, 

excepté le fait que dans des arbres binaires de 

recherche, on suppose l'existence de l'opération clé sur 
le type abstrait Element

 On définit, en tenant compte du critère d'ordre, les 

opérations spécifiques de ce type d'arbre concernant :

 la recherche d'un élément dans l'arbre ;

 l'insertion d'un élément dans l'arbre ;

 la suppression d'un élément de l'arbre.

6



Recherche d'un élément 

Principe de l'algorithme : 
 On compare la clé de l'élément cherché à la clé de la 

racine de l'arbre ;

 Si la clé est supérieure à la clé de la racine, on effectue 

une recherche dans le fils droit ; 

 Si la clé est inférieure à la clé de la racine, on effectue 

une recherche dans le fils gauche ; 

 La recherche s'arrête quand on ne peut plus continuer 

(échec) ou quand la clé de l'élément cherché est égale 

à la clé de la racine d'un sous arbre (succès).

7



Recherche d'un élément

Exemple

 
25 

14 

12 17 

22 

50 

43 84 

111 

43>25 

43<50 

43==43 

8

 la figure suivante 

illustre la 

recherche de 
l'élément de clé 

43 dans un arbre 

binaire de 

recherche. 

 Les flèches 

indiquent le 

chemin de la 

recherche



Recherche d'un élément

Spécification

Extension Type Arbre_Rech

Utilise Elément, Booléen

Opérations

Rechercher : Elément x Arbre_Rech → Booléen

Axiomes

Soit, x : Elément, r : Nœud, G, D : Arbre_Rech

Rechercher(x, arbre_vide) = faux

si clé(x) = clé(contenu(r)) 

alors Rechercher(x, <r, G, D>) = vrai

si clé(x) < clé(contenu(r))

alors Rechercher(x, <r, G, D>) = Rechercher(x, 
G)

si clé(x) > clé(contenu(r)) 

alors Rechercher(x, <r, G, D>) = Rechercher(x, 
D)

9



Recherche d'un élément

Réalisation en C

Booleen Rechercher (Arbre_Rech A, Element e) {

if ( est_vide(A) == vrai )

return faux; // e n’est pas dans l’arbre
else {

if ( e == A->val )

return vrai; // e est dans l’arbre
else if ( e < A->val )

// on poursuit la recherche dans le SAG 
du 

// noeud courant

return Rechercher(A->fg , e);

else

// on poursuit la recherche dans le SAD 
du 

// noeud courant

return Rechercher(A->fd , e);

}

}

10



Recherche d'un élément

Autre Spécification

Extension Type Arbre_Rech

Utilise Elément

Opérations

Rechercher : Elément x Arbre_Rech → Arbre_Rech

Axiomes

Soit, x : Elément, r : Nœud, G, D : Arbre_Rech

Rechercher(x, arbre_vide) = arbre_vide

si clé(x) = clé(contenu(r)) 

alors Rechercher(x, <r, G, D>) = <r, G, D>)

si clé(x) < clé(contenu(r))

alors Rechercher(x, <r, G, D>) = Rechercher(x, G)

si clé(x) > clé(contenu(r)) 

alors Rechercher(x, <r, G, D>) = Rechercher(x, D)

11



Ajout d'un élément 

 La technique d'ajout spécifiée ici est dite "ajout en feuille", car 
tout nouvel élément se voit placé sur une feuille de l'arbre

 Le principe est simple :

 si l'arbre initial est vide, le résultat est formé d'un arbre binaire de 

recherche réduit à sa racine, celle-ci contenant le nouvel élément ;

 sinon, l'ajout se fait (récursivement) dans le fils gauche ou le fils droit, 

suivant que l'élément à ajouter est de clé inférieure ou supérieure à 

celle de la racine.

 Remarque : 

 si l'élément à ajouter est déjà dans l'arbre, l'hypothèse d'unicité des 

éléments pour certaines applications fait qu'on ne réalise pas l'ajout

12



Ajout d'un élément

Exemple

13

Les figures suivantes illustrent l'ajout successif 

de e, i, a, t, d, g, q et l dans un arbre binaire 

de recherche, initialement vide 



Ajout "en feuille" d'un élément

Spécification

Extension Type Arbre_Rech

Utilise Elément

Opérations

Ajouter_feuille : Elément x Arbre_Rech → Arbre_Rech

Axiomes

Soit, x : Elément, r : Nœud, G, D : Arbre_Rech

Ajouter_feuille(x, arbre_vide) = <x, arbre_vide, 
arbre_vide>

si clé(x) ≤ clé(contenu(r)) 

alors 

Ajouter_feuille(x, <r, G, D>) = <r, 
Ajouter_feuille(x, G), D>

sinon 

Ajouter_feuille(x, <r, G, D>) = <r, G, 
Ajouter_feuille(x, D)>

14



Ajout "en feuille" d'un élément

Réalisation

fonction Ajouter_feuille(x : Elément, A : Arbre_Rech ) : 
Arbre_Rech

si est_vide(A) alors 

Pnoeud r = nouveau_noeud(x)

si est_vide(r) alors <erreur> 

retourner cons(r, arbre_vide(), arbre_vide())

sinon

si x > contenu(racine(A)) alors 

retourner cons(A, gauche(A), Ajouter_feuille(x, droite(A)))

sinon

Si x< contenu(racine(A) alors

retourner cons(A, Ajouter_feuille(x, gauche(A)) ,droite(A))

fsi

fsi

fsi

ffonction

15



Ajout "en feuille" d'un élément

Réalisation en C

Arbre_Rech Ajouter_feuille(Element x, Arbre_Rech A) {

if (est_vide(A)) {

Pnoeud r = nouveau_noeud(x);

if (r == NULL) {

printf("Erreur : Pas assez de mémoire !\n");

exit(-1);

} 

return cons(r, arbre_vide(), arbre_vide());

}

else

if (x > contenu(racine(A)))  

return cons(A, gauche(A), Ajouter_feuille(x, droite(A)));

else

if (x < contenu (racine(A))// pas d’ajout lorsque x=contenu(A)

return cons(A, Ajouter_feuille(x, gauche(A)), droite(A));

}

16



Suppression d'un élément

 La suppression est délicate :

 Il faut réorganiser l'arbre pour qu'il vérifie la propriété d'un arbre 

binaire de recherche

 La suppression commence par la recherche du nœud qui 

porte l'élément à supprimer. Ensuite, il y a trois cas à 

considérer, selon le nombre de fils du noeud à supprimer :

 si le noeud est sans fils (une feuille), la suppression est immédiate 

;

 si le noeud a un seul fils, on le remplace par ce fils ;

 si le noeud a deux fils (cas général), on choisit de remplacer ce 

nœud, soit par le plus grand élément de son sous arbre gauche 

(son prédécesseur), soit par le plus petit élément de son sous 

arbre droit (son successeur).

17



Suppression d'un élément

Exemple 1

18

La figure qui suit illustre la suppression de la 

feuille qui porte la clé 13 



Suppression d'un élément

Exemple 2

19

 La figure qui suit illustre la suppression du 
nœud qui porte la clé 16

Ce nœud n'a qu'un seul fils ; le sous arbre de 
racine portant la clé 18

Ce sous arbre devient fils gauche du nœud 
qui porte la clé 20 



Suppression d'un élément

Exemple 3

20

 La figure qui suit illustre le cas d'un nœud à deux fils.

 La clé 15 à supprimer se trouve à la racine de l'arbre. La racine 
a deux fils ; on choisit de remplacer sa clé par la clé de son 
prédécesseur.



 Ainsi, la clé 14 est mise à la racine de l'arbre. On est alors 
ramené à la suppression du nœud du prédécesseur. 

 Comme le prédécesseur est le nœud le plus à droite du sous 
arbre gauche, il n'a pas de fils droit, donc il a zéro ou un fils, et 
sa suppression est couverte par les deux premiers cas. 



Suppression d'un élément

Cas général

 On choisit ici de remplacer le noeud à supprimer par son 

prédécesseur (le nœud le plus à droite de son sous arbre gauche)

 On a besoin de deux opérations supplémentaires :

 une opération Max qui retourne l'élément de clé maximale dans un 

arbre binaire de recherche ;

 une opération SupprimerMax qui retourne l'arbre privé de son plus 

grand élément.

21



Suppression d'un élément: Spécification
Extension Type Arbre_Rech

Utilise Elément

Opérations

Max : Arbre_Rech → Elément

SupprimerMax : Arbre_Rech → Arbre_Rech

Supprimer : Elément x Arbre_Rech → Arbre_Rech

Pré-conditions

Max(A) est_défini_ssi est_vide(A) = faux

SupprimerMax(A) est_défini_ssi est_vide(A) = faux

Axiomes

Soit, x : Elément, r : Nœud, G, D : Arbre_Rech

si est_vide(D) = vrai alors Max(<r, G, D>) = r

sinon Max(<r, G, D>) = Max(D)

si est_vide(D) = vrai alors SupprimerMax(<r, G, D>) = G

sinon SupprimerMax(<r, G, D>) = <r, G, SupprimerMax(D)>

Supprimer(x, arbre_vide) = arbre_vide

si clé(x) = clé(contenu(r)) et est_vide(D) = vrai

alors Supprimer(x, <r, G, D>) = G

sinon si clé(x) = clé(contenu(r)) et est_vide(G) = vrai

alors Supprimer(x, <r, arbre_vide, D>) = D 

sinon si clé(x) = clé(contenu(r)) 

alors Supprimer(x, <r, G, D>) = <Max(G),SupprimerMax(G), D>

si clé(x) < clé(contenu(r)) 

alors Supprimer(x, <r, G, D>) = <r, Supprimer(x, G), D>

si clé(x) > clé(contenu(r)) 

alors Supprimer(x, <r, G, D>) = <r, G, Supprimer(x, D)>

22



Suppression d'un élément

Réalisation

fonction Max(A : Arbre_Rech) : Pnoeud

(* A doit être non vide ! *)

si est_vide(droite(A))

alors retourner A

sinon retourner Max(droite(A))

fsi

ffonction

fonction SupprimerMax(A : Arbre_Rech) : Arbre_Rech

(* A doit être non vide ! *)

si est_vide(droite(A)) 

alors 

retourner gauche(A) 

sinon 

retourner cons(A, gauche(A), SupprimerMax(droite(A)))

fsi

ffonction

23

Cette fonction retourne un pointeur 
sur le nœud contenant la plus grand 

élément d'un arbre binaire de 
recherche

Cette fonction supprime le plus grand 
élément d'un arbre binaire de recherche



Suppression d'un élément

Réalisation (suite)

fonction Supprimer(x : Elément, A : Arbre_Rech) : Arbre_Rech

si est_vide(A) alors retourner A   (* ou <erreur> *)

sinon

si x > contenu(racine(A)) alors 

retourner cons(A, gauche(A), Supprimer(x ,droite(A))) 

sinon 

si x < contenu(racine(A)) alors 

retourner cons(A, Supprimer(x, gauche(A)), droite(A))

sinon // x= contenu (racine(A))

si est_vide(droite(A)) alors retourner gauche(A)

sinon 

si est_vide(gauche(A)) alors retourner droite(A)

sinon // ni droite (A) est vide ni gauche(A)

retourner cons(Max(gauche(A)), SupprimerMax(gauche(A)), droite(A))

fsi

fsi

fsi

fsi

fsi

ffonction
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Arbre Binaire de Recherche

Complexité des Opérations

 On montre que, les opérations de 

recherche, insertion et suppression dans un 

arbre binaire de recherche contenant n

éléments sont :

 en moyenne en O(log2(n)) ; 

 dans le pire des cas en O(h) ; 

où h désigne la hauteur de l'arbre

 Si l’arbre est dégénéré, sa hauteur étant n-1, 

ces trois opérations sont en O(n)

 Si l'arbre est équilibré, les opérations sont en 

O(log2(n)) (d'où leur intérêt...)

25



Arbres Maximiers 

ou Tas (Heaps)
26



Notion d'Arbre Maximier (ou 

Tas) 

 Appelé aussi monceau (Heap en anglais)

 C'est un arbre binaire parfait tel que la clé de chaque noeud 
est supérieure ou égale aux clés de tous ses fils 

 L'élément maximum de l'arbre se trouve donc à la racine

 Rappel : 
 Pour un arbre binaire parfait, tous les niveaux sont entièrement 

remplis sauf éventuellement le dernier et, dans ce cas, les feuilles 
du dernier niveau sont regroupées le plus à gauche possible

 Un tas est un arbre binaire partiellement ordonné :
 Les nœuds sur chaque branche sont ordonnés sur celle-ci ;

 Ceux d'un même niveau ne le sont pas nécessairement.

 Un tas dans lequel chaque nœud enfant a une clé inférieure 
(resp., supérieure) ou égale à la clé de son père est appelé 
arbre maximier (max heap) (resp., arbre minimier (max 
heap))

27



Arbre Maximier (ou Tas)

Exemple

28



Type Abstrait Tas

Type Tas

Utilise Booléen, Elément

Opérations

tas_vide : → Tas

est_vide : Tas → Booléen

max : Tas → Elément

ajouter : Tas x Elément → Tas

supprimerMax : Tas → Tas

appartient : Tas x Elément → Booléen

Préconditions 

max(T) est_défini_ssi est_vide(T) = faux

supprimerMax(T) est_défini_ssi est_vide(T) = faux

ajouter(T,e) est_défini_ssi appartient(T,e) = faux

Axiomes

Soit, T, T1 : Tas, e : Elément

si est_vide(T) = vrai alors appartient(T,e) = faux

appartient(T,max(T)) = vrai

si appartient(T,e) = vrai alors max(T) ≥ e

29



Opérations sur un Tas

 tas_vide : → Tas

 Opération d'initialisation; crée un tas vide

 est_vide : Tas → Booléen

 Vérifie si un tas est vide ou non

 max : Tas → Elément

 Retourne le plus grand élément d'un tas

 ajouter : Tas x Elément → Tas

 Ajoute un élément dans un tas

 supprimerMax : Tas → Tas

 Supprime le plus grand élément d'un tas

 appartient : Tas x Elément → Booléen

 Vérifie si un élément appartient ou non à un tas

30



Représentation d'un Tas 

 Il existe une représentation compacte pour les arbres 

binaires parfaits, et donc pour les tas :

 La représentation par tableau, basée sur la numérotation des 
nœuds niveau par niveau et de gauche à droite

 Les numéros d'un nœud sont donc les indices dans un 

tableau. En outre, ce tableau s'organise de la façon suivante 

:

 le noeud racine a pour indice 0 ;

 soit le noeud d’indice i dans le tableau, son fils gauche a pour 
indice 2i +1, et son fils droit a pour indice 2(i+1) ;

 si un nœud a un indice i ≠ 0, alors son père a pour indice 

 On déduit de cette organisation, où n désigne le nombre 

d'éléments du tas, que :

 un nœud d'indice i est une feuille si 2i+1 ≥ n

 un nœud d'indice i a un fis droit si 2(i+1) < n

31
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Représentation d'un Tas

Exemple

32

Un tas avec sa numérotation hiérarchique Représentation du tas par un tableau 



Représentation en C d'un 

Tas

#define MAX_ELEMENTS 200  // taille 
maximum du tas

typedef int Element   // un élément est 
un int

typedef struct {

int taille;  // nombre d'éléments dans le 
tas

Element tableau[MAX]; // les éléments 
du tas

} Tas;

33



Opérations sur un Tas 

Trois opérations 

fondamentales :

Ajout d'un élément ;

Suppression du maximum ;

Recherche du maximum.

34



Opération d'Ajout

Principe :
 Créer un nouveau nœud contenant la clé du nouvel 

élément ;

 Insérer cette clé le plus à gauche possible sur le dernier 

niveau du tas (ou si le dernier niveau est plein, à l'extrême 

gauche d'un nouveau niveau). La nouvelle clé est insérée 

dans la première case non utilisée du tableau ;

 Faire "remonter cette nouvelle clé" à sa place en la 

permutant avec la clé de son père, tant qu'elle est plus 

grande que celle de son père.

35



Opération d'Ajout

Exemple (1)

36

◼ Supposons qu'on veuille insérer la valeur 21 dans le tas représenté ci-

dessous :

◼ On place la valeur 21 juste à droite de la dernière feuille, 

◼ c'est-à-dire dans la case d'indice 10 dans le tableau.



Opération d'Ajout

Exemple (2)

37

◼ On compare 21, la nouvelle donnée insérée, avec la donnée contenue 

dans le nœud père, autrement dit on compare la donnée de la case 

d'indice 10 du tableau avec la donnée de la case d'indice  = 4.

◼ Puisque 21 est plus grand que 5, on les échange.



Opération d'Ajout

Exemple (3)

38

Le nouvel arbre 

binaire obtenu n'est 

pas un tas :
 La valeur 21 du nœud d'indice 4 

est plus grande que la valeur 15 

de son nœud père (d'indice = 1)

 Echanger les contenus des 

nœuds d'indices respectifs 1 et 4 



Opération d'Ajout

Exemple (4)

39

Puisque 21 est plus 

petit que 23 :
 L'opération d'ajout est terminée 

;

 On a bien obtenu un tas.



Opération d'Ajout

Pseudo-code

fonction ajouter(Tas t, Elément e) : Tas

début

i  t.taille

t.taille  i+1

t.tableau[i]  e

tant que ((i > 0) et 

(t.tableau[i] > t.tableau[(i-1) div 2])) 
faire {

échanger(t.tableau[i], t.tableau[(i-1) div 
2]

i  (i-1) div 2

}

retourner (t)

fin
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Opération d'Ajout

Complexité
La complexité de l'opération d'ajout est en 

O(h), où h est la hauteur du tas :

 On ne fait que remonter un chemin ascendant d'une feuille vers la racine (en 

s'arrêtant éventuellement avant). 

 La hauteur d'un tas de taille n est précisément égale à 

et donc l'ajout demande un temps O(log(n)).

41
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Opération de Suppression du 

Maximum

 Principe :

 Remplacer la clé du nœud racine par la clé du nœud situé 

le plus à droite du dernier niveau du tas. Ce dernier nœud 

est alors supprimé ;

 Réorganiser l'arbre, pour qu'il respecte la définition du tas, 

en faisant descendre la clé de l'élément de la racine à sa 

bonne place en permutant avec le plus grand des fils.

42



Opération de Suppression du 

Maximum (Exemple) (1)

43

Supposons qu'on désire supprimer la valeur 

23 contenue dans la racine du tas illustré 

par la figure suivante :



Opération de Suppression du 

Maximum (Exemple) (2)

44

On commence alors par remplacer le contenu du 
nœud racine par celui du dernier nœud du tas :

 Ce dernier nœud est alors supprimé ;

 Ceci est illustré par la figure suivante :



Opération de Suppression du 

Maximum (Exemple) (3)

45

 L'arbre obtenu est parfait mais n'est pas un tas :
 la clé contenue dans la racine a une valeur plus petite que 

les valeurs des clés de ses fils ;

 Cette clé de valeur 2 est alors échangée avec la plus 
grande clé de ses fils, à savoir 15 ;

 L'arbre obtenu est représenté par la figure suivante :



Opération de Suppression du 

Maximum (Exemple) (4)

46

 Encore une fois, cet arbre 

n'est pas un tas. On le 

réorganise pour qu'il 

respecte la définition du tas

◼ Le dernier arbre obtenu est 
bien un tas ; il est illustré par 
la figure suivante :



Opération de Suppression du 

Maximum (Pseudo-code) (1)

 Une version qui utilise la procédure Entasser

 La procédure Entasser :

 permet de faire descendre la valeur en t[i] de manière 

que l'arbre de racine en i devienne un tas ;

 suppose que les sous arbres de racines en 2i+1 (fils 

gauche du nœud en i) et en 2i+2 (fils droit du nœud en i) 

sont des tas.
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Opération de Suppression du 

Maximum (Pseudo-code) (2)

procédure Entasser(Tableau t[0 .. n-1], Entier 
i)

début

si ((2i+2 == n) ou (t[2i+1] ≥ t[2i+2])) alors

k  2i+1

sinon  

k  2i+2

fsi

si t[i] < t[k] alors

échanger (t[i], t[k])

si k  ((n div 2)- 1) alors 

Entasser(t, k)

fsi

fsi

fin
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Opération de Suppression du 

Maximum (Pseudo-code) (3)

fonction supprimerMax (t : tas) : tas

(* le tas t est supposé non vide !! *)

début

t.taille  t.taille – 1

t.tableau[0]  t.tableau[t.taille]

Entasser(t, 0)

retourner (t)

fin
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Opération de Suppression 

du Maximum (Complexité)

 La complexité de la suppression est la même que 

celle de l'insertion, c-à-d O(log(n)) :

 En effet, on ne fait que suivre un chemin descendant 

depuis la racine.
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Opération de Recherche du 

Maximum

(Pseudo-code & Complexité)

 L'opération de recherche du maximum est 
immédiate dans les tas

 Elle prend un temps constant O(1)
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fonction Max (t : tas) : Elément

(* le tas t est supposé non vide !! *)

début

retourner (t.tableau[0])

fin



Exemples d'Applications des Tas 

 Files de priorités (Priority queues) :

 Les tas sont fréquemment utilisés pour implémenter des files de priorités. 

 A l'opposé des files standard, une file de priorités détruit l'élément de plus 
haute (ou plus basse) priorité. 

 La signification de la "priorité" d'un élément  dépend de l'application

 A tout instant, on peut insérer un élément de priorité arbitraire dans une file de 
priorités. Si l'application souhaite la destruction de l'élément de plus haute 
priorité, on utilise un arbre maximier.

 Tri par tas (Heapsort):

 Les opérations sur les tas permettent de résoudre un problème de tri à l’aide 
d’un algorithme appelé tri par tas (heapsort). 

 Cet algorithme a la même complexité temporelle, O(n log(n)), que le tri 
rapide (quicksort). Mais, en pratique, une bonne implémentation de ce 
dernier le bat d'un petit facteur constant.
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Algorithme du Tri par Tas

(Principe)

 Supposons qu'on veut trier, en ordre croissant, un tableau 

T de n éléments. 

 Principe :

 L’algorithme du tri par tas commence, en utilisant la fonction 
ConstruireTas, par construire un tas dans le tableau à trier T ;

 Ensuite, il prend l'élément maximal du tas, qui se trouve en T[0], 
l'échange avec T[n-1], et rétablit la propriété de tas, en utilisant 
l'appel de fonction Entasser(T,0) pour le nouveau tableau à n-1 
éléments (la case T[n-1] n'est pas considérée) ;

 L'algorithme de tri par tas répète ce processus pour le tas de 
taille n-1 jusqu'à la taille 2. 
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Algorithme du Tri par Tas

(Pseudo-code) (1)

fonction Tri_par_Tas(Tableau T[0 .. n-1]) : 
Tableau

début

T  ConstruireTas(T)

pour i  (n-1) à 1 par pas -1 faire

Echanger(T[0], T[i])

n  n-1

Entasser (T, i)

retourner (T)

fin
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ConstruireTas produit un tas 
à partir d'un tableau T

Entasser sert à garantir le maintien de la 
propriété de tas pour l'arbre de racine en i



Algorithme du Tri par Tas

(Pseudo-code) (2)

fonction ConstruireTas(Tableau T[0 .. n-1]) : Tas

début

pour i  ((n div 2) - 1) à 0 par pas -1 faire

Entasser (T, i)

retourner (T)

fin
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Les feuilles sont 
des tas à un 

élément !



ConstruireTas

Exemple (1)

0 1 2 3 4 5 6 7 8 9

T 4 1 3 2 16 9 10 14 8 7
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 Illustration de l'action ConstruireTas sur un 

tableau d'entiers contenant 10 éléments

 Remarquer que les nœuds qui portent les 

valeurs 9, 10, 14, 8 et 7 sont biens des feuilles, et 

donc des tas à un élément.



ConstruireTas: Exemple (2)57



Tri par Tas : Exemple (1)58

 Les figures qui suivent 
illustrent l'action du tri 
par tas après 
construction du tas

Chaque tas est 
montré au début 
d'une itération de la 
boucle 



Tri par Tas : Exemple (2)59

0 1 2 3 4 5 6 7 8 9

T 1 2 3 4 7 8 9 10 14 16

Tableau final : trié



Algorithme du Tri par Tas

Complexité

 On montre que l'appel à ConstruireTas prend un temps 
O(n) 

 Chacun des (n-1) appels à Entasser prend un temps 
O(log(n))

 Par conséquent, l'algorithme du tri par tas s'exécute 
en O(n log(n))
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Introduction aux Arbres 

de Recherche Equilibrés

 (Balanced Search Trees)
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Notion d'Arbres 

de Recherche Equilibrés 

 La définition des arbres équilibrés impose que la différence entre les 

hauteurs des fils gauche et des fils droit de tout noeud ne peut 

excéder 1

 Il faut donc maintenir l'équilibre de tous les noeuds au fur et à 

mesure des opérations d'insertion ou de suppression d'un nœud

 Quand il peut y avoir un déséquilibre trop important entre les deux 

fils d'un noeud, il faut recréer un équilibre par :

 des rotations d'arbres ou par éclatement de nœuds (cas des arbres B)

 Les algorithmes de rééquilibrage sont très compliqués :

 On cite entre autres, quelques exemples d'arbres équilibrés pour les quels les 
opérations de recherche, d’insertion et de suppression sont en O(log(n))
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Arbres de Recherche Equilibrés 

Exemples (1)

Les arbres AVL :
 Introduits par Adelson-Velskii Landis Landis (d'où le nom d'AVL) dans 

les années 60 ; 

 Un arbre AVL est un arbre binaire de recherche stockant une 

information supplémentaire pour chaque noeud : son facteur 

d'équilibre ;

 Le facteur d'équilibre représente la différence des hauteurs entre son 

sous arbre gauche et son sous arbre droit ;

 Au fur et à mesure que des nœuds sont insérés ou supprimés, un 

arbre AVL s'ajuste de lui-même pour que tous ses facteurs 

d'équilibres restent à 0, -1 ou 1.
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Arbres de Recherche Equilibrés 

Exemples (2)

 Les arbres rouges et noirs :

 Des arbres binaires de recherche qui se maintiennent 

eux-mêmes approximativement équilibrés en colorant 

chaque nœud en rouge ou noir ;

 En contrôlant cette information de couleur dans chaque 

noeud, on garantit qu’aucun chemin ne peut être deux 

fois plus long qu'un autre, de sorte que l’arbre reste 

équilibré.
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Arbres de Recherche Equilibrés 

Exemples (3)

 Les B arbres :

 Arbres de recherche équilibrés qui sont conçus pour être 

efficaces sur d'énormes masses de données stockées sur 

mémoires secondaires ; 

 Chaque nœud permet de stocker plusieurs clés ;

 Généralement, la taille d'un nœud est optimisée pour 

coïncider avec la taille d'un bloc (ou page) du périphérique, 

en vue d'économiser les coûteux accès d'entées sorties.

…
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Objectifs

Etudier des structures non 

linéaires

Arbres binaires

Arbres binaires de recherche

Arbres maximiers ou Tas

Arbres équilibrés

2



Contenu

 Introduction

 Terminologie

 Arbres binaires

 Arbres binaires de recherche

 Arbres maximiers ou Tas

 Arbres équilibrés
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Arbres (Trees)
Introduction

4



Notion d'Arbre (Tree)

 Les arbres sont les structures de données les plus 

importantes en informatique

Ce sont des structures non linéaires qui permettent 
d’obtenir des algorithmes plus performants que 

lorsqu’on utilise des structures de données linéaires 

telles que les listes et les tableaux

 Ils permettent une organisation naturelle des 

données
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Notion d'Arbre (Tree)

Exemples
 Organisation des fichiers dans les systèmes 

d'exploitation ;

 Organisation des informations dans un système de bases 
de données ;

 Représentation de la structure syntaxique des 
programmes sources dans les compilateurs ;

 Représentation d'une table de matières ;

 Représentation d'un arbre généalogique ;

 …
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Arbres (Trees)
Terminologie
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Terminologie (1)

 Un arbre est un ensemble d'éléments appelés nœuds (ou sommets),

liés par une relation (dite de "parenté") induisant une structure 

hiérarchique parmi ces nœuds. 

 Un nœud, comme tout élément d'une liste, peut être de n'importe 

quel type.
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Terminologie (1) (suite)

D'une manière plus formelle, une structure 
d'arbre de type de base T est :
 soit la structure vide ;

 soit un noeud de type T, appelé racine, associé à un nombre fini de structures 
d'arbre disjointes du type de base T appelées sous arbres

C'est une définition récursive ; la récursivité est 
une propriété des arbres et des algorithmes 
qui les manipulent

Une liste est un cas particulier des arbres 
(arbre dégénéré), où tout noeud a au plus un 
sous arbre
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Illustration & Exemple

 Pour illustrer une structure 

d'arbre, on modélise le 

plus souvent un nœud 

par une information 

inscrite dans un cercle et 

les liens par des traits.

 Par convention, on 

dessine les arbres avec la 

racine en haut et les 

branches dirigées vers le 

bas. 

10

La racine

Exemple d'arbre formé de 7 

nœuds (des entiers)



Terminologie (2)

La terminologie utilisée dans les structures 

d'arbres est empruntée :
 aux arbres généalogiques :

 Père ;

 Fils ;

 Frère ;

 Descendant ;

 …

 et à la botanique : 

 Feuille ;

 Branche ;

 …
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Terminologie (3)

 Fils (ou enfants) :
 Chaque nœud d'un arbre pointe vers un ensemble éventuellement 

vide d'autres nœuds ; ce sont ses fils (ses enfants). 

 Sur l'exemple précédent, le nœud 5 a deux fils : 1 et 3, le nœud 1 a 
un fils : 4, et le nœud 3 a trois fils : 2, 6 et 7.

 Père :
 Tous les nœuds d'un arbre, sauf un, ont un père et un seul. Un nœud p 

est père du nœud n si et seulement si n est fils de p.

 Par exemple, le père de 2 est 3, celui de 3 et 5.

 Frères :
 Deux nœuds ayant le même père. 

 Les nœuds 2, 6 et 7 sont des frères.

 Racine :
 Le seul nœud sans père. 

 5 est la racine de l'arbre précédent.
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Terminologie (4)

 Feuilles (ou nœuds terminaux, ou nœuds externes) :
 Ce sont des noeuds sans fils. 

 Par exemple, 4, 2, 6 et 7.

 Nœud interne :
 Un noeud qui n'est pas terminal. 

 Par exemple, 1, 3 et 5.

 Degré d'un noeud :
 Le nombre de fils de ce noeud. 

 Sur l'exemple, 5 est de degré deux, 1 est de degré un, 3 est de 
degré trois et les feuilles (4, 2, 6, 7) sont de degré nul.

 Degré d'un arbre (ou arité) :
 Plus grand degré des nœuds de l'arbre. Un arbre de degré n est dit 

n-aire

 Sur l'exemple, l'arbre est un arbre 3-aire.

13



Terminologie (5)
 Taille d'un arbre :

 Le nombre total des nœuds de l'arbre. 

 Sur l'exemple, l'arbre est de taille 7.

 Chemin :
 Une suite de noeuds d'un arbre (n1, n2, …, nk) tel que ni = père(ni+1) pour 1≤i≤k-

1 est appelée chemin entre le nœud n1 et le nœud nk. 

 La longueur d'un chemin est égale au nombre de nœuds qu'il contient moins 
1. 

 Sur l'exemple, le chemin qui mène du nœud 5 au nœud 6 est de longueur 2.

 Branche :
 Un chemin qui commence à la racine et se termine à une feuille.

 Par exemple, les chemins (5, 1, 4), (5, 3, 2), (5, 3, 6) et (5, 3, 7).

 Ancêtre :
 Un nœud A est un ancêtre d'un nœud B s'il existe un chemin de A vers B. 

 Par exemple, les ancêtres de 2 sont 2, 3 et 5

 Descendant :
 Un nœud A est un descendant d'un nœud B s'il existe un chemin de B vers A.

 Sur l'exemple, 5 admet les 7 nœuds de l'arbre comme descendants.
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Terminologie (6)

 Sous arbre :

 Un sous arbre d'un arbre A est constitué de tous les 
descendants d'un nœud quelconque de A. 

 Les ensembles de noeuds {3, 2, 6, 7} et {2} forment deux sous 
arbres de l'exemple précédent.

 Hauteur (ou profondeur, ou niveau) d'un noeud :

 Longueur du chemin qui relie la racine à ce nœud. 

 La racine est elle même de hauteur 0, ses fils sont de hauteur 
1, et les autres noeuds de hauteur supérieure à 1.

 Hauteur d'un arbre :

 Plus grande profondeur des nœuds de l'arbre supposé non 
vide, c'est-à-dire h(A) = Max{h(x) ; x noeud de A}

 L'arbre de l'exemple est de profondeur 2. 

 Par convention, un arbre vide a une hauteur de -1.
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Terminologie (7)

Arbre dégénéré ou filiforme :
 Un arbre dont chaque nœud a au plus au fils 
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Terminologie (7)

Arbre ordonné :
 Un arbre où la position respective des sous arbres reflète une relation 

d'ordre. En d'autres termes, si un nœud a k fils, il existe un 1er fis, un 2ème 

fils, …, et un kème fils.

 Les deux arbres de la figure qui suit sont différents si on les regarde 

comme des arbres ordonnés, mais identiques si on les regarde comme de 

simples arbres.
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Terminologie (8)

 Arbre binaire :

 Un arbre où chaque noeud a au plus deux fils. 

 Quand un nœud de cet arbre a un seul fils, on précise s'il s'agit 
du fils gauche ou du fils droit. 

 La figure qui suit montre un exemple d'arbre binaire dans 
lequel les nœuds contiennent des caractères. 
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Terminologie (9)

Arbre binaire complet :
 Arbre binaire dont chaque niveau est rempli.
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Terminologie (10)

Arbre binaire parfait (ou presque complet) :
 Arbre binaire dont chaque niveau est rempli sauf 

éventuellement le dernier

 Dans ce cas les nœuds terminaux (feuilles) sont groupés 
le plus à gauche possible. 
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Terminologie (11)

 Facteur d'équilibre d'un nœud d'un arbre 
binaire :
 Hauteur du sous arbre partant du fils gauche 

du nœud moins la hauteur du sous arbre 
partant de son fils droit.

 Arbre binaire équilibré (au sens des 
hauteurs) :
 Un arbre binaire tel que pour chaque nœud, 

la valeur absolue du facteur d'équilibre est 
inférieure ou égal à un. 

 Sur l'exemple qui suit, on place à côté de 
chaque nœud son facteur d'équilibre.
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Arbres Binaires 

(Binary Trees)
22



Définition

 Un arbre binaire A est :

 soit vide (A = ( ) ou A = ø), 

 soit de la forme A = <r, A1, A2>, c-à-d composé :

 d'un nœud r appelé racine contenant un élément 

 et de deux arbres binaires disjoints A1 et A2, appelés 
respectivement sous arbre gauche (ou fils gauche) et sous 
arbre droit (ou fils droit).
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Exemple d'arbre binaire24



Type Abstrait Arbre_Binaire

Type Arbre_Binaire

Utilise Noeud, Elément, Booléen

Opérations

arbre_vide : → Arbre_Binaire

est_vide   : Arbre_Binaire → Booléen

cons       : Noeud x Arbre_Binaire x Arbre_Binaire → Arbre_Binaire

racine     : Arbre_Binaire → Noeud

gauche     : Arbre_Binaire → Arbre_Binaire

droite     : Arbre_Binaire → Arbre_Binaire

contenu    : Noeud → Elément

Préconditions

racine(A) est-défini-ssi est_vide(A) = faux

gauche(A) est-défini-ssi est_vide(A) = faux

droite(A) est-défini-ssi est_vide(A) = faux

Axiomes

Soit, r : Nœud, A1, A2 : Arbre_Binaire

racine(<r, A1, A2>) = r

gauche(<r, A1, A2>) = A1

droite(<r, A1, A2>) = A2
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Opérations sur un Arbre 

Binaire (1)
 arbre_vide : → Arbre_Binaire

 opération d'initialisation; crée un arbre binaire vide.

 est_vide : Arbre_Binaire → Booléen

 teste si un arbre binaire est vide ou non.

 cons  : Noeud x Arbre_Binaire x Arbre_Binaire →

Arbre_Binaire

 cons(r,G,D) construit un arbre binaire dont le sous arbre 
gauche est G et le sous arbre droit est D, et r est le nœud 
racine qui contient une donnée de type Elément.

 racine : Arbre_Binaire → Noeud

 si A est un arbre binaire non vide alors racine(A) retourne 
le nœud racine de A, sinon un message d'erreur.
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Opérations sur un Arbre 

Binaire (2)

 gauche : Arbre_Binaire → Arbre_Binaire

 si A est un arbre binaire non vide alors gauche(A) retourne le sous arbre 

gauche de A, sinon un message d'erreur.

 droite : Arbre_Binaire → Arbre_Binaire

 si A est un arbre binaire non vide alors droite(A) retourne le sous arbre 

droit de A, sinon un message d'erreur.

 contenu : Noeud → Elément

 permet d’associer à chaque noeud d'un arbre binaire une information de 

type Elément.
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Opérations Auxiliaires
Extension Type Arbre_Binaire

Utilise Entier, Booléen

Opérations

taille : Arbre_Binaire → Entier

hauteur : Arbre_Binaire → Entier

feuille : Arbre_Binaire → Booléen

Préconditions

Axiomes

Soit, r : Noeud, A1, A2 : Arbre_Binaire

taille(arbre_vide) = 0

taille(<r, A1, A2>) = 1 + taille(A1) + taille(A2)

hauteur(arbre_vide) = -1

si hauteur(A1) > hauteur(A2) alors hauteur(<r, A1, A2>) = 1+hauteur(A1)

sinon hauteur(<r, A1, A2>) = 1 + hauteur(A2)

si est_vide(A) = faux et est_vide(gauche(A)) = vrai 

et est_vide(droit(A)) = vrai

alors feuille(A) = vrai

sinon feuille(A) = faux
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Parcours d'arbre binaire 

 Un parcours d'arbre permet d'accéder à chaque nœud de l'arbre :

 Un traitement (test, affichage, comptage, etc.), dépendant de l’application 

considérée, est effectué sur l’information portée par chaque nœud

 Chaque parcours de l'arbre définit un ordre sur les nœuds

 On distingue :

 Les parcours de gauche à droite (le fils gauche d'un nœud précède le fils 

droit) ;

 Les parcours de droite à gauche (le fils droit d'un nœud précède le fils 

gauche).

 On ne considèrera que les parcours de gauche à droite

 On distingue aussi deux catégories de parcours d'arbres : 

 Les parcours en profondeur ;

 Les parcours en largeur. 
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Parcours en profondeur

 Soit un arbre binaire A = <r, A1, A2>

 On définit trois parcours en profondeur de cet arbre :

 Le parcours préfixe ;

 Le parcours infixe ou symétrique ;

 Le parcours postfixe ou suffixe.
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Parcours en profondeur

Parcours préfixe
 En abrégé RGD (Racine, Gauche, Droit)

 Consiste à effectuer dans l'ordre :

 Le traitement de la racine r ;

 Le parcours préfixe du sous arbre gauche A1 ;

 Le parcours préfixe du sous arbre droit A2.

 L'ordre correspondant s'appelle l'ordre préfixe
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Parcours en profondeur

Parcours infixe ou symétrique
 En abrégé GRD (Gauche, Racine, Droit)

 Consiste à effectuer dans l'ordre :

 Le parcours infixe du sous arbre gauche A1 ;

 Le traitement de la racine r ;

 Le parcours infixe du sous arbre droit A2.

 L'ordre correspondant s'appelle l'ordre infixe

32



Parcours en profondeur

parcours postfixe ou suffixe

 En abrégé GDR (Gauche, Droit, Racine)

 Consiste à effectuer dans l'ordre :

 Le parcours postfixe du sous arbre gauche A1 ;

 Le parcours postfixe du sous arbre droit A2 ;

 Le traitement de la racine r.

 L'ordre correspondant s'appelle l'ordre suffixe
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Exemple de Parcours en profondeur

(affichage du contenu des nœuds)
34

Le parcours préfixe affiche les nœuds dans l'ordre : 1, 2, 4, 5, 3, 6, 8, 9, 12, 13, 7, 10, 11
Le parcours infixe affiche les nœuds dans l'ordre : 4, 2, 5, 1, 8, 6, 12, 9, 13, 3, 10, 7, 11
Le parcours postfixe affiche les nœuds dans l'ordre : 4, 5, 2, 8, 12, 13, 9, 6, 10, 11, 7, 3, 1



Parcours en largeur

 On explore les noeuds :

 niveau par niveau, 

 de gauche à droite, 

 en commençant par la racine. 

 Exemple : 

 Le parcours en largeur de l'arbre de la figure précédente 

affiche la séquence d'entiers suivante : 1, 2, 3, 4, 5, 6, 7, 

8, 9, 10, 11, 12, 13

35



Représentations d'un arbre 

binaire

 Représentation par tableau (par contiguïté)

 Représentation par pointeurs (par chaînage) 
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Représentation contiguë d'un 

arbre binaire
On caractérise un arbre binaire par :

 sa taille (nombre de nœuds) ;

 sa racine (indice de son emplacement dans le tableau de nœuds) 

 un tableau de nœuds. 

Chaque nœud contient trois données : 
 une information de type Elément ;

 deux entiers (indices dans le tableau désignant respectivement 
l'emplacement des fils gauche et droit du nœud). 
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Représentation contiguë d'un 

arbre binaire

#define NB_MAX_NOEUDS 15

typedef int Element;

typedef struct noeud {

Element val;

int fg;

int fd;

} Noeud;

typedef Noeud TabN[Nb_MAX_NOEUDS];

typedef struct arbre {

int nb_noeuds;

int racine;

TabN les_noeuds;

} Arbre_Binaire
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Exemple de Représentation contiguë
39

 a 

 

c 

 

d 

 

b 

 

e 

 

f 

 

g 

 

k 

 

l 

 

m 

 

10 2   0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

val  d a g b c  f m e l  k   

fg  -1 4 -1 1 12  -1 -1 7 8  -1   

n
b

_
n

o
e
u

d
s
 

r
a

c
in

e
 

le
s
_

n
o

e
u

d
s
 

fd  9 5 -1 -1 10  -1 -1 3 -1  -1   

 



Autre représentation contiguë d'un arbre 

binaire

 Repose sur l'ordre hiérarchique (numérotation des 
nœuds niveau par niveau et de gauche à droite)

 On rappelle que pour stocker un arbre binaire de 
hauteur h, il faut un tableau de 2h+1-1 éléments 

 On organise le tableau de la façon suivante : 

 Le noeud racine a pour indice 0 (en langage C) ;

 Soit le noeud d’indice i dans le tableau, son fils gauche a 
pour indice 2i +1, et son fils droit a pour indice 2(i+1).

 Représentation idéale pour les arbres binaires 
parfaits. En effet, elle ne gaspille pas d'espace. 
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Autre représentation contiguë d'un 

arbre binaire (Exemples)

 
a 

 

c 

 

d 

 

b 

 

f 

 

k 

 

l 

 

h 
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a  b    d        f 
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a b c d h k l f 
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Représentation chaînée d'un 

arbre binaire

Chaque nœud a trois champs :
 val (l'élément stocké dans le noeud) ;

 fg (pointeur sur fils gauche) ;

 fd (pointeur sur fils droit).

Un arbre est désigné par un pointeur sur sa 
racine

Un arbre vide est représenté par le pointeur 
NULL
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Représentation chaînée en C d'un arbre 

binaire

typedef int Element;

typedef struct noeud *Pnoeud;

typedef struct noeud {

Element val;

Pnoeud fg;

Pnoeud fd;

} Noeud;

typedef Noeud *Arbre_Binaire;
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Exemple de Représentation chaînée 

d'un arbre binaire44

 a 
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b 
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k 

 

l 

 

m 

 



Réalisation chaînée  d'un arbre binaire

Arbre_Binaire arbre_vide() {

return NULL;

}

Booleen est_vide(Arbre_Binaire A) {

return A == NULL ;

}

Pnoeud nouveau_noeud(Element e) {

// faire une allocation mémoire et placer l'élément e

// en cas d'erreur d'allocation, le pointeur renvoyé est 
NULL

Pnoeud p = (Pnoeud) malloc(sizeof(Noeud));

if (p != NULL) {

p->val = e;

p->fg = NULL;

p->fd = NULL;

}

return (p);

}
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Réalisation chaînée d'un arbre binaire
46

Arbre_Binaire cons(Noeud *r, 

Arbre_Binaire G, 

Arbre_Binaire D) {

r->fg = G ;

r->fd = D ;

return r ;

}

Noeud racine(Arbre_Binaire A) {

// précondition : A est non vide !

if (estvide(A)) {

printf("Erreur : Arbre vide !\n");

exit(-1);

}

return (*A) ;

}

Arbre_Binaire gauche(Arbre_Binaire A) {

// précondition : A est non vide !

if (estvide(A)) {

printf("Erreur : Arbre vide !\n");

exit(-1);

}

return A->fg ; /* ou bien (*A).fg; */ 

}

Arbre_Binaire droite(Arbre_Binaire A) {

// précondition : A est non vide !

if (estvide(A)) {

printf("Erreur : Arbre vide !\n");

exit(-1);

}

return A->fd ; /* ou bien (*A).fd; */ 

}

Element contenu(Noeud n) {

return n.val;

}



Exemples d'Applications d'Arbre 

Binaire

 Recherche dans un ensemble de valeurs : 
 Les arbres binaires de recherche ;

 Tri d’un ensemble de valeurs : 
 Le parcours GRD d’un arbre binaire de recherche ;

 Un algorithme de tri efficace utilisant une structure de tas ;

 Représentation d’une expression arithmétique :

 Un parcours GDR pour avoir une notation postfixée ;

 Méthodes de compression :
 Le codage de Huffman utilisant des arbres binaires ;

 La compression d’images utilisant des quadtrees (arbres quaternaires, 
ou chaque nœud non feuille a exactement quatre fils) ;

 …
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Arbres de Recherche Equilibrés 

Exemples (3)

Les B arbres :
 Arbres de recherche équilibrés qui sont conçus pour être efficaces sur 

d'énormes masses de données stockées sur mémoires secondaires ; 

 Chaque nœud permet de stocker plusieurs clés ;

 Généralement, la taille d'un nœud est optimisée pour coïncider avec la 

taille d'un bloc (ou page) du périphérique, en vue d'économiser les 

coûteux accès d'entées sorties.

…
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Arbres Binaires de 
Recherche
(Binary Search Trees)
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2019-2020
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N
otion d

'A
rbre binaire d

e 
recherche
�

C
'est un arbre binaire particulier :
�

Perm
et d'obtenir un algorithm

e de recherche proche 
dans l'esprit de la recherche dichotom

ique ;

�
Pour lequel les opérations d'ajout et de suppression d'un 
élém

ent sont aussi efficaces.

�
C

et arbre utilise l'existence d'une relation d'ordre sur 
les élém

ents, représentée par une fonction clé, à 
valeur entière.

2



A
rbre binaire d

e recherche
D

éfinition
�

Un arbre binaire de recherche (binary
search

tree
en anglais), en 

abrégé A
BR, est un arbre binaire tel que pour tout nœ

ud :
�

les clés de tous les noeudsdu sous-arbre gauche sont inférieures ou égales à la 
clé du nœ

ud,

�
les clés de tous les noeudsdu sous-arbre droit sont supérieures à la clé du 
nœ

ud.

�
C

haque nœ
ud d'un arbre binaire de recherche désigne un élém

ent 
qui est caractérisé par une clé (prise dans un ensem

ble totalem
ent 

ordonné) et des inform
ations associées à cette clé. 

�
Dans toute illustration d'un arbre binaire de recherche, seules les clés 
sont représentées. O

n supposera aussi que toute clé identifie de 
m

anière unique un élém
ent.
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A
rbre binaire d

e recherche
Exem

ple
4

�
L'arbre de la figure 
suivante est un arbre 
binaire de recherche

�
C

et arbre représente 
l’ensem

ble :
E = {a, d, e, g, i, l, q, t}

m
uni de l’ordre alphabétique



A
rbre binaire d

e recherche
Rem

arque
5

�
Plusieurs représentations possibles 
d’un m

êm
e ensem

ble par un arbre 
binaire de recherche

�
En effet, la structure précise de 
l’arbre binaire de recherche est 
déterm

inée :
�

par l’algorithm
e d’insertion utilisé,

�
et par l’ordre d’arrivée des élém

ents. 

�
Exem

ple : 
�

L’arbre binaire de recherche de la 
figure qui suit représente aussi 

E = {a, d, e, g, i, l, q, t}



O
péra

tions sur les arbres binaires 
d

e recherche 

�
Le type abstrait arbre binaire de recherche, noté 
A
r
b
r
e
_
R
e
c
h, est décrit de la m

êm
e m

anière que le type 
A
r
b
r
e
_
B
i
n
a
i
r
e

�
O

n reprend les opérations de base des arbres binaires, 
excepté le fait que dans des arbres binaires de 
recherche, on suppose l'existence de l'opération clé sur 
le type abstrait E

l
e
m
e
n
t

�
O

n définit, en tenant com
pte du critère d'ordre, les 

opérations spécifiques de ce type d'arbre concernant :
�

la recherche d'un élém
ent dans l'arbre ;

�
l'insertion d'un élém

ent dans l'arbre ;

�
la suppression d'un élém

ent de l'arbre.
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Recherche d
'un élém

ent 

�
Principe de l'algorithm

e : 
�

O
n com

pare la clé de l'élém
ent cherché à la clé de la 

racine de l'arbre ;

�
Si la clé est supérieure à la clé de la racine, on effectue 
une recherche dans le fils droit ; 

�
Si la clé est inférieure à la clé de la racine, on effectue 
une recherche dans le fils gauche ; 

�
La recherche s'arrête quand on ne peut plus continuer 
(échec) ou quand la clé de l'élém

ent cherché est égale 
à la clé de la racine d'un sous arbre (succès).
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Recherche d
'un élém

ent
Exem

ple

 
25 

14 

12 
17 

22 

50 

43 
84 

111 

43>25 

43<50 

43==43 

8

�
la figure suivante 
illustre la 
recherche de 
l'élém

ent de clé 
43 dans un arbre 
binaire de 
recherche. 

�
Les flèches 
indiquent le 
chem

in de la 
recherche



Recherche d
'un élém

ent
Spécification

E
x
t
e
n
s
i
o
n

T
y
p
e
 
A
r
b
r
e
_
R
e
c
h

U
t
i
l
i
s
e

E
l
é
m
e
n
t
,
 
B
o
o
l
é
e
n

O
p
é
r
a
t
i
o
n
s

R
e
c
h
e
r
c
h
e
r
 :
 
E
l
é
m
e
n
t
 x
 
A
r
b
r
e
_
R
e
c
h
→

B
o
o
l
é
e
n

A
x
i
o
m
e
s

S
o
i
t
,
 
x
 
:
 
E
l
é
m
e
n
t
,
 
r
 
:
 
N
œ
u
d
,
 
G
,
 
D
 
:
 
A
r
b
r
e
_
R
e
c
h

R
e
c
h
e
r
c
h
e
r
(
x
,
 
a
r
b
r
e
_
v
i
d
e
)
 
=
 
f
a
u
x

s
i
 
c
l
é
(
x
)
 
=
 
c
l
é
(
c
o
n
t
e
n
u
(
r
)
)
 

a
l
o
r
s
 
R
e
c
h
e
r
c
h
e
r
(
x
,
 
<
r
,
 
G
,
 
D
>
)
 
=
 
v
r
a
i

s
i
 
c
l
é
(
x
)
 
<
 
c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s 
R
e
c
h
er
ch
e
r(
x,
 
<
r,
 G
,
 D
>)
 
=
 R
ec
h
er
ch
e
r
(x
,
 

G
)

s
i
 
c
l
é
(
x
)
 
>
 
c
l
é
(
c
o
n
t
e
n
u
(
r
)
)
 

a
l
o
r
s
 
R
e
c
h
e
r
c
h
e
r
(
x
,
 
<
r
,
 
G
,
 
D
>
)
 
=
 
R
e
c
h
e
r
c
h
e
r
(
x
,
 

D
)
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Recherche d
'un élém

ent
Réalisation en C

B
o
o
l
e
e
n

R
e
c
h
e
r
c
h
e
r
 
(
A
r
b
r
e
_
R
e
c
h

A
,
 
E
l
e
m
e
n
t

e
)
 
{

i
f
 
(
 
e
s
t
_
v
i
d
e
(
A
)
 
=
=
 
v
r
a
i
 
)

r
e
t
u
r
n
 
f
a
u
x
;
 
/
/
 
e
 
n’e

s
t
 
p
a
s
 
d
a
n
s
 
l’a

r
b
r
e

e
l
s
e
 
{

i
f
 
(
 
e
 
=
=
 
A
-
>
v
a
l

)
r
e
t
u
r
n
 
v
r
a
i
;
 
/
/
 
e
 
e
s
t
 
d
a
n
s
 
l’a

r
b
r
e

e
l
s
e
 
i
f
 
(
 
e
 
<
 
A
-
>
v
a
l
)

/
/
 
o
n
 
p
o
u
r
s
u
i
t
 
l
a
 
r
e
c
h
e
r
c
h
e
 
d
a
n
s
 
l
e
 
S
A
G
 

d
u
 

/
/
 
n
o
e
u
d

c
o
u
r
a
n
t

r
e
t
u
r
n
 
R
e
c
h
e
r
c
h
e
r
(
A
-
>
f
g
,
 
e
)
;

e
l
s
e/
/
 
o
n
 
p
o
u
r
s
u
i
t
 
l
a
 
r
e
c
h
e
r
c
h
e
 
d
a
n
s
 
l
e
 
S
A
D
 

d
u
 

/
/
 
n
o
e
u
d

c
o
u
r
a
n
t

r
e
t
u
r
n
 
R
e
c
h
e
r
c
h
e
r
(
A
-
>
f
d
,
 
e
)
;

}
}
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Recherche d
'un élém

ent
A

utre Spécification

E
x
t
e
n
s
i
o
n

T
y
p
e
 
A
r
b
r
e
_
R
e
c
h

U
t
i
l
i
s
e

E
l
é
m
e
n
t

O
p
é
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a
t
i
o
n
s

R
e
c
h
e
r
c
h
e
r
 
:
 
E
l
é
m
e
n
t
 
x
 
A
r
b
r
e
_
R
e
c
h
 
→

A
r
b
r
e
_
R
e
c
h

A
x
i
o
m
e
s

S
o
i
t
,
 
x
 
:
 
E
l
é
m
e
n
t
,
 
r
 
:
 
N
œ
u
d
,
 
G
,
 
D
 
:
 
A
r
b
r
e
_
R
e
c
h

R
e
c
h
e
r
c
h
e
r
(
x
,
 
a
r
b
r
e
_
v
i
d
e
)
 
=
 
a
r
b
r
e
_
v
i
d
e

s
i
 
c
l
é
(
x
)
 
=
 
c
l
é
(
c
o
n
t
e
n
u
(
r
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)
 

a
l
o
r
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R
e
c
h
e
r
c
h
e
r
(
x
,
 
<
r
,
 
G
,
 
D
>
)
 
=
 
<
r
,
 
G
,
 
D
>
)

s
i
 
c
l
é
(
x
)
 
<
 
c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s
 
R
e
c
h
e
r
c
h
e
r
(
x
,
 
<
r
,
 
G
,
 
D
>
)
 
=
 
R
e
c
h
e
r
c
h
e
r
(
x
,
 
G
)

s
i
 
c
l
é
(
x
)
 
>
 
c
l
é
(
c
o
n
t
e
n
u
(
r
)
)
 

a
l
o
r
s
 
R
e
c
h
e
r
c
h
e
r
(
x
,
 
<
r
,
 
G
,
 
D
>
)
 
=
 
R
e
c
h
e
r
c
h
e
r
(
x
,
 
D
)
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A
jout d

'un élém
ent 

�
La technique d'ajout spécifiée ici est dite "ajout en feuille", car 
tout nouvel élém

ent se voit placé sur une feuille de l'arbre

�
Le principe est sim

ple :
�

si l'arbre initial est vide, le résultat est form
é d'un arbre binaire de 

recherche réduit à sa racine, celle-ci contenant le nouvel élém
ent ;

�
sinon, l'ajout se fait (récursivem

ent) dans le fils gauche ou le fils droit, 
suivant que l'élém

ent à ajouter est de clé inférieure ou supérieure à 
celle de la racine.

�
Rem

arque : 
�

si l'élém
ent à ajouter est déjà dans l'arbre, l'hypothèse d'unicité des 

élém
ents pour certaines applications fait qu'on ne réalise pas l'ajout
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A
jout d

'un élém
ent

Exem
ple

13�
Les figures suivantes illustrent l'ajout successif 
de e, i, a, t, d, g, q et l dans un arbre binaire 
de recherche, initialem

ent vide 



A
jout "en feuille" d

'un élém
ent

Spécification
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R
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u
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R
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→
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R
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R
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u
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d
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d
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c
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u
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u
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u
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A
jout "en feuille" d

'un élém
ent

Réa
lisation
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A
jout "en feuille" d

'un élém
ent

Réalisation en C

A
r
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{
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;
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v
i
d
e
(
)
,
 
a
r
b
r
e
_
v
i
d
e
(
)
)
;

}e
l
s
e

i
f
 
(
x
 
>
 
c
o
n
t
e
n
u
(
r
a
c
i
n
e
(
A
)
)
)
 
 

r
e
t
u
r
n
 
c
o
n
s
(
A
,
 
g
a
u
c
h
e
(
A
)
,
 
A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x
,
 
d
r
o
i
t
e
(
A
)
)
)
;

e
l
s
e

i
f
 
(
x
 
<
 
c
o
n
t
e
n
u
 
(
r
a
c
i
n
e
(
A
)
)
/
/
 
p
a
s
 
d
’
a
j
o
u
t
 
l
o
r
s
q
u
e
 
x
=
c
o
n
t
e
n
u
(
A
)

r
e
t
u
r
n
 
c
o
n
s
(
A
,
 
A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x
,
 
g
a
u
c
h
e
(
A
)
)
,
 
d
r
o
i
t
e
(
A
)
)
;

}

16



Suppression d
'un élém

ent

�
La suppression est délicate :
�

Il faut réorganiser l'arbre pour qu'il vérifie la propriété d'un arbre 
binaire de recherche

�
La suppression com

m
ence par la recherche du nœ

ud qui 
porte l'élém

ent à supprim
er. Ensuite, il y a trois cas à 

considérer, selon le nom
bre de fils du noeud

à supprim
er :

�
si le noeud

est sans fils (une feuille), la suppression est im
m

édiate 
;

�
si le noeud

a un seul fils, on le rem
place par ce fils ;

�
si le noeud

a deux fils (cas général), on choisit de rem
placer ce 

nœ
ud, soit par le plus grand élém

ent de son sous arbre gauche 
(son prédécesseur), soit par le plus petit élém

ent de son sous 
arbre droit (son successeur).

17



Suppression d
'un élém

ent
Exem

ple 1
18�

La figure qui suit illustre la suppression de la 
feuille qui porte la clé 13 



Suppression d
'un élém

ent
Exem

ple 2
19�

La figure qui suit illustre la suppression du 
nœ

ud qui porte la clé 16

�
C

e nœ
ud n'a qu'un seul fils ; le sous arbre de 

racine portant la clé 18

�
C

e sous arbre devient fils gauche du nœ
ud 

qui porte la clé 20 



Suppression d
'un élém

ent
Exem

ple 3
20

�
La figure qui suit illustre le cas d'un nœ

ud à deux fils.

�
La clé 15 à supprim

er se trouve à la racine de l'arbre. La racine 
a deux fils ; on choisit de rem

placer sa clé par la clé de son 
prédécesseur.

�

�
A

insi, la clé 14 est m
ise à la racine de l'arbre. O

n est alors 
ram

ené à la suppression du nœ
ud du prédécesseur. 

�
C

om
m

e le prédécesseur est le nœ
ud le plus à droite du sous 

arbre gauche, il n'a pas de fils droit, donc il a zéro ou un fils, et 
sa suppression est couverte par les deux prem

iers cas. 



Suppression d
'un élém

ent
C

a
s général

�
O

n choisit ici de rem
placer le noeud à supprim

erpar son 
prédécesseur (le nœ

ud le plus à droite de son sous arbre gauche)

�
O

n a besoin de deux opérations supplém
entaires :

�
une opération M

a
x

qui retourne l'élém
ent de clé m

axim
ale dans un 

arbre binaire de recherche ;
�

une opération Su
p
p
r
i
m
e
r
M
a
x

qui retourne l'arbre privé de son plus 
grand élém

ent.

21



Suppression d
'un élém

ent: Spécification
E
x
t
e
n
s
i
o
n
 
T
y
p
e

A
r
b
r
e
_
R
e
c
h

U
t
i
l
i
s
e
 
E
l
é
m
e
n
t

O
p
é
r
a
t
i
o
n
s

M
a
x
 

:
 
A
r
b
r
e
_
R
e
c
h
→

E
l
é
m
e
n
t

S
u
p
p
r
i
m
e
r
M
a
x

:
 
A
r
b
r
e
_
R
e
c
h
→

A
r
b
r
e
_
R
e
c
h

S
u
p
p
r
i
m
e
r

:
 
E
l
é
m
e
n
t
 
x
 
A
r
b
r
e
_
R
e
c
h
→

A
r
b
r
e
_
R
e
c
h

P
r
é
-
c
o
n
d
i
t
i
o
n
s

M
a
x
(
A
)
 
e
s
t
_
d
é
f
i
n
i
_
s
s
i

e
s
t
_
v
i
d
e
(
A
)
 
=
 
f
a
u
x

S
u
p
p
r
i
m
e
r
M
a
x
(
A
)
 
e
s
t
_
d
é
f
i
n
i
_
s
s
i

e
s
t
_
v
i
d
e
(
A
)
 
=
 
f
a
u
x

A
x
i
o
m
e
s

S
o
i
t
,
 
x
 
:
 
E
l
é
m
e
n
t
,
 
r
 
:
 
N
œ
u
d
,
 
G
,
 
D
 
:
 
A
r
b
r
e
_
R
e
c
h

s
i
 
e
s
t
_
v
i
d
e
(
D
)
 
=
 
v
r
a
i
 
a
l
o
r
s
 
M
a
x
(
<
r
,
 
G
,
 
D
>
)
 
=
 
r

s
i
n
o
n
 
M
a
x
(
<
r
,
 
G
,
 
D
>
)
 
=
 
M
a
x
(
D
)

s
i
 
e
s
t
_
v
i
d
e
(
D
)
 
=
 
v
r
a
i
 
a
l
o
r
s
 
S
u
p
p
r
i
m
e
r
M
a
x
(
<
r
,
 
G
,
 
D
>
)
 
=
 
G

s
i
n
o
n
 
S
u
p
p
r
i
m
e
r
M
a
x
(
<
r
,
 
G
,
 
D
>
)
 
=
 
<
r
,
 
G
,
 
S
u
p
p
r
i
m
e
r
M
a
x
(
D
)
>

S
u
p
p
r
i
m
e
r
(
x
,
 
a
r
b
r
e
_
v
i
d
e
)
 
=
 
a
r
b
r
e
_
v
i
d
e

s
i
 
c
l
é
(
x
)
 
=
 
c
l
é
(
c
o
n
t
e
n
u
(
r
)
)
 
e
t
 
e
s
t
_
v
i
d
e
(
D
)
 
=
 
v
r
a
i

a
l
o
r
s
 
S
u
p
p
r
i
m
e
r
(
x
,
 
<
r
,
 
G
,
 
D
>
)
 
=
 
G

s
i
n
o
n
 
s
i
 
c
l
é
(
x
)
 
=
 
c
l
é
(
c
o
n
t
e
n
u
(
r
)
)
 
e
t
 
e
s
t
_
v
i
d
e
(
G
)
 
=
 
v
r
a
i

a
l
o
r
s
 
S
u
p
p
r
i
m
e
r
(
x
,
 
<
r
,
 
a
r
b
r
e
_
v
i
d
e
,
 
D
>
)
 
=
 
D
 

s
i
n
o
n
 
s
i
 
c
l
é
(
x
)
 
=
 
c
l
é
(
c
o
n
t
e
n
u
(
r
)
)
 

a
l
o
r
s
 
S
u
p
p
r
i
m
e
r
(
x
,
 
<
r
,
 
G
,
 
D
>
)
 
=
 
<
M
a
x
(
G
)
,
S
u
p
p
r
i
m
e
r
M
a
x
(
G
)
,
 
D
>

s
i
 
c
l
é
(
x
)
 
<
 
c
l
é
(
c
o
n
t
e
n
u
(
r
)
)
 

a
l
o
r
s
 
S
u
p
p
r
i
m
e
r
(
x
,
 
<
r
,
 
G
,
 
D
>
)
 
=
 
<
r
,
 
S
u
p
p
r
i
m
e
r
(
x
,
 
G
)
,
 
D
>

s
i
 
c
l
é
(
x
)
 
>
 
c
l
é
(
c
o
n
t
e
n
u
(
r
)
)
 

a
l
o
r
s
 
S
u
p
p
r
i
m
e
r
(
x
,
 
<
r
,
 
G
,
 
D
>
)
 
=
 
<
r
,
 
G
,
 
S
u
p
p
r
i
m
e
r
(
x
,
 
D
)
>
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Suppression d
'un élém

ent
Réa

lisation

f
o
n
c
t
i
o
n
 
M
a
x
(
A
 
:
 
A
r
b
r
e
_
R
e
c
h
)
 
:
 
P
n
o
e
u
d

(
*
 
A
 
d
o
i
t
 
ê
t
r
e
 
n
o
n
 
v
i
d
e
 
!
 
*
)

s
i
 
e
s
t
_
v
i
d
e
(
d
r
o
i
t
e
(
A
)
)

a
l
o
r
s
 
r
e
t
o
u
r
n
e
r
 
A

s
i
n
o
n
 
r
e
t
o
u
r
n
e
r
 
M
a
x
(
d
r
o
i
t
e
(
A
)
)

f
s
i

f
f
o
n
c
t
i
o
n

f
o
n
c
t
i
o
n
 
S
u
p
p
r
i
m
e
r
M
a
x
(
A
 
:
 
A
r
b
r
e
_
R
e
c
h
)
 
:
 
A
r
b
r
e
_
R
e
c
h

(
*
 
A
 
d
o
i
t
 
ê
t
r
e
 
n
o
n
 
v
i
d
e
 
!
 
*
)

s
i
 
e
s
t
_
v
i
d
e
(
d
r
o
i
t
e
(
A
)
)
 

a
l
o
r
s
 

r
e
t
o
u
r
n
e
r
 
g
a
u
c
h
e
(
A
)
 

s
i
n
o
n
 

r
e
t
o
u
r
n
e
r
 
c
o
n
s
(
A
,
 
g
a
u
c
h
e
(
A
)
,
 
S
u
p
p
r
i
m
e
r
M
a
x
(
d
r
o
i
t
e
(
A
)
)
)

f
s
i

f
f
o
n
c
t
i
o
n

23

C
ette fonction retourne un pointeur 

sur le nœ
ud contenant la plus grand 

élém
ent d'un arbre binaire de 

recherche

C
ette fonction supprim

e le plus grand 
élém

ent d'un arbre binaire de recherche



Suppression d
'un élém

ent
Réalisation (suite)

f
o
n
c
t
i
o
n
 
S
u
p
p
r
i
m
e
r
(
x
 
:
 
E
l
é
m
e
n
t
,
 
A
 
:
 
A
r
b
r
e
_
R
e
c
h
)
 
:
 
A
r
b
r
e
_
R
e
c
h

s
i
 
e
s
t
_
v
i
d
e
(
A
)
 
a
l
o
r
s
 
r
e
t
o
u
r
n
e
r
 
A
 
 
 
(
*
 
o
u
 
<
e
r
r
e
u
r
>
 
*
)

s
i
n
o
n

s
i
 
x
 
>
 
c
o
n
t
e
n
u
(
r
a
c
i
n
e
(
A
)
)
 
a
l
o
r
s
 

r
e
t
o
u
r
n
e
r
 
c
o
n
s
(
A
,
 
g
a
u
c
h
e
(
A
)
,
 
S
u
p
p
r
i
m
e
r
(
x
 
,
d
r
o
i
t
e
(
A
)
)
)
 

s
i
n
o
n
 

s
i
 
x
 
<
 
c
o
n
t
e
n
u
(
r
a
c
i
n
e
(
A
)
)
 
a
l
o
r
s
 

r
e
t
o
u
r
n
e
r
 
c
o
n
s
(
A
,
 
S
u
p
p
r
i
m
e
r
(
x
,
 
g
a
u
c
h
e
(
A
)
)
,
 
d
r
o
i
t
e
(
A
)
)

s
i
n
o
n
 
/
/
 
x
=
 
c
o
n
t
e
n
u
 
(
r
a
c
i
n
e
(
A
)
)

s
i
 
e
s
t
_
v
i
d
e
(
d
r
o
i
t
e
(
A
)
)
 
a
l
o
r
s
 
r
e
t
o
u
r
n
e
r
 
g
a
u
c
h
e
(
A
)

s
i
n
o
n
 

s
i
 
e
s
t
_
v
i
d
e
(
g
a
u
c
h
e
(
A
)
)
 
a
l
o
r
s
 
r
e
t
o
u
r
n
e
r
 
d
r
o
i
t
e
(
A
)

s
i
n
o
n
 
/
/
 
n
i
 
d
r
o
i
t
e
 
(
A
)
 
e
s
t
 
v
i
d
e
 
n
i
 
g
a
u
c
h
e
(
A
)

r
e
t
o
u
r
n
e
r
 
c
o
n
s
(
M
a
x
(
g
a
u
c
h
e
(
A
)
)
,
 
S
u
p
p
r
i
m
e
r
M
a
x
(
g
a
u
c
h
e
(
A
)
)
,
 
d
r
o
i
t
e
(
A
)
)

f
s
i

f
s
i

f
s
i

f
s
i

f
s
i

f
f
o
n
c
t
i
o
n
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A
rbre Binaire d

e Recherche
C

om
plexité d

es O
pérations

�
O

n m
ontre que, les opérations de 

recherche, insertion et suppression dans un 
arbre binaire de recherche contenant n
élém

ents sont :
�

en m
oyenne en O

(log
2 (n)) ; 

�
dans le pire des cas en O

(h) ; 

où h désigne la hauteur de l'arbre

�
Si l’arbre est dégénéré, sa hauteur étant n-1, 
ces trois opérations sont en O

(n)

�
Si l'arbre est équilibré, les opérations sont en 
O

(log
2 (n)) (d'où leur intérêt...)

25



A
rbres M

axim
iers 

ou Tas (Heaps)
26



N
otion d

'A
rbre M

a
xim

ier (ou 
Tas) 
�

A
ppelé aussi m

onceau (Heap en anglais)
�

C
'est un arbre binaire parfait tel que la clé de chaque noeud 

est supérieure ou égale aux clés de tous ses fils 
�

L'élém
ent m

axim
um

 de l'arbre se trouve donc à la racine

�
Rappel : 
�

Pour un arbre binaire parfait, tous les niveaux sont entièrem
ent 

rem
plis sauf éventuellem

ent le dernier et, dans ce cas, les feuilles 
du dernier niveau sont regroupées le plus à gauche possible

�
Un tas est un arbre binaire partiellem

ent ordonné
:

�
Les nœ

uds sur chaque branche sont ordonnés sur celle-ci ;
�

C
eux d'un m

êm
e niveau ne le sont pas nécessairem

ent.

�
Un tas dans lequel chaque nœ

ud enfant a une clé inférieure 
(resp., supérieure) ou égale à la clé de son père est appelé 
arbre m

axim
ier(m

ax heap) (resp., arbre m
inim

ier (m
ax 

heap))

27



A
rbre M

a
xim

ier (ou Ta
s)

Exem
ple

28



Type A
bstra

it Ta
s

T
y
p
e
 
T
as

U
t
i
l
i
s
e 

B
o
o
l
é
e
n
,
 
E
l
é
m
e
n
t

O
p
é
r
a
t
io
n
s

t
a
s
_
v
i
d
e

:
 
→

T
a
s

e
s
t
_
v
i
d
e

:
 
T
a
s
 
→

B
o
o
l
é
e
n

m
a
x

:
 
T
a
s
 
→

E
l
é
m
e
n
t

a
j
o
u
t
e
r
:
 
T
a
s
 
x
 
E
l
é
m
e
n
t
 
→

T
a
s

s
u
p
p
r
i
m
e
r
M
a
x
:
 
T
a
s
 
→

T
a
s

a
p
p
a
r
t
i
e
n
t

:
 
T
a
s
 
x
 
E
l
é
m
e
n
t
 
→

B
o
o
l
é
e
n

P
r
é
c
o
n
di
t
i
on
s
 

m
a
x
(
T
)
 
e
s
t
_
d
é
f
i
n
i
_
s
s
i

e
s
t
_
v
i
d
e
(
T
)
 
=
 
f
a
u
x

s
u
p
p
r
i
m
e
r
M
a
x
(
T
)
 
e
s
t
_
d
é
f
i
n
i
_
s
s
i

e
s
t
_
v
i
d
e
(
T
)
 
=
 
f
a
u
x

a
j
o
u
t
e
r
(
T
,
e
)
 
e
s
t
_
d
é
f
i
n
i
_
s
s
i

a
p
p
a
r
t
i
e
n
t
(
T
,
e
)
 
=
 
f
a
u
x

A
x
i
o
m
e
s

S
o
i
t
,
 
T
,
 
T
1
 
:
 
T
a
s
,
 
e
 
:
 
E
l
é
m
e
n
t

s
i
 
e
s
t
_
v
i
d
e
(
T
)
 
=
 
v
r
a
i
 
a
l
o
r
s
 
a
p
p
a
r
t
i
e
n
t
(
T
,
e
)
 
=
 
f
a
u
x

a
p
p
a
r
t
i
e
n
t
(
T
,
m
a
x
(
T
)
)
 
=
 
v
r
a
i

s
i
 
a
p
p
a
r
t
i
e
n
t
(
T
,
e
)
 
=
 
v
r
a
i
 
a
l
o
r
s
 
m
a
x
(
T
)
 
≥
 
e
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O
péra

tions sur un Tas

�
t
a
s
_
v
i
de

:
 
→

T
a
s

�
O

p
ération d

'initialisation; crée un tas vid
e

�
e
s
t
_
v
i
de

:
 
T
a
s
 
→

B
o
o
l
é
e
n

�
V
érifie si un ta

s est vid
e ou non

�
m
a
x

:
 
T
a
s
 
→

E
l
é
m
e
n
t

�
Retourne le p

lus grand
 élém

ent d
'un tas

�
a
j
o
u
t
e
r
 :
 
T
a
s
 x
 
E
l
é
m
e
n
t
 
→

T
a
s

�
A

joute un élém
ent d

ans un tas

�
s
u
p
p
r
i
m
e
r
M
a
x
 :
 
T
a
s
 
→

T
a
s

�
Sup

p
rim

e le p
lus grand

 élém
ent d

'un tas

�
a
p
p
a
r
t
i
e
n
t
 :
 T
a
s
 x
 
E
l
é
m
e
n
t
 
→

B
o
o
l
é
e
n

�
V
érifie si un élém

ent a
p

p
artient ou non à

un tas
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Représenta
tion d

'un Tas 
�

Il existe une représentation com
pacte pour les arbres 

binaires parfaits, et donc pour les tas :

�
La représentation par tableau, basée sur la num

érotation des 
nœ

uds niveau par niveau et de gauche à droite

�
Les num

éros d'un nœ
ud sont donc les indices dans un 

tableau. En outre, ce tableau s'organise de la façon suivante 
:

�
le noeud

racine a pour indice 0 ;

�
soit le noeud

d’indice i dans le tableau, son fils gauche a pour 
indice 2i +1, et son fils droit a pour indice 2(i+1) ;

�
si un nœ

ud a un indice i ≠ 0, alors son père a pour indice 

�
O

n déduit de cette organisation, où n désigne le nom
bre 

d'élém
ents du tas, que :

�
un nœ

ud d'indice i est une feuille si 2i+1 ≥ n

�
un nœ

ud d'indice i a un fis droit si 2(i+1) < n

31
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Représenta
tion d

'un Tas
Exem

ple
32

U
n tas avec sa num

érotation hiérarchique
R

eprésentation du tas par un tableau 



Représenta
tion en C

 d
'un 

Tas

#
d
e
f
i
n
e
 
M
A
X
_
E
L
E
M
E
N
T
S
 
2
0
0
 
 
/
/
 
t
a
i
l
l
e
 

m
a
x
i
m
u
m
 
d
u
 
t
a
s

t
y
p
e
d
e
f
 
i
n
t
 
E
l
e
m
e
n
t
 
 
 
/
/
 
u
n
 
é
l
é
m
e
n
t
 
e
s
t
 

u
n
 
i
n
t

t
y
p
e
d
e
f
 
s
t
r
u
c
t
 
{

i
n
t
 
t
a
i
l
l
e
;
 
 
/
/
 
n
o
m
b
r
e
 
d
'
é
l
é
m
e
n
t
s
 
d
a
n
s
 
l
e
 

t
a
s

E
l
e
m
e
n
t
 
t
a
b
l
e
a
u
[
M
A
X
]
;
 
/
/
 
l
e
s
 
é
l
é
m
e
n
t
s
 

d
u
 
t
a
s
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;

33



O
p

érations sur un Tas 

�
Trois opérations 
fondam

entales :
�

A
jout d'un élém

ent ;
�

Suppression du m
axim

um
 ;

�
Recherche du m

axim
um

.
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O
p

ération d
'A

jout

�
Principe :
�

C
réer un nouveau nœ

ud contenant la clé du nouvel 
élém

ent ;

�
Insérer cette clé le plus à gauche possible sur le dernier 
niveau du tas (ou si le dernier niveau est plein, à l'extrêm

e 
gauche d'un nouveau niveau). La nouvelle clé est insérée 
dans la prem

ière case non utilisée du tableau ;

�
Faire "rem

onter cette nouvelle clé" à sa place en la 
perm

utant avec la clé de son père, tant qu'elle est plus 
grande que celle de son père.
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O
péra

tion d
'A

jout
Exem

ple (1)
36◼

Supposons qu'on veuille insérer la valeur 21 dans le tas représenté ci-
dessous :
◼

O
n place la valeur 21 juste à droite de la dernière feuille, 

◼
c'est-à-dire dans la case d'indice 10 dans le tableau.



O
péra

tion d
'A

jout
Exem

ple (2)
37◼

O
n com

pare 21, la nouvelle donnée insérée, avec la donnée contenue 
dans le nœ

ud père, autrem
ent dit on com

pare la donnée de la case 
d'indice 10 du tableau avec la donnée de la case d'indice  =

 4.
◼

Puisque 21 est plus grand que 5, on les échange.



O
péra

tion d
'A

jout
Exem

ple (3)
38

�
Le nouvel arbre 
binaire obtenu n'est 
pas un tas :
�

La valeur 21 du nœ
ud d'indice 4 

est plus grande que la valeur 15 
de son nœ

ud père (d'indice
= 1)

�
Echanger les contenus des 
nœ

uds d'indices respectifs 1 et 4 



O
péra

tion d
'A

jout
Exem

ple (4)
39

�
Puisque 21 est plus 
petit que 23 :
�

L'opération d'ajout est term
inée 

;

�
O

n a bien obtenu un tas.



O
péra

tion d
'A

jout
Pseud

o-cod
e
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O
péra

tion d
'A

jout
C

om
plexité

�
La com

plexité de l'opération d'ajout est en 
O

(h), où h est la hauteur du tas :

�
O

n ne fait que rem
onter un chem

in ascendant d'une feuille vers la racine (en 
s'arrêtant éventuellem

ent avant). 

�
La hauteur d'un tas de taille n est précisém

ent égale à 

et donc l'ajout dem
ande un tem

ps O
(log(n)).

41
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O
pération d

e Suppression d
u 

M
axim

um

�
Principe :

�
Rem

placer la clé du nœ
ud racine par la clé du nœ

ud situé 

le plus à droite du dernier niveau du tas. C
e dernier nœ

ud 

est alors supprim
é ;

�
Réorganiser l'arbre, pour qu'il respecte la définition du tas, 

en faisant descendre la clé de l'élém
ent de la racine à sa 

bonne place en perm
utant avec le plus grand des fils.
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O
pération d

e Suppression d
u 

M
axim

um
 (Exem

ple) (1)
43

�
Supposons qu'on désire supprim

er la valeur 
23 contenue dans la racine du tas illustré 
par la figure suivante :



O
pération d

e Suppression d
u 

M
axim

um
 (Exem

ple) (2)
44

�
O

n com
m

ence alors par rem
placer le contenu du 

nœ
ud racine par celui du dernier nœ

ud du tas :
�

C
e dernier nœ

ud est alors supprim
é ;

�
C

eci est illustré par la figure suivante :



O
pération d

e Suppression d
u 

M
axim

um
 (Exem

ple) (3)
45

�
L'arbre obtenu est parfait m

ais n'est pas un tas :
�

la clé contenue dans la racine a une valeur plus petite que 
les valeurs des clés de ses fils ;

�
C

ette clé de valeur 2 est alors échangée avec la plus 
grande clé de ses fils, à savoir 15 ;

�
L'arbre obtenu est représenté par la figure suivante :



O
pération d

e Suppression d
u 

M
axim

um
 (Exem

ple) (4)
46

�
Encore une fois, cet arbre 
n'est pas un tas. O

n le 
réorganise pour qu'il 
respecte la définition du tas

◼
Le dernier arbre obtenu est 
bien un tas ; il est illustré par 
la figure suivante

:



O
pération d

e Suppression d
u 

M
a

xim
um

 (Pseud
o-cod

e) (1)

�
Une version qui utilise la procédure Entasser

�
La procédure Entasser:
�

perm
et de faire descendre la valeur en t[i] de m

anière 
que l'arbre de racine en i devienne un tas ;

�
suppose que les sous arbres de racines en 2i+1 (fils 
gauche du nœ

ud en i) et en 2i+2
(fils droit du nœ

ud en i) 
sont des tas.
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O
pération d

e Suppression d
u 

M
a

xim
um

 (Pseud
o-cod

e) (2)
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O
pération d

e Suppression d
u 

M
a

xim
um

 (Pseud
o-cod

e) (3)
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O
péra

tion d
e Suppression 

d
u M

axim
um

 (C
om

plexité)
�

La com
plexité de la suppression est la m

êm
e que 

celle de l'insertion, c-à-d O
(log(n)) :

�
En effet, on ne fait que suivre un chem

in descendant 
depuis la racine.
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O
péra

tion d
e Recherche d

u 
M

axim
um

(Pseud
o-cod

e &
 C

om
plexité)

�
L'opération de recherche du m

axim
um

 est 
im

m
édiate dans les tas

�
Elle prend un tem

ps constant O
(1)

51

f
o
n
c
t
i
o
n
 
M
a
x
 
(
t
 
:
 
t
a
s
)
 
:
 
E
l
é
m
e
n
t

(
*
 
l
e
 
t
a
s
 
t
 
e
s
t
 
s
u
p
p
o
s
é
 
n
o
n
 
v
i
d
e
 
!
!
 
*
)

d
é
b
u
t

r
e
t
o
u
r
n
e
r
 
(
t
.
t
a
b
l
e
a
u
[
0
]
)

f
i
n



Exem
ples d

'A
pplications d

es Ta
s 

�
Files de priorités (Priority

queues) :
�

Les tas sont fréquem
m

ent utilisés pour im
plém

enter des files de priorités. 

�
A

 l'opposé des files standard, une file de priorités détruit l'élém
ent de plus 

haute (ou plus basse) priorité. 

�
La signification de la "priorité" d'un élém

ent  dépend de l'application

�
A

 tout instant, on peut insérer un élém
ent de priorité arbitraire dans une file de 

priorités. Si l'application souhaite la destruction de l'élém
ent de plus haute 

priorité, on utilise un arbre m
axim

ier.

�
Tri par tas

(Heapsort):
�

Les opérations sur les tas perm
ettent de résoudre un problèm

e de tri à l’aide 
d’un algorithm

e appelé tri par tas (heapsort). 

�
C

et algorithm
e a la m

êm
e com

plexité tem
porelle, O

(n log(n)), que le tri 
rapide (quicksort). M

ais, en pratique, une bonne im
plém

entation de ce 
dernier le bat d'un petit facteur constant.

52



A
lgorithm

e d
u Tri p

ar Tas
(Principe)

�
Supposons qu'on veut trier, en ordre croissant, un tableau 
T de n élém

ents. 

�
Principe :
�

L’algorithm
e du tri par tas com

m
ence, en utilisant la fonction 

C
onstruireTas, par construire un tas dans le tableau à trier T ;

�
Ensuite, il prend l'élém

ent m
axim

al du tas, qui se trouve en T[0], 
l'échange avec T[n-1], et rétablit la propriété de tas, en utilisant 
l'appel de fonction Entasser(T,0)pour le nouveau tableau à n-1 
élém

ents (la case T[n-1] n'est pas considérée) ;

�
L'algorithm

e de tri par tas répète ce processus pour le tas de 
taille n-1 jusqu'à la taille 2. 
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A
lgorithm

e d
u Tri p

ar Tas
(Pseud

o-cod
e) (1)

f
o
n
c
t
i
o
n
 
T
r
i
_
p
a
r
_
T
a
s
(
T
a
b
l
e
a
u
 
T
[
0
 
.
.
 
n
-
1
]
)
 
:
 

T
a
b
l
e
a
u

d
é
b
u
t

T
 
Å

C
o
n
s
t
r
u
i
r
e
T
a
s
(
T
)

p
o
u
r
 
i
Å

(
n
-
1
)
 
à
 
1
 
p
a
r
 
p
a
s
 
-
1
 
f
a
i
r
e

E
c
h
a
n
g
e
r
(
T
[
0
]
,
 
T
[
i
]
)

n
 
Å

n
-
1

E
n
t
a
s
s
e
r
 
(
T
,
 
i
)

r
e
t
o
u
r
n
e
r
 
(
T
)

f
i
n

54

C
onstruireTas

produit un tas 
à partir d'un tableau T

E
ntasser sert à garantir le m

aintien de la 
propriété de tas pour l'arbre de racine en i



A
lgorithm

e d
u Tri p

ar Tas
(Pseud

o-cod
e) (2)
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Les feuilles sont 
des tas à un 

élém
ent !



C
onstruireTa

s
Exem

ple (1)

0
1

2
3

4
5

6
7

8
9

T
4

1
3

2
16

9
10

14
8

7

56

�
Illustration de l'action C

onstruireTas
sur un 

tableau d'entiers contenant 10 élém
ents

�
Rem

arquer que les nœ
uds qui portent les 

valeurs 9, 10, 14, 8 et 7 sont biens des feuilles, et 
donc des tas à un élém

ent.



C
onstruireTa

s: Exem
ple (2)
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Tri p
a

r Tas : Exem
ple (1)

58

�
Les figures qui suivent 
illustrent l'action du tri 
par tas après 
construction du tas

�
C

haque tas est 
m

ontré au début 
d'une itération de la 
boucle 



Tri p
a

r Tas : Exem
ple (2)
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A
lgorithm

e d
u Tri p

ar Tas
C

om
plexité

�
O

n m
ontre que l'appel à C

onstruireTas prend un tem
ps 

O
(n) 

�
C

hacun des (n-1) appels à Entasser prend un tem
ps 

O
(log(n))

�
Par conséquent, l'algorithm

e du tri par tas s'exécute 
en O

(n log(n))
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Introd
uction aux A

rbres 
d

e Recherche Equilibrés
�

(Balanced Search Trees)
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N
otion d

'A
rbres 

d
e Recherche Equilibrés 

�
La définition des arbres équilibrés im

pose que la différence entre les 
hauteurs des fils gauche et des fils droit de tout noeud

ne peut 
excéder 1

�
Il faut donc m

aintenir l'équilibre de tous les noeuds
au fur et à 

m
esure des opérations d'insertion ou de suppression d'un nœ

ud

�
Q

uand il peut y avoir un déséquilibre trop im
portant entre les deux 

fils d'un noeud, il faut recréer un équilibre par :
�

des rotations d'arbres ou par éclatem
ent de nœ

uds (cas des arbres B)

�
Les algorithm

es de rééquilibrage sont très com
pliqués :

�
O

n cite entre autres, quelques exem
ples d'arbres équilibrés pour les quels les 

opérations de recherche, d’insertion et de suppression sont en O
(log(n))
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A
rbres d

e Recherche Equilibrés 
Exem

ples (1)

�
Les arbres A

VL :
�

Introduits par A
delson-Velskii Landis Landis (d'où le nom

 d'A
VL) dans 

les années 60 ; 

�
Un arbre A

VL est un arbre binaire de recherche stockant une 
inform

ation supplém
entaire pour chaque noeud : son facteur 

d'équilibre ;

�
Le facteur d'équilibre représente la différence des hauteurs entre son 
sous arbre gauche et son sous arbre droit ;

�
A

u fur et à m
esure que des nœ

uds sont insérés ou supprim
és, un 

arbre A
VL s'ajuste de lui-m

êm
e pour que tous ses facteurs 

d'équilibres restent à 0, -1 ou 1.
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A
rbres d

e Recherche Equilibrés 
Exem

ples (2)

�
Les arbres rouges et noirs :

�
Des arbres binaires de recherche qui se m

aintiennent 

eux-m
êm

es approxim
ativem

ent équilibrés en colorant 

chaque nœ
ud en rouge ou noir ;

�
En contrôlant cette inform

ation de couleur dans chaque 

noeud, on garantit qu’aucun chem
in ne peut être deux 

fois plus long qu'un autre, de sorte que l’arbre reste 

équilibré.
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A
rbres d

e Recherche Equilibrés 
Exem

ples (3)

�
Les B arbres :
�

A
rbres de recherche équilibrés qui sont conçus pour être 

efficaces sur d'énorm
es m

asses de données stockées sur 

m
ém

oires secondaires ; 

�
C

haque nœ
ud perm

et de stocker plusieurs clés ;

�
G

énéralem
ent, la taille d'un nœ

ud est optim
isée pour 

coïncider avec la taille d'un bloc (ou page) du périphérique, 

en vue d'économ
iser les coûteux accès d'entées sorties.

�
…
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Les arbres AVL

Pr F.Omary

2019-2020
1

Les Structures de Données



Introduction

 Pourquoi

Les arbres équilibrés rendent les recherches  plus efficaces

Trouver comment maintenir un arbre  relativement équilibré 

au fur et à mesure des  insertions (et suppression)

Solution :

 Les arbres AVL (Adelson-Velskii et Landis) :  pour tout 

sommet, les hauteurs des sous- arbres gauche et 

droit diffèrent d’au plus 1.

Rmq : un arbre AVL N'EST PAS un arbre  équilibré

2



Exemple d'arbre AVL
3
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Rappel : hauteur  arbre 
vide = -1



Préambule : Rotation droite
4

s1

s2

sa1 sa2

sa3

s2

s1
sa1

sa2 sa3

Rotation droite autour de S1, notée rd(S1)



Préambule : Rotation gauche
5

s2

s1

sa1 sa2

sa3

s1

s2
sa1

sa2 sa3



Insertion dans un arbre AVL

Le principe de l'insertion dans un arbre AVL  

est le suivant :

 insérer le nouveau nœud au bon endroit

 au fur et à mesure de la remontée dans l'arbre (du
nœud père du nœud inséré à la racine), rééquilibrer
l'arbre en effectuant les rotations appropriées

6



Choix des rotations
 Notations

 Soient N le noeud courant, Ng son fils gauche et Nd sont fils  droit.

 Soient Ngg le fils gauche de Ng et Ngd le fils droit de Ng

Soient Ndg le fils gauche de Nd et Ndd le fils droit de Nd

 Soit h(x) la hauteur de l'arbre de racine le noeud x.

 Algorithme

 Si |h(Ng)-h(Nd)| <= 1, ne rien faire

 Sinon

 Si h(Ng)-h(Nd) = 2 cas (1)

 Si h(Ngg) > h(Ngd) Alors rd(N) cas (1a)

 Sinon rg(Ng) puis rd(N) cas (1b)

 Sinon (h(Ng)-h(Nd) = -2) cas (2)

 Si h(Ndd) > h(Ndg) Alors rg(N) cas (2a)

 Sinon rd(Nd) puis rg(N) cas (2b)

 Fsi

 Fsi

7



Exemple d'ajout : 49



Exemple d'ajout : 49
9
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Exemple d'ajout : 49
10
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Exemple d'ajout : 49
11
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Exemple d'ajout : 46
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Exemple d'ajout : 46
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Exemple d'ajout : 46
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1 

Graphes 

1 

Objectifs 

• Etudier une nouvelle structure de données
non linéaire, plus générale, où chaque
élément peut posséder plusieurs
prédécesseurs et plusieurs successeurs :

– Terminologie

– Type Abstrait de Données Graphe

– Représentation et implémentation

– Parcours d’un graphe

2 
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Notion de Graphes 

• Les graphes sont l’une des structures de données les plus utilisées en
informatique :
– Les algorithmes permettant de les manipuler constituent les fondements de 

l’informatique
– Il existe des centaines de problèmes informatiques qui sont définis en termes de 

graphes

• Les graphes servent généralement à modéliser des problèmes en termes de
relations ou de connexions entre des objets

• Les objets sont représentés par des sommets

• Les relations ou connexions sont représentées par des arcs reliant les sommets

• Les graphes peuvent être orientés (les arcs vont d’un sommet à l’autre dans un
sens précis) ou non orientés (les arcs n’ont pas de sens)

3 

Exemples 

• Dans une carte de liaisons aériennes, les villes sont des sommets
du graphe et l’existence d’une liaison aérienne entre deux villes
est la relation du graphe

• Dans le graphe du flot de contrôle d’un programme, les boîtes
(instructions ou tests) sont les sommets, et les flèches indiquent
les enchaînements possibles entre celles-ci

• Dans une entreprise où certaines tâches doivent être exécutées
avant d’autres, on peut schématiser l’ordonnancement des
tâches par un graphe où les sommets sont les tâches et où il
existe un arc entre deux tâches ti et tj seulement si ti doit être
terminée juste avant d’exécuter tj 

4 
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Graphe Orienté (Définitions) 

• Un graphe orienté G est un couple (S,A), où :
– S est un ensemble fini d’éléments appelés sommets (vertex

en anglais, au pluriel vertices)

– A est un ensemble fini de paires (ordonnées) de sommets,
appelées arcs (arc en anglais)

• On écrit G = (S,A) pour représenter le graphe

• Un graphe orienté est dit complet si quels que soient
deux sommets distincts, il existe un arc les reliant dans
un sens ou dans l'autre

5 

Graphe Orienté (Exemple 1) 

• Soient S ={1,2,3,4,5,6} et
A={(1;2),(1;3),(2;3),(3;1),(3;4),(4;3),(5;6),(6;5),(6;6)}

• (S, A) est un graphe orienté qui peut être représenté
par :

6 
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Graphe Orienté (Exemple 2) 
• Soit le graphe orienté G=(S,A) où

– S = {1,2,3,4,5,6,7,8,9} et

– A={(1,4);(2,3);(2,8);(3,6);(3,7);(4,3);(5,2);(7,1);(8,3);(8,8)}

7 

Graphe Orienté (Terminologie) (1) 

• Soit G = (S, A) un graphe orienté. Si X = (a,b)∈A,
on dit que :
– a est adjacent à b

– a est un prédécesseur de b.

– b est un successeur de a.

– a est l’origine de l’arc X.

– b est l'extrémité de l’arc X.

– X est incident au sommet a et au sommet b.

– De plus, si a = b, on dit que X est une boucle.

8 
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Graphe Orienté (Terminologie) (2) 

• On appelle chemin d’un graphe orienté G une suite (finie) d’arcs
de G telle que l’extrémité d’un arc est toujours confondue avec
l’origine du suivant.

• L’origine du premier arc de la suite est appelé origine du chemin.
• L’extrémité du dernier arc de la suite est appelé extrémité du

chemin
• La longueur d’un chemin est le nombre d’arcs qui le composent
• Un chemin est dit simple si tous les arcs qui le composent sont

différents.
• Un chemin est dit élémentaire si tous les sommets qui le

composent sont différents.
• On appelle circuit tout chemin dont l’origine et l’extrémité sont

confondues.

9 

Exemple 

• En reprenant l’exemple 1, on a :
– {(1,3);(3,1);(1,2)} est un chemin simple non élémentaire d’origine

1 et d’extrémité 2.

– {(1,2);(2,3);(3,4)} est un chemin simple et élémentaire. Ce chemin
est de longueur 3

– {(2,3);(3,4);(4,3);(3,1);(1,2)} est un circuit simple et non
élémentaire

– {(6,6)}est un circuit de longueur 1. C’est une boucle

10 
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Graphe Orienté (Terminologie) (3) 

• Soient u et v deux sommets d’un graphe orienté. On dit
que :

– v est un descendant de u s’il existe un chemin allant u à v

– v est un ascendant de u s’il existe un chemin allant v à u.

– Un sommet v tel qu’il n’existe aucun chemin de u à v dans G est
dit inaccessible (ou non atteignable) à partir de u.

– Un sommet est dit isolé s’il n’est accessible par aucun autre
sommet du graphe

• Il est à noter que les sommets d’un circuit sont tous
ascendants et descendants les uns des autres

11 

Exemple 

• En reprenant l’exemple 2 :

– On considère le chemin {(5,2);(2,8);(8,3);(3,6)}.

– Le sommet 6 est descendant du sommet 5 mais l’inverse
n’est pas vrai.

– Le sommet 5 est ascendant du sommet 6

– Le sommet 2 est inaccessible depuis le sommet 3.

– Le sommet 9 est isolé du reste du graphe

12 
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Graphe Non Orienté (Définitions) 

• Un graphe (simple) non orienté G est un couple (S,A), où
:
– S est un ensemble fini de sommets.

– A est un ensemble fini de paires (non ordonnées) de sommets
de S, appelées arêtes (edge en anglais)

• On écrit G = (S,A) pour représenter le graphe

• Un graphe non orienté est dit complet si quels que
soient deux sommets distincts, il existe une arête les
reliant

13 

Graphe Non Orienté (Exemple 1) 

• Soient S ={1,2,3,4,5,6} et
A={(1;2),(1;3),(2;3),(3;4),(5;6)}

• (S, A) est un graphe non orienté qui peut être
représenté par :

14 
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Graphe Non Orienté (Exemple 2) 

15 

 Soit le graphe non orienté G=(S,A) où

 S = {1,2,3,4,5,6,7,8,9} et

 A={(1,4);(1,7);(2,3);(2,5);(2,8);(3,4);(3,6); (3,7);(3,8);(8,8)}

Graphe Non Orienté (Définitions) 

• Soit G = (S, A) un graphe non orienté.
– Si X ={a,b}∈A, on dit que a et b sont voisins.

– On appelle chaîne de G une suite (finie) d’arêtes de G telle
que 2 arêtes consécutives dans la suite ont un sommet
commun.

– Un cycle est une chaîne dont l’origine et l’extrémité sont
confondues.

– Une chaîne est dite élémentaire si elle ne contient pas
plusieurs fois le même sommet

– La longueur d’une chaîne est le nombre d’arêtes qui la
composent.

16 
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Graphe Connexe/Fortement Connexe 

• Un graphe non orienté G= (S, A) est dit
connexe si et seulement si, pour toute paire
de sommets distincts {x,y} de S, il existe une
chaîne entre les sommets x et y.

• Un graphe orienté G= (S, A) est dit fortement
connexe si et seulement si, pour toute paire
de sommets distincts {x,y} de S, il existe un
chemin  de x à y et un chemin de y à x.

17 

Notion de Graphe Valué 

• Dans de nombreuses applications, il est naturel d’associer une
valeur (on dit aussi un coût ou un poids) aux arcs ou aux
arêtes du graphe.

• Un graphe valué (ou pondéré), orienté (resp. non orienté) est
un triplet (S,A,C) où S est un ensemble fini de sommets, A un
ensemble fini d’arcs (resp. d’arêtes) et C une fonction de A à
valeurs réelles appelée fonction coût

• Ainsi, on pourra traiter des problèmes tels que la recherche
du plus court chemin entre deux sommets d’un graphe

18 
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Exemples de Graphes Valués 
• Exemple de graphe orienté valué :

19 

 Exemple de graphe non orienté valué :

Distance et Diamètre 

• La distance entre deux sommets d’un graphe
est la plus petite longueur des chaînes, ou des
chemins, reliant ces deux sommets.

• Le diamètre d’un graphe est la plus longue
des distances entre deux sommets.

20 



11 

Notion de Degré 

• Dans un graphe orienté, si X=(u, v) est un arc, on dit que X est incident à u
vers l’extérieur. Le nombre d’arcs ayant leur extrémité initiale en u,  se
note do+(u) et s’appelle le demi-degré extérieur de u. c’est le nombre de
successeurs de u.

• On définit de même les notions d’arc incident vers l’intérieur et de demi-
degré intérieur qui est noté do-(u). le nombre de prédécesseurs de u.

• Dans un graphe orienté (resp. non orienté), on appelle degré d’un
sommet, et on note do(u), le nombre d’arcs (resp. d’arêtes) dont u est une
extrémité.

• Dans le cas d’un graphe orienté, on a do(u) = do+(u) + do-(u), pour tout
sommet u. C’est le nombre de sommets adjacents à u.

• Un sommet de degré 1 (resp. 0) est dit sommet pendant (resp. isolé)

• Un graphe est dit régulier si les degrés de tous ses sommets sont égaux

21 

Exemple 

• Dans le graphe suivant :
• d°+(x) = 3, d°-(x) = 2  et d(x) = 5

22 
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Sous-Graphe et Graphe partiel 

• Soit G=(S,A) un graphe. Le sous-graphe de G engendré par S’
(un sous-ensemble de S) est le graphe G’ dont les sommets
sont les éléments de S’ et dont les arcs (resp. les arêtes) sont
les arcs (resp. les arêtes) de G ayant leurs deux extrémités
dans S’. Autrement dit, on ignore les sommets de S\S’ ainsi
que les arcs ayant au moins une extrémité dans S\S’.

• Soit G=(S,A) un graphe. Le graphe partiel de G engendré par
A’ (un sous-ensemble de A) est le graphe G’ =(S,A’) dont les
sommets sont les éléments de S et dont les arcs (resp. les
arêtes) sont ceux de A’. Autrement dit, on élimine de G les
arcs (resp. arêtes) de A\A’.

23 

Exemples 

Un graphe G 

24 

Un sous-graphe de G 

Un graphe partiel de G Un sous-graphe partiel de G 
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Composantes Connexes d’un Graphe 
Non Orienté 

• On définit la relation :
v est accessible à partir de u si et seulement si il existe un chemin de 
longueur k ≥ 0 d'origine u et d'extrémité v.  

• C'est une relation d’équivalence :
– elle est réflexive car k = 0 est admis; elle est symétrique car le graphe est

non orienté; elle est transitive, car on "concatène" les chemins.

• Par définition, les composantes connexes d'un graphe non
orienté G sont les classes d'équivalence pour la relation: « être
accessible à partir de ».
– D’une autre manière, on appelle composante connexe un sous-graphe

connexe maximal.

25 

Composantes Fortement Connexes 
d’un Graphe Orienté 

• Pour un graphe orienté, la relation "être accessible à
partir de" est toujours réflexive et transitive, mais elle
n'est plus symétrique. On considère alors sa symétrisée :

v et u sont mutuellement accessibles si et seulement si il existe un chemin  

     (de longueur k ≥ 0) d'origine u et  d'extrémité v et un chemin (de longueur l ≥ 0) 

     d'origine v et d'extrémité u.

• Par définition, les composantes fortement connexes
d'un graphe orienté sont les classes d'équivalence de G
pour la relation : « être mutuellement accessibles ».
– D’une autre manière, on appelle composante fortement

connexe un sous-graphe fortement connexe maximal.

26 
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Exemples 

• Le graphe suivant a trois composantes connexes :
{1,6}, {7} et {2,3,4,5}

27 

 Le graphe suivant a trois composantes fortement

connexes : {1,7}, {2,3,5,6} et {4}

Point d’Articulation d’un Graphe 

• C’est un sommet d'un graphe, qui, si on le supprime,
déconnecte le graphe

• Dans le graphe suivant, les sommets 1, 7, 8 et 10
sont des points d’articulation

28 
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Pont d’un Graphe 

• C’est une arête d'un graphe, qui, si on la supprime,
déconnecte le graphe

• Dans le graphe suivant, les arcs (1,2), (7,8), (8,9) et
(10,11) sont des ponts

29 

Graphe Bi-Connexe 

• Un graphe connexe sans point d’articulation est dit
bi-connexe

• Le graphe suivant n’est pas bi-connexe

30 
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Composantes Bi-Connexes 

• Un graphe peut ne pas être bi-connexe mais contenir
des composantes bi-connexes

• Dans une composante bi-connexe, il existe un circuit
entre deux sommets quelconques

31 

Notion d’Arbre 

• Un graphe non orienté où tous les sommets sont
accessibles les uns des autres est dit connexe.

• On appelle arbre un graphe non orienté connexe et sans
cycle.

32 
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Notion d’Arborescence 

• Lorsqu’on oriente les arêtes d’un arbre, le graphe
obtenu est appelé une arborescence.

• Dans une arborescence, on appelle racine un sommet
pour lequel tous les autres sommets sont accessibles (il
n’existe pas toujours de racine).

33 

Notion de Forêt 

• Une forêt est un graphe non orienté (resp.
orienté) dont chaque composante connexe (resp.
fortement connexe) est un arbre (resp. une
arborescence).

• Exemple de forêt (graphe acyclique) :

34 
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Type Abstrait Graphe 
• Parfois, le graphe est donné une fois pour toutes. Les opérations intéressantes

sont :
– test d’existence d’un arc (d’une arête entre deux sommets)
– test d’existence d’un sommet parmi les successeurs d’un autre sommet
– énumération des successeurs d’un sommet. Pour ce faire, il faut connaître le demi-

degré extérieur de tout sommet et le ième successeur d’un sommet
– … 

• Le plus souvent, le graphe est évolutif ; on veut donc lui appliquer les opérations :
– ajout et suppression d’un sommet
– ajout et suppression d’un arc
– …

• Deux types abstraits :
– un pour les graphes orientés
– un autre pour les graphes non orientés

• Ces deux types abstraits utilisent le type Sommet :
– pour distinguer les sommets d’un graphe, on les étiquette, soit par des chaînes de 

caractères, soit par des numéros (ce qui va être utilisé dans la suite)
35 

Type Abstrait Sommet 

Type Sommet {on étiquette un sommet par un numéro}

Utilise Entier 

Opérations 

créer  : Entier  Sommet 

modifier : Sommet x Entier  Sommet 

numéro : Sommet  Entier 

Axiomes 

numéro(som(i)) = i, pour tout entier i 

36 
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Spécification des graphes orientés 
(Conventions) 

• Quand on ajoute un sommet, celui-ci est isolé (il
n'a aucun arc incident) ;

• Quand on ajoute un arc, si les sommets adjacents
à cet arc n'appartiennent pas au graphe, on les
ajoute ;

• Quand on retire un arc, les sommets adjacents ne
sont pas retirés ;

• Quand on retire un sommet, tous les arcs incidents
sont supprimés.

37 

Type Abstrait Graphe (Orienté) (1) 

Type Graphe {cas orienté}  

Utilise Sommet, Entier, Booléen 

Opérations  
graphe_vide  : → Graphe 

ajouter_sommet : Sommet x Graphe → Graphe 

ajouter_arc  : Sommet x Sommet x Graphe → Graphe  

est_sommet  : Sommet x Graphe → Booléen  

est_arc : Sommet x Sommet x Graphe → Booléen 

d°+  : Sommet x Graphe → Entier  

ième_succ  : Entier x Sommet x Graphe → Sommet  

d°-  : Sommet x Graphe → Entier  

ième_pred  : Entier x Sommet x Graphe → Sommet  

supprimer_sommet: Sommet x Graphe → Graphe 

supprimer_arc : Sommet x Sommet → Graphe 

38 



20 

Type Abstrait Graphe (Orienté) (2) 

Préconditions 
  ajouter_sommet(s,g) est-défini-ssi est_sommet(s,g) = faux 

  ajouter_arc(s,s’,g) est-défini-ssi s ≠ s' ET est_arc(s,s’,g) = faux  

  d°+(s,g) est-défini-ssi est_sommet(s,g) = vrai  

  d°-(s,g) est-défini-ssi est_sommet(s,g) = vrai 

  ième_suc(i,s,g) est-défini-ssi est_sommet(s,g) = vrai  

ET (i ≤ d°+(s,g)) = vrai 

  supprimer_sommet(s,g) est-défini-ssi est_sommet(s,g) = vrai  

  supprimer_arc(s,s'g) est-défini-ssi est_arc(s,s’,g) = vrai  

39 

Type Abstrait Graphe (Orienté) (3) 

Axiomes {pour est_sommet} 

  est_sommet(s,graphe_vide()) = faux 

  si s = s’ alors est_sommet(s,ajouter_sommet(s’,g)) = faux 

  si s ≠ s' alors est_sommet(s,ajouter_sommet(s’,g)) = vrai 

  si s = s’ OU s = s’’ alors est_sommet(s,ajouter_arc(s’,s’’,g)) = faux 

  si s ≠ s' ET s ≠ s’’ alors 

est_sommet(s,ajouter_sommet(s’’,g)) = est_sommet(s,g) 

40 
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Type Abstrait Graphe (Orienté) (4) 
(Opérations Auxiliaires) 

 premsucc : Sommet x Graphe → Sommet  

succsuivant : Sommet x Sommet x Graphe → Sommet 

 coût : Sommet x Sommet x Graphe → Réel 
 ajouter_arc_valué : Sommet x Sommet x Réel x Graphe → Graphe 

 nb_sommets : Graphe → Entier 

 nb_arcs : Graphe → Entier 

41 

Représentations des Graphes 

• Deux implémentations classiques :
– Par matrice d’adjacence

– Par liste d’adjacence

• D’autres implémentations efficaces pour
certains algorithmes :
– Matrice d’incidence

– Liste des arcs

– …

42 
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Représentation par Matrice 
d’Adjacence (1) 

• Correspond au cas où l'ensemble de sommets du graphe n'évolue pas

• On représente l'ensemble des arcs par un tableau de booléens

• Le graphe est représenté par une matrice carrée de booléens, dite matrice
d'adjacence, de dimension n si le graphe a n sommets

43 

Représentation par Matrice 
d’Adjacence (2) 

• Dans le cas où le graphe est non orienté, la matrice est symétrique
• Dans le cas où le graphe est valué, on utilise une matrice où :

– l'élément d'indices i et j a pour valeur le poids de l'arc/arête du sommet i au 
sommet j, si cet arc/arête existe,

– et sinon une valeur dont on sait qu'elle ne peut être un poids: par exemple, le
plus grand entier utilisable si les poids sont des entiers bornés supérieurement.

44 



23 

Représentation par Matrice 
d’Adjacence (3) 

• Avantages :
– tester l'existence d'un arc (ou d'une arête) entre deux sommets: on accède 

directement à l'élément de la matrice (en un temps constant).
– il est facile d'ajouter ou de retirer un arc ou une arête
– il facile de parcourir tous les successeurs ou prédécesseurs d'un sommet.

• Inconvénients :
– n tests quel que soit le nombre de successeurs de i. Il en est de même du calcul de 

do+ ou de do-.
– une consultation complète de la matrice requiert un temps d'ordre n2 
– exige un espace mémoire de O(n2) si le graphe a n sommets, quel que soit le 

nombre d'arcs ou d'arêtes du graphe.

• Pour remédier à cet inconvénient, on préfère souvent utiliser une
représentation appelée "par listes d'adjacence".

• Cette représentation convient pour les petits graphes et lorsque l’accès aux
successeurs, et surtout aux prédécesseurs, est important

45 

Implémentation en C d’un Graphe par 
Matrice d’Adjacence 

#define N_MAX 20 

typedef struct { 

  int g[N_MAX][N_MAX]; 

  int n; 

} GrapheM; 

46 
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Représentation par Liste d’Adjacence 
(1) 

• C’est un tableau de listes chaînées :

– La dimension du tableau est de n (nombre de sommets)

– Chaque sommet du tableau contient une liste chaînée de
sommets qui lui sont adjacents (liste de ses successeurs)

47 

Représentation par Liste d’Adjacence 
(2) 

• Avantages :
– l'espace mémoire utilisé est, pour un graphe orienté avec n sommets et m arcs, en 

O(n+m).
– dans le cas d'un graphe non orienté avec m arêtes, l'espace mémoire est en 

O(n+2m).
– pour faire un traitement sur les successeurs d'un sommet s, le nombre de sommets 

parcourus est exactement le nombre de successeurs de s, soit d°+(s).

• Inconvénients :
– exige, dans le pire de cas, un temps d'ordre n pour tester s'il existe un arc (resp. une 

arête) entre un sommet donné x et un sommet y (cas où la liste d'adjacence est de
longueur n-1 et où y est en fin de liste) ou pour l'ajout d'un arc ou d'une arête (avec
test de non répétition).

– ne permet pas de calculer facilement les opérations relatives aux prédécesseurs (d°- 
et ième_pred).

• Représentation convenable pour les grands graphes :
– utilisation de moins d’espace mémoire et parcours rapide des successeurs d’un 

sommet

48 
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Implémentation  en  C  d’un  Graphe  par  
Liste  d’Adjacence 

#define N_MAX 20 
typedef struct cellule { 
int sommet; 

 struct cellule* suiv; 
} Cellule; 
typedef Cellule* Liste; 

typedef struct { 
Liste a[N_MAX]; 

 int n; 
} GrapheL; 

49 

Matrices  vs  Listes  d’Adjacences  de  
Graphes Orientés et Non Orientés 

50 
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Parcours  d’un  Graphe 
• Parcours de tous les sommets :

– visiter chaque sommet du graphe une seule fois
– appliquer un même traitement en chaque sommet

• Parcours  à  partir  d’un  sommet  s  :
– Parcours  en  profondeur  d’abord  (Depth  First  Search)

• le  principe  consiste  à  descendre  le  plus  ”profondément”  dans  le  graphe
à  partir  de  s,  en  prenant  toujours  à  “gauche”,  avant  de  revenir  pour
prendre une autre direction

– Parcours  en  largeur  d’abord  (Breadth  First  Search)
• le principe consiste à visiter les sommets situés à une distance 1 de s,

puis ceux situés à une distance 2 de s, etc...
• d’une  autre  manière,  lorsqu’un  sommet  x  est  atteint,  tous  ses

successeurs y sont visités avant de visiter les autres descendants de x.

51 

Parcours  d’un  Graphe  (Exemple) 

• Parcours à partir du sommet 1 :
– Parcours en profondeur : 1, 2, 5, 6, 8, 3, 7, 4
– Parcours en largeur : 1, 2, 3, 4, 5, 6, 7, 8

52 



27 

Parcours en Profondeur (Exemple) 

• les numéros correspondants aux sommets
donnant  l’ordre  dans  lequel  les  sommets  sont
visités.

53 

Parcours en Largeur (Exemple) 

• La numérotation indiquée correspond à un ordre
de  visite  lors  d’un  parcours  en  largeur

54 



28 

Comment implémenter les deux 
parcours dans un graphe ? 

• Le type de parcours est fonction du TAD utilisé pour stocker les sommets à
traiter :
– Pile Æ Parcours en profondeur
– File Æ Parcours en largeur

• Parcours en profondeur
– Algorithme  récursif  :  l’utilisation  de  la  pile  est  implicite  (appels  récursifs)
– Algorithme  itératif  :  l’utilisation  de  la  pile  est  explicite

• Parcours en largeur
– Algorithme  itératif  :  l’utilisation  de  la  file  est  explicite

• Dans tous les cas il faut un mécanisme pour éviter de boucler indéfiniment :
– Marquer les noeuds
– Lister les noeud traités
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Algorithme de Parcours en Profondeur 
(1) 

Algorithme parcoursProfondeur(g : Graphe) 
 Entrée  :  un  graphe 

 Variables locales 
   atteint  :  tableau[Sommet]  de  booléens 
   (*  atteint[x]  <=>  le  sommet  x  a  été  atteint  *) 
   x : Sommet 
Début 
  pour tout sommet x de g faire 

 atteint[x] Å faux 
  fpour 
  pour tout sommet x de g faire 

si non atteint[x] alors RechercheProf(x) 
  fpour 
Fin 
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Algorithme de Parcours en Profondeur 
(2) 

Algorithme RechercheProf(x : Sommet) 
 Entrée  :  un  sommet  d’un  graphe   
 (*  Étant  donnée  un  sommet  x  non  atteint,  cet 

algorithme marque x, et tous les sommets y   
descendants  de  x  tels  qu’il  existe  un  chemin      
[x,y]  dont  aucun  sommet  n’est  marqué  *) 

 Variables locales : 
   y : Sommet 

Début 
 atteint[x] Å vrai 
 pour tout successeur y de x faire 
   si non atteint[y] alors RechercheProf(y) 
 fpour 
Fin  

57 

Algorithme de Parcours en Profondeur 
(Complexité) 

• La  phase  d’initialisation  du  tableau  atteint  est
en O(n)

• L’itération  de  l’algorithme  principal  est
réalisée exactement en n étapes, pour
chacune  il  y’a  au  moins  un  test  réalisé  :
– O(n+m), soit O(max(n,m)) dans le cas des listes
d’adjacences

– O(n2)  dans  le  cas  des  matrices  d’adjacences
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Parcours en profondeur 
(Ordre de Traitement-Numérotation) 

• L’objet  des  parcours  de  graphes  concerne  des  traitements  que
l’on  souhaite  opérer  sur  les  graphes  :
– Les  traitements  s’opèrent  parfois  sur  les  sommets  visités.  Il  est  alors

possible  d’opérer  un  traitement  avant  ou  après  la  visite  du  sommet.
– Il  y’a  donc  soit  un traitement en préOrdre ou ordre préfixé, soit en

postOrdre ou ordre postfixé. Ceci se traduit par une modification de la
procédure de recherche en profondeur.
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Algorithme  traitement_en_préOrdre(x  :  Sommet) 
 Variables locales : 
   y : Sommet 
Début 
 atteint[x] Å vrai 
 <traiter x> 
 pour tout successeur y de x faire 
  si non atteint[y] alors rechercheProf(y) 
 fpour 
Fin 

Parcours en profondeur 
(Traitement en postOrdre ) 

Algorithme traitement_en_postOrdre(x : Sommet) 
  Variables locales : 

y : Sommet 
Début 
  atteint[x] Å vrai 
  pour tout successeur y de x faire 

si non atteint[y] alors rechercheProf(y) 
 <traiter x> 
Fin 

Exemple : Numérotation en préOrdre(rouge) et en postOrdre(vert) pour un parcours en profondeur 
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Mise  en  œuvre  en  C  du  parcours  en  
profondeur (1) 

#define N_MAX 20 

typedef struct cellule { 
 int sommet; 
 struct cellule *suiv; 
} Cellule 
typedef cellule* Liste; 

typedef struct { 
 Liste a[N_MAX]; 
 int n; 
} GrapheL; 

typedef int atteint[N_MAX]; 

/*  variables  globales  déclarées: 
GrapheL g; 
atteint m; */ 
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Mise  en  œuvre  en  C  du  parcours  en  
profondeur (2) 

void parcoursProf(int x) { 
 Liste p; 
 m[x]=1; 
 p=g.a[x]; 
 while(p!=NULL) { 
  if(!m[p->sommet]) parcoursProf(p->sommet); 
  p=p->suiv; 
 } 
} 

void main(){ 
 int x; 
 for(x=1;x<g.n;x++) m[x]=0; 
 for(x=1;x<g.n;x++) 
  if(!m[x]) parcoursProf(x); 
} 
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Mise  en  œuvre  en  C  du  parcours  en  
Largeur (1) 

• Principe  de  l’algorithme  :
– Il repose sur la notion de file.
– Lors  de  la  visite  d’un  sommet  s,  tous  ses  successeurs  non  encore

atteints vont être rangés dans la file de manière à conserver la priorité
liée aux distances depuis le sommet origine.
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typedef struct { 
  Liste tete,queue; 
} File; 

void enfiler(int x,File* f); 
int defiler(File* f); 
int fileVide(File* f); 

Mise  en  œuvre  en  C  du  parcours  en  
largeur (2) 

void parcoursLarg(int x) { 
 Liste p; 
 initFileVide(&f); 
 enfiler(x,&f); 
 m[x]=vrai; 
 while(!fileVide(f)) { 
  x=defiler(f); 
  p=g.a[x]; 
  while(p!=NULL) { 
   if (!m[p->sommet]) { 

m[p->sommet]=vrai; 
enfiler(p->sommet,f); 

   } 
   p=p->suiv; 
  } 
 } 
} 
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void main(){ 
 int x; 
 for(x=1;x<g.n;x++) m[x]=0; 
 for(x=1;x<g.n;x++){ 
  if(!m[x]) 

parcoursLarg(x); 
 } 
} 
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Algorithme de Parcours en Largeur 
(Complexité) 

• Identique à celle du parcours en profondeur :
– O(n+m)  pour  les  listes  d’adjacence
– O(n2)  pour  les  matrices  d’adjacence
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Quelques Applications des Parcours 

• Accessibilité :
– Pour connaître les sommets accessibles depuis un sommet donné d'un graphe 

(orienté ou non), il suffit de faire un parcours en profondeur à partir de ce
sommet, en marquant les sommets visités

• Composantes connexes :
– Pour  déterminer  les  composantes  connexes  d’un  graphe,  il  suffit  d’appliquer

d’une  manière  répétitive  le  parcours  DFS  ou  BFS  sur  tous  les  sommets  non
encore  visités.  Il  est  clair  qu’une  composante  connexe  est  constituée  du  sous  
graphe dont les sommets sont visités par un seul appel à DFS ou BFS

• Graphe orienté sans circuit :
– Un graphe orienté comporte un circuit si et seulement si, lors du parcours des 

sommets accessibles depuis un sommet, on retombe sur ce sommet. Pour
savoir si un graphe est sans circuit, il suffit donc d'adapter DFS ou BFS, en
maintenant une liste des sommets critiques (en cours de visite)

• …
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Algorithme du Parcours en Profondeur 
Récursif  

Algorithme parcoursEnProfondeurRecursif 
(g : Graphe, s : Sommet ) 

Entrées  :  un  graphe  et  un  sommet 

Début 
 si non estMarque(s) alors 
   marquer(s) 
   traiter(g,s) 
   pour  chaque  successeur  s’  de  s  faire 

parcoursEnProfondeurRecursif(g,s’) 
   fpour 
  fsi 
Fin 
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Algorithme du Parcours en Largeur 

Algorithme parcoursEnLargeurIteratif (g : Graphe, s : Sommet ) 
 Entrées  :  un  graphe  et  un  sommet  du  graphe 
 Variables locales :  
  f : File<Sommet> 
  sCourant : Sommet 

Début 
  f Å file() 
  f Å enfiler(f,s) 
  tantque non estVide(f) faire 
    sCourant Å obtenirElement(f) 
    f Å defiler(f) 

marquer(sCourant) 
traiter(g,sCourant) 
pour  chaque  successeur  s’  de  sCourant  faire 

si  non  estMarque(s’)  alors 
 f Å enfiler(f,s’) 
fsi 

fpour 
  ftantque 
Fin 
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Graphes (Applications) 
• Algorithmes sur les graphes :

– Algorithmes résolvant les problèmes modélisés par les graphes. Par exemple, les problèmes liés à
l’optimisation  des  connexions  et  du  routage.  On  peut  citer  les  algorithmes  de  calcul  des  arbres  de  
recouvrement  minimaux,  la  recherche  des  plus  courts  chemins,  …

• Tri topologique : 
– Il  s’agit  d’un  tri  linéaire  des  sommets  dans  un  graphe  orienté  acyclique  de  telle  sorte  que  tous  les  arcs  vont  

de  gauche  à  droite.  L’une  de  ses  utilisations  les  plus  courantes  est  de  déterminer  un  ordre  acceptable  dans
l’accomplissement  d’un  certain  nombre  de  tâches  dépendant  les  unes  des  autres

• Coloration de graphes : 
– On  tente  de  donner  une  couleur  aux  sommets  de  façon  à  ce  qu’il  n’y  ait  pas  deux  sommets  de  même  couleur  

reliés  par  un  arc.  Parfois,  on  s’intéresse  à  déterminer  le  nombre  minimum  de  couleurs  réalisant  ce  but.

• Problèmes de cycles hamiltoniens :
– On  travaille  sur  des  cycles  hamiltoniens,  des  chemins  passant  exactement  une  fois  par  tous  les  sommets  d’un  

graphe avant de revenir au sommet de départ. Le problème du voyageur de commerce en est un cas
particulier, dans lequel on recherche le circuit hamiltonien de coût minimum.

• Problèmes de clique :
– On  travaille  sur  des  régions  du  graphe  où  chaque  sommet  est  connecté  d’une  façon  ou  d’une  autre  à  tous  les

autres  sommets.  Ces  régions  s’appelent  des  cliques.  On  recherche  une  clique  maximale  dans  un  graphe,  ou  
une  clique  d’une  certaine  taille,  …

• …
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Parcours en Profondeur et Pile 
(Exemple) 
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Parcours en Largeur et File (Exemple) 
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