
ah-fsr-v2.0

1

Cours

Les Structures de données

SMI4

Année 2019-2020

Pr F.Omary

ah-fsr-v2.0

Plan du cours

 Introduction générale

 Types abstraits de données: TAD

 Première partie : Structures de Données Linéaires

 Listes

 Piles

 Files

 Deuxième partie: Structures de Données non

Linéaires

 Arbres

 Tables de hachage

Graphes

2

ah-fsr-v2.0

Objectif Principal:

Méthodologie de construction de programmes par
abstraction

3

Introduction Générale

ah-fsr-v2.0

Introduction générale(suite)

 La programmation modulaire est très conseillée:

- Elle consiste en la constitution de parties « sous-

programmes », indépendantes les unes des autres

- Ces sous programmes (ou modules) pouvant être réutilisés
même dans d’autres programmes.

- lorsqu’on utilise un module, peu importe pour l’utilisateur

la façon dont les opérations sont programmées. Mais il
importe de connaître les opérations que l’on peut faire sur

les données.

4

ah-fsr-v2.0

Introduction générale (suite)

 Exemple: en langage C on connaît bien la fonction

« scanf » mais on ne sait pas comment elle est

implémentée.

 Mais :Un module n’est rien si l’on dispose pas de

structures de données appropriée pour stocker ses données.

Plus précisément:

Algorithme + Structures de donnés= Programme

5

ah-fsr-v2.0

Types Abstraits de

Données (TADs)

Spécification & Implémentation

6

6

ah-fsr-v2.0

Terminologie

 Spécification: Définition formelle du
comportement d’une structure de

données

 Dit ce que doit faire la structure de données

 Ne dit pas comment faire (choix de
l’implémentation)

 Précis et rigoureux

 Doit éviter de poser des contraintes
d’implémentation.

7

ah-fsr-v2.0

Motivations

 Par analogie avec les types primitifs tels que:

 Le type int : représente un entier.

 IL est fourni avec des opérations : + -

/ * %.

Il n’est pas nécessaire de connaître la représentation interne

ou les algorithmes de ces opérations pour les utiliser.

 En faire de même avec des types plus complexes et

indépendamment du langage de programmation.

 Mettre en place un type dont la représentation interne est

cachée

 Définir les opérations nécessaires pour manipuler les données

8

ah-fsr-v2.0

Motivations(suite)

Autrement dit:

 La conception d’un algorithme est indépendante de

toute implantation

 La représentation des données n'est pas fixée ; celles-ci

sont considérées de manière abstraite

 On s’intéresse à l’ensemble des opérations sur les données,

et aux propriétés des opérations, sans dire comment ces

opérations sont réalisées

9

ah-fsr-v2.0

Définition d’un TAD

 Définition: Un TAD (Data Abstract Type) est un ensemble de valeurs muni

d’opérations sur ces valeurs, sans faire référence à une implémentation particulière.

 Exemples :

 Dans un algorithme qui manipule des entiers, on s’intéresse, non pas à

la représentation des entiers, mais aux opérations définies sur les

entiers : +, -, *, /

 Type booléen, ensemble de deux valeurs (faux, vrai) muni des

opérations : non, et, ou

 Un TAD est caractérisé par :

 sa signature : définit la syntaxe du type et des opérations ;

 sa sémantique : définit les propriétés des opérations.

10

10

ah-fsr-v2.0

Signature d’un TAD

Comporte :
 Le nom du TAD ;

 Les noms des types des objets utilisés par le TAD ;

 Pour chaque opération, l’énoncé des types des objets
qu’elle reçoit et qu’elle renvoie.

Décrite par les paragraphes :
 Type

 Utilise

 Opérations

11

11

ah-fsr-v2.0

Signature d’un TAD

Exemple : TAD Booléen

Type Booléen

Opérations

vrai : → Booléen

faux : → Booléen

non : Booléen → Booléen

et : Booléen x Booléen → Booléen

ou : Booléen x Booléen → Booléen

12

Nom du

TAD

Nom de l'opération

Deux arguments

de type Booléen

Type valeur de

retour

12

ah-fsr-v2.0

Sémantique d’un TAD

Précise :
 Les domaines de définition (ou d’application) des

opérations ;

 Les propriétés des opérations.

Décrite par les paragraphes :
 Préconditions

 Axiomes

13

13

ah-fsr-v2.0

Exemple 1 de TAD

(TAD Booléen)

Type Booléen

Opérations

vrai : → Booléen

faux : → Booléen

non : Booléen → Booléen

et : Booléen × Booléen → Booléen

ou : Booléen × Booléen → Booléen

Préconditions

Axiomes

Soit, a, b : Booléen

non(vrai) = faux

non(non(a)) = a

vrai et a = a

faux et a = faux

a ou b = non(non(a) et non(b))

14

Aucune
précondition

14

ah-fsr-v2.0

Exemple 2 de TAD (TAD Vecteur)

Type Vecteur

Utilise Entier, Elément

Opérations

vect : Entier → Vecteur

changer_ième: Vecteur x Entier x Elément → Vecteur

ième : Vecteur x Entier → Elément

taille : Vecteur → Entier

Préconditions

vect(i) est_défini_ssi i ≥ 0

ième(v,i) est_défini_ssi 0 ≤ i < taille(v)

changer_ième(v,i,e) est_défini_ssi 0 ≤ i< taille(v)

Axiomes

Soit, i, j : Entier, e : Elément, v : Vecteur

si 0 ≤ i < taille(v) alors ième(changer_ième(v,i,e),i) =
e

si 0 ≤ i < taille(v) et 0 ≤ j < taille(v) et i ≠ j

alors ième(changer_ième(v,i,e),j) = ième(v,j)

taille(vect(i)) = i

taille(changer_ième(v,i,e)) = taille(v)

15

15

ah-fsr-v2.0

Opérations

Trois catégories d'opérations (ou de primitives)

 De Constructions : type spécifié apparaît, uniquement, comme résultat ;

 D’Observations : type spécifié apparaît, uniquement, comme argument ;

 De Transformations : type spécifié apparaît, à la fois, comme argument et

comme résultat ;

Constante : opérateur sans argument

16

16

ah-fsr-v2.0

Opérations Partielles

 Une opération peut ne pas être définie partout

 Cela dépend de son domaine de définition

 Ceci est traité dans le paragraphe Préconditions

 Exemple :

Opérations ième et changer_ième du TAD Vecteur

17

17

ah-fsr-v2.0

Réutilisation des TADs

 Quand on définit un type, on peut réutiliser des

types déjà définis

 La signature du type défini est l'union des signatures

des types utilisés enrichie des nouvelles opérations

 Le type hérite des propriétés des types qui le

constituent

 Exemples :

 Types Entier et Elément utilisés par le TAD Vecteur

18

18

ah-fsr-v2.0

Choix des Axiomes

 Le système d'axiomes doit être :

 non contradictoire (consistance)

 complet (complétude suffisante)

19

19

ah-fsr-v2.0

Notion de Structure de

Données
On dit aussi structure de données concrète

Correspond à l’implémentation d’un TAD

Composée d’un algorithme pour chaque
opération, plus éventuellement des données
spécifiques à la structure pour sa gestion

 Un même TAD peut donner lieu à plusieurs
structures de données, avec des performances
différentes

20

20

ah-fsr-v2.0

Implémentation d’un TAD

 Pour implémenter un TAD :

 Déclarer la structure de données retenue pour représenter
le TAD : L’interface

 Définir les opérations primitives dans un langage particulier :
La réalisation

 Exigences :

 Conforme à la spécification du TAD ;

 Efficace en terme de complexité d’algorithme.

 Pour implémenter, on utilise :

 Les types élémentaires ou de base (entiers, caractères, ...)

 Les pointeurs ;

 Les tableaux et les enregistrements ;

 Les types prédéfinis.

 Plusieurs implémentations possibles pour un même TAD

21

21

ah-fsr-v2.0

Implémentation d’un TAD en

C Utiliser la programmation modulaire (voir cours Programmation) :

 Programme découpé en plusieurs fichiers, même de petites
tailles (réutilisabilité, lisibilité, etc.)

 Chaque composante logique (un module) regroupe les
fonctions et types autour d'un même thème.

 Pour chaque module truc, créer deux fichiers :

 fichier truc.h : l'interface (la partie publique) ; contient la
spécification de la structure ;

 fichier truc.c : la définition (la partie privée) ; contient la
réalisation des opérations fournies par la structure. Il contient au
début l'inclusion du fichier truc.h

 Tout module ou programme principal qui a besoin d'utiliser les
fonctions du module truc, devra juste inclure le truc.h

 Un module C implémente un TAD :

 L'encapsulation : détails d'implémentation cachés ; l'interface est
la partie visible à un utilisateur

 La réutilisation : placer les deux fichiers du module dans le
répertoire où l'on développe l'application.

22

ah-fsr-v2.0

Structures de

Données Linéaires

listes, Piles & Files
23

23

ah-fsr-v2.0

Classification

Classification des structures de données

 Une structure de données linéaire est une structure

dans laquelle les éléments (ou données) sont reliés

séquentiellement.

 Une structure de données non linéaires permettent de

relier un élément à plusieurs autres éléments.

24

ah-fsr-v2.0

Structures de Données

Linèaires

 Étude des structures de données linéaires : listes, piles et
files

 Une structure linéaire est un arrangement linéaire
d'éléments liés par la relation successeur

 Exemple : Un tableau (la relation successeur est implicite).

 Pour chaque structure, on présente :

 une définition abstraite ;

 les différentes représentations en mémoire ;

 une implémentation en langage C ;

 quelques applications.

25

25

ah-fsr-v2.0

Les Listes

26

26

ah-fsr-v2.0

Notion de Liste (List) (1)

 Généralisation des piles et des files

 Structure linéaire dans laquelle les éléments peuvent être traités les uns à la suite

des autres

 Ajout ou retrait d'éléments n’importe où dans la liste

 Accès à n'importe quel élément

 Une liste est une suite finie, éventuellement vide, d'éléments de même

type repérés par leur rang dans la liste

 Chaque élément de la liste est rangé à une certaine place

 Exemple :

 une liste de 5 entiers L = <4, 1, 7, 3, 1> (place de rang 1 contient la valeur 4)

 une liste vide L2 = <>

27

ah-fsr-v2.0

Notion de Liste (List) (2)

 Les éléments d'une liste sont donc ordonnés en
fonction de leur place

On définit une fonction notée succ qui,
appliquée à toute place sauf la dernière, fournit
la place suivante

 Le nombre total d'éléments, et par conséquent
de places, est appelé longueur de la liste

Une liste vide est d'une longueur égale 0

28

28

ah-fsr-v2.0

Exemples de Liste
29

Liste vide

Accès à l'élément de rang 3

dans une liste à n éléments

Suppression de l'élément au rang 2

→ longueur(liste) =n-1

Ajout de l'élément x au rang 3

→ longueur(liste) =n+1

29

ah-fsr-v2.0

Type Abstrait Liste (1)

Type Liste

Utilise Elément, Booléen, Place

Opérations

liste_vide : → Liste

longueur : Liste → Entier

insérer : Liste x Entier x Elément → Liste

supprimer : Liste x Entier → Liste

kème : Liste x Entier → Elément

accès : Liste x Entier → Place

contenu : Liste x Place → Elément

succ : Liste x Place → Place

Préconditions

insérer(l,k,e) est-défini-ssi 1 ≤ k ≤ longueur(l)+1

supprimer(l,k) est-défini-ssi 1 ≤ k ≤ longueur(l)

kème(l,k) est-défini-ssi 1 ≤ k ≤ longueur(l)

accès(l,k) est-défini-ssi 1 ≤ k ≤ longueur(l)

succ(l,p) est-défini-ssi p ≠ accès(l,longueur(l))

30

k = longueur(l) + 1

signifie ajout en fin de liste

30

ah-fsr-v2.0

Type Abstrait Liste (2)
Axiomes

Soit, e : Elément, l, l' : Liste, k, j : Entier

si l = liste_vide alors longueur(l) = 0

sinon si l = insérer(l',k,e) alors longueur(l)=longueur(l')+1

sinon soit l = supprimer(l',k)alors longueur(l)=longueur(l')-1

si 1 ≤ j < k alors kème(insérer(l,k,e),j) = kème(l,j)

sinon si j = k alors kème(insérer(l,k,e),j) = e

sinon kème(insérer(l,k,e),j) = kème(l,j-1)

si 1 ≤ j < k alors kème(supprimer(l,k),j) = kème(l,j)

sinon kème(supprimer(l,k),j) = kème(l,j+1)

succ(l,accès(l,k)) = accès(l,k+1)

contenu(l,accès(l,k)) = kème(l,k)

si 1 ≤ k < j ≤ longueur(l) alors

contenu(l,accès(supprimer(l,j),k)) = contenu(l,accès(l,k))

si 1 ≤ j ≤ k ≤ longueur(l) alors

contenu(l,accès(supprimer(l,j),k) = contenu(l,accès(l,k+1))

si 1 ≤ j < k ≤ 1+longueur(l) alors

contenu(l,accès(insérer(l,k,e),j) = contenu(l,accès(l,j))

si 1 ≤ k = j ≤ 1+longueur(l) alors

contenu(l,accès(insérer(l,k,e),j) = e

si 1 ≤ k < j ≤ 1+longueur(l) alors

contenu(l,accès(insérer(l,k,e),j) = contenu(l,accès(l,j-1))

31

31

ah-fsr-v2.0

Extension Type Abstrait Liste
Extension Type Liste

Opérations

concaténer : Liste x Liste → Liste

est_présent : Liste x Elément → Booléen

Préconditions

Axiomes

Soit, e : Element, l, l' : Liste, k, j : Entier

longueur(concaténer(l,l')) = longueur(l) + longueur(l')

si k ≤ longueur(l)

alors kème(concaténer(l,l'),k)= kème(l,k)

sinon kème(concaténer(l,l'),k)= kème(l',k-longueur(l))

si longueur(l) = 0 alors est_présent(l,e) = faux

sinon si e = kème(l,1) alors est_présent(l,e) = vrai

sinon est_présent(supprimer(l,1),e)= est_présent(l,e)

32

32

ah-fsr-v2.0

Opérations sur une Liste (1)

 liste_vide : → Liste

 Opération d'initialisation ; la liste créée est vide

 longueur : Liste → Entier

 Retourne le nombre d'éléments dans la liste

 insérer : Liste x Entier x Elément : → Liste

 insérer(L,j,e): liste obtenue à partir de L en remplaçant la
place de rang j par une place contenant e, sans modifier places
précédentes et en décalant places suivantes

 supprimer : Liste x Entier : → Liste

 supprimer(L,j): liste obtenue à partir de L en supprimant la
place de rang j et son contenu, sans modifier places précédentes
et en décalant places suivantes

33

33

ah-fsr-v2.0

Opérations sur une Liste (2)

 kème : Liste x Entier → Elément

 Fournit l'élément de rang donné dans une liste

 accès : Liste x Entier → Place

Connaître la place de rang donné : accès(L,k) est la
place de rang k dans la liste L

 contenu : Liste x Place → Elément

Connaître l'élément d'une place donnée. contenu(L,p)
= e : dans la liste L, la place p contient l'élément e

 succ : Liste x Place → Place

 Passer de place en place. succ(L,p) = p' : dans la liste
L, la place qui succède à la place p est la place p'.
Opération indéfinie si place en entrée est la dernière place
de la liste

34

34

ah-fsr-v2.0

Opérations Auxiliaires sur une Liste

concaténer : Liste x Liste → Liste

 Accroche la deuxième liste en entrée à la fin de la première liste

 est_présent : Liste x Elément → Booléen

 Teste si un élément figure dans une liste

35

35

ah-fsr-v2.0

Représentation Contiguë

d'une Liste

 Les éléments sont rangés les uns à côté des autres dans
un tableau

 La ième case du tableau contient le ième élément de la liste

 Le rang est donc égal à la place ; ce sont des entiers

 La liste est représentée par une structure(ou
enregistrement):

 Un tableau représente les éléments

 Un entier représente le nombre d'éléments dans la liste

Note :La longueur maximale, MAX_LISTE, de la liste doit être
connue

36

36

ah-fsr-v2.0

Ajout dans une Liste Contiguë

Exemple (1)

37

Valeur à ajouter au

deuxième rang

Liste avant insertion de la valeur 5

Faire de la place par

Décalage vers la droite

10tab

0 1 2 3 4 5 6 7

15207

5

37

ah-fsr-v2.0

Ajout dans une Liste Contiguë

Exemple (2)

38

Liste après insertion de la valeur 5

Valeur ajoutée au

deuxième rang

10tab

0 1 2 3 4 5 6 7

152075

38

ah-fsr-v2.0

Suppression dans une Liste Contiguë

Exemple (1)
39

Valeur 10 à supprimer

(premier rang)

Liste avant suppression de la valeur 10

Faire un décalage vers la

gauche d'un rang

10tab

0 1 2 3 4 5 6 7

2075

10

15

39

ah-fsr-v2.0

Suppression dans une Liste Contiguë

Exemple (2)
40

Liste après suppression de la valeur 10

5tab

0 1 2 3 4 5 6 7

207 15

40

ah-fsr-v2.0

Représentation contigüe d’une Liste

 Rappel sur la notion :Enregistrement

L’enregistrement est l’outil principal de construction de structures de

données complexes.

Il permet de regrouper dans une structure l’ensemble des

caractéristiques associées à une entité.

 Exemple: si un client est caractérisé par un nom, une adresse et un

code postale alors la notion d’enregistrement permettra de

regrouper dans une seule structure l’ensemble de ces

caractéristiques, pourtant de natures différentes

 Autrement dit: une enregistrement permet de regrouper des entités

hétérogènes mais liés logiquement les unes des autres.

41

ah-fsr-v2.0

 Définition1:un enregistrement est un ensemble d’éléments de types

différents repérés par un nom. Ses éléments sont appelés des

champs

 Définition2: un enregistrement (appelé aussi structure dans certains

langages) est un type complexe construit à partir de types plus

simples.

 IL existe trois catégories d’enregistrement (ou structures):

Structure anonyme: elle n’est pas réutilisable puisqu’elle ne possède

pas de nom:

Exemple: Struct {

float re;

float im;

} C1, C2.

42

Représentation contigüe d’une Liste

ah-fsr-v2.0

 L’accès aux champs s’effectue ainsi:

C1.re=4.5

C1.im=6

 Une autre utilisation de ce type d’enregistrement suppose sa

redéfinition.

 Donc pour pouvoir la réutiliser, il faut la munir d’un nom.

 Structure semi-nommée

Struct Complexe {

float re;

float im;

} C1, C2

43

Représentation contigüe d’une Liste

ah-fsr-v2.0

 Structure nommée:

 le type Complexe peut être construit et nommé ainsi:

typedef struct {

float re;

float im;

} Complexe;

S’il est nécessaire de déclarer cela se fera comme suit:

Complexe C1, C2;

 Composition d’enregistrement:

 Exemple:

 //définition du type Adresse

44

Représentation contigüe d’une Liste

ah-fsr-v2.0

 //définition du type Adresse

 Typedef struct {

int numero;

char nomRue[50]

char codePostal[5]

char ville[20]

} Adresse

 // définition du type client

 Typedef struct {

char nom[15]

char prenom[15]

Adresse adresse;

} Client

45

Représentation contigüe d’une Liste

ah-fsr-v2.0

 L’accès aux champs de ces structures imbriquées

peut nécessiter plusieurs occurrences de l’opérateur

point(.)

 Exemple:

//déclaration de trois variables

Client A, B, C;

L’affectation d’un numéro de rue dans le champ

numéro du champ adresse d’un client ‘A’ se fera

comme suit:

A.adresse.numero=105 ;

46

Représentation contigüe d’une Liste

ah-fsr-v2.0

Liste Contiguë (Contiguous List)
47

/* Liste contiguë en C */

// taille maximale liste

#define MAX_LISTE 10

// type des éléments

typedef int Element;

// type Place

typedef int Place;

// type Liste

typedef struct {

Element tab[MAX_LISTE];

int taille;

} Liste;

0 1 2 3 4 5 6 7 8 9

10 6 30 40 50tab

taille 5

Liste

Tableau de taille

maximale = 10

Nombre d'éléments

dans la liste

La place du rang 3

contient la valeur 40

47

ah-fsr-v2.0

Spécification d'une Liste Contiguë
/* fichier "TListe.h" */

#ifndef _LISTE_TABLEAU

#define _LISTE_TABLEAU

// Définition du type liste (implémentée par tableau)

#define MAX_LISTE 100 /* taille maximale de la liste */

typedef int element; /* les éléments sont des int */

typedef int Place; /* la place = le rang (un entier) */

typedef struct {

element tab[MAX_LISTE]; /* les éléments de la liste */

int taille; /* nombre d'éléments dans la liste */

} Liste;

// Déclaration des fonctions gérant la liste

Liste liste_vide (void);

int longueur (Liste l);

Liste inserer (Liste l, int i, element e);

Liste supprimer (Liste l, int i);

element keme (Liste l, int k);

Place acces (Liste l, int i);

element contenu (Liste l, Place i);

Place succ (Liste l, Place i);

#endif

48

type Liste : une structure

à deux champs

48

ah-fsr-v2.0

Algorithme : option1:Modélisation contigüe statique

 Constante Max_Liste=1000

Type Liste=Structure

Tab[Max_Liste]: Element

Taille: entier

Fin strucure

 /*insertion d’un élément dans une liste L*/

 Fonction insérer (Var L:Liste, rang: entier, e:Element):
entier

 Var i : entier

49

ah-fsr-v2.0

Début

SI rang <1 ou rang>(L.taille+1) ou L.taille=Max_liste alors

Erreur

Finsi

Pour i depuis L.taille JSQ rang faire Pas-1

L.tab[i]  L.tab[i-1]

Finpour // Cette boucle décale les élts à droite de la rang

L. tab[rang-1]  e // insertion de l’élèment e à sa place

L.taille  L.taille+1

Retourne (L)

FIN

50

Algorithme : option1:Modélisation contigüe statique

ah-fsr-v2.0

Représentation Chaînée d'une Liste

 Les éléments ne sont pas rangés les uns à côté
des autres

 La place d'un élément est l'adresse d'une structure qui
contient l'élément ainsi que la place de l'élément
suivant

 Utilisation de pointeurs pour chaîner entre eux les
éléments successifs

 La liste est représentée par un pointeur sur une
structure en langage C

 Une structure contient un élément de la liste et un
pointeur sur l'élément suivant

 La liste est déterminée par un pointeur sur son premier
élément

 La liste vide est représentée par la constante
prédéfinie NULL

51

51

ah-fsr-v2.0

Ajout dans une Liste Chaînée Exemple 1
52

5

10 20

Valeur à ajouter

entre les deux

cellules

L

Liste avant insertion de la valeur 5

52

ah-fsr-v2.0

Ajout dans une Liste Chaînée

Exemple (2)

53

10 20

L

Création d'une nouvelle cellule

contenant la valeur 5 et mise à jour des liens

5

53

ah-fsr-v2.0

Ajout dans une Liste Chaînée

Exemple (3)

54

1010 205

L

Liste après insertion de la valeur 5

54

ah-fsr-v2.0

Suppression dans une Liste Chaînée

Exemple (1)
55

Supprimer la

valeur 5

10 205

L

Liste avant suppression de la valeur 5

55

ah-fsr-v2.0

Suppression dans une Liste Chaînée

Exemple 2°

56

10 205

L Mettre à jour les liens et Libérer espace

occupé par la cellule contenant la

valeur 5

56

ah-fsr-v2.0

Suppression dans une Liste Chaînée

Exemple (3)
57

10 20

L

Liste après suppression de la valeur 5

57

ah-fsr-v2.0

Liste Chaînée (Linked List)
58

L

List

e

10 6

50

/* Liste chaînée en C */

// type des éléments

typedef int element;

// type Place

typedef struct Cellule* Place;

// type Cellule

typedef struct Cellule {

element valeur;

struct Cellule *suivant;

} Cellule;

// type Liste

typedef Cellule *Liste;

Premier élément de la
liste pointée par L

Cellule contenant
la valeur 30

Pointeur sur
cellule suivante

Pointeur
NULL

Dernier élément de

la liste

58

ah-fsr-v2.0

Spécification d'une Liste Chaînée
/* fichier "CListe.h" */

#ifndef _LISTE_CHAINEE

#define _LISTE_CHAINEE

// Définition du type liste (implémentée par pointeurs)

typedef int element; /* les éléments sont des int */

typedef struct cellule *Place; /* la place = adresse cellule */

typedef struct cellule {

element valeur; /* un éléments de la liste */

struct cellule *suivant; /* adresse cellule suivante */

} Cellule;

typedef Cellule *Liste;

// Déclaration des fonctions gérant la liste

Liste liste_vide (void);

int longueur (Liste l);

Liste inserer (Liste l, int i, element e);

Liste supprimer (Liste l, int i);

element keme (Liste l, int k);

Place acces (Liste l, int i);

element contenu (Liste l, Place i);

Place succ (Liste l, Place i);

#endif

59

type Liste : un pointeur

de Cellule

59

ah-fsr-v2.0

Réalisation d'une Liste Chaînée (1)

Liste liste_vide(void) {

return NULL;

}

int longueur(Liste l) {

int taille=0;

Liste p=l;

while (p) {

taille++;

p=p->suivant;

}

return taille;

}

Liste inserer(Liste l, int i, element e) {

// précondition :1 ≤ i < longueur(l)+1

if (i<1 || i>longueur(l)+ 1 {

printf("Erreur : rang non valide !\n");

exit(-1);

}

Liste pc = (Liste)malloc(sizeof(Cellule));

pc->valeur=e;

pc->suivant=NULL;

if (i==1){

pc->suivant=l;

l=pc;

}

else {

int j;

Liste p=l;

for (j=1; j<i-1; j++)

p=p->suivant;

pc->suivant=p->suivant;

p->suivant=pc;

}

return l;

}

Place acces(Liste l, int k) {

// pas de sens que si 1 ≤ k ≤ longueur(l)

int i;

Place p;

if (k<1 || k>longueur(l)) {

printf("Erreur: rang invalide !\n");

exit(-1);

}

if (k == 1)

return l;

else {

p=l;

for(i=1; i<k; i++)

p=p->suivant;

return p;

}

}

60

ah-fsr-v2.0

Réalisation d'une Liste Chaînée (2)

element contenu(Liste l, Place p) {

// pas de sens si longueur(l)=0 (liste vide)

if (longueur(l) == 0) {

printf("Erreur: liste vide !\n");

exit(-1);

}

return p->valeur;

}

Place succ(Liste l, Place p) {

// pas de sens si p dernière place de liste

if (p->suivant == NULL) {

printf("Erreur: suivant dernière place!\n");

exit(-1);

}

return p->suivant;

}

element keme(Liste l, int k) {

// pas de sens que si 1 <= k <= longueur(l)

if (k<1 || k>longueur(l)) {

printf("Erreur : rang non valide !\n");

exit(-1);

}

return contenu(l, acces(l,k));

}

Liste supprimer(Liste l, int i) {

// précondition : 1 ≤ i ≤ longueur(l)

int j;

Liste p;

if (i<1 || i>longueur(l)) {

printf("Erreur: rang non valide!\n");

exit(-1);

}

if (i == 1) {

p=l;

l=l->suivant;

}

else {

Place q;

q=acces(l,i-1);

p=succ(l,q);

q->suivant=p->suivant;

}

free(p);

return l;

}

61

61

ah-fsr-v2.0

Remarques (1)

Ajout au milieu d'une liste connaissant la place

qui précède celle où s'effectuera l'ajout
 ajouter : Liste x Place x Elément → Liste

 ajouter(L,p,e) : liste obtenue à partir de L en ajoutant une place

contenant l'élément e, juste après la place p

Enlever un élément d'une liste connaissant sa

place
 enlever : Liste x Place → Liste

 enlever(L,p) : liste obtenue à partir de L en supprimant la place p et son

contenu

62

62

ah-fsr-v2.0

Liste ajouter(Liste l,

Place p, element e) {

Liste pc;

pc=(Liste)malloc(sizeof(Cellule));

if (pc == NULL) {

printf("Erreur: Problème de "

"mémoire\n");

exit(-1);

}

pc->valeur = e;

pc->suivant = p->suivant;

p->suivant = pc

return l;

}

Liste enlever(Liste l, Place p) {

// p pointe élément à supprimer

Place pred; // pred pointe avant p

if (p == l)

l = succ(l,p);

else {

pred=l;

while (succ(l,pred) != p)

pred = succ(l,pred);

pred->suivant = p->suivant;

}

free(p);

return l;

}

63

63

Remarques

ah-fsr-v2.0

Variantes de Listes Chaînées

 Liste avec tête fictive

 Liste chaînée circulaire

 Liste doublement chaînée

 Liste doublement chaînée circulaire

 Liste triée

64

64

ah-fsr-v2.0

Liste avec Tête Fictive

Eviter d'avoir un traitement particulier pour le

cas de la tête de liste (opérations d'insertion

et de suppression)
 Mettre en tête de liste une zone qui ne contient pas de valeur et reste

toujours en tête

65

65

ah-fsr-v2.0

Liste Circulaire

Le suivant du dernier élément de la liste est le

premier élément

66

66

ah-fsr-v2.0

Liste Doublement Chaînée

Faciliter le parcours de la liste dans les

deux sens
 utiliser un double chaînage ; chaque place repérant à la fois la place

qui la précède et celle qui la suit

67

Pointeur vers le précédent de
l'élément e3

Pointeur vers le suivant de
l'élément e3

67

ah-fsr-v2.0

Liste Triée

 Dans cette liste, il existe un ordre total sur les clés

 L’ordre des enregistrements dans la liste respecte l’ordre sur les clés

68

10 2015

L

68

ah-fsr-v2.0

Complexité

n désigne le nombre d'éléments d'une liste

69

69

Les Piles & Files

(Stacks)
Pr F.Omary

FSR-Université MohammedV

2019-2020

1

Notion de Pile (Stack)

 Les piles sont très utilisées en informatique

 Notion intuitive :

 pile d'assiettes, pile de dossiers à traiter, …

 Une pile est une structure linéaire permettant de stocker et de

restaurer des données selon un ordre LIFO (Last In, First Out ou

« dernier entré, premier sorti »)

 Dans une pile :

 Les insertions (empilements) et les suppressions (dépilements) sont

restreintes à une extrémité appelée sommet de la pile.

2

Exemple de Pile

 sommet D

 sommet C C sommet C

 sommet E E E E

 sommet A A A A A
sommet B B B B B B

3
Empiler B

Empiler A

Empiler E

Empiler C

Empiler D

Dépiler D

Type Abstrait Pile

Type Pile

Utilise Elément, Booléen

Opérations
pile_vide : → Pile

est_vide : Pile → Booléen

empiler : Pile x Elément → Pile

dépiler : Pile → Pile

sommet : Pile → Elément

Préconditions
dépiler(p) est-défini-ssi est_vide(p) = faux

sommet(p) est-défini-ssi est_vide(p) = faux

Axiomes
Soit, e : Element, p : Pile

est_vide(pile_vide) = vrai

est_vide(empiler(p,e)) = faux

dépiler(empiler(p,e)) = p

sommet(empiler(p,e)) = e

4

Opérations sur une Pile

 pile_vide : → Pile

 opération d'initialisation ; la pile créée est vide

 est_vide : Pile → Booléen

 teste si pile vide ou non

 sommet : Pile → Elément

 permet de consulter l'élément situé au sommet ; n'a pas de sens
si pile vide

 empiler : Pile x Elément → Pile

 ajoute un élément dans la pile

 dépiler : Pile → Pile

 enlève l'élément situé au sommet de la pile ; n'a pas de sens si
pile vide

5

Représentation d'une Pile

 Représentation contiguë (par tableau) :

 Les éléments de la pile sont rangés dans un tableau

 Un entier représente la position du sommet de la pile

 Représentation chaînée (par pointeurs) :

 Les éléments de la pile sont chaînés entre eux (voir listes chaînées)

 Un pointeur sur le premier élément désigne la pile et représente le

sommet de cette pile

 Une pile vide est représentée par le pointeur NULL

6

Pile Contiguë

6

5

4

10 3

20 2

5 1

50 0

7

3
sommet

elements

Pil

e

/* Pile contiguë en C */

// taille maximale pile

#define MAX_PILE 7

// type des éléments

typedef int Element;

// type Pile

typedef struct {

Element elements[MAX_PILE];

int sommet;

} Pile;Tableau de taille
maximale 7

Spécification d'une Pile

Contiguë/* fichier "Tpile.h" */

#ifndef _PILE_TABLEAU

#define _PILE_TABLEAU

#include "Booleen.h"

// Définition du type Pile (implémentée par un tableau)

#define MAX_PILE 7 /* taille maximale d'une pile */

typedef int Element; /* les éléments sont des int */

typedef struct {

Element elements[MAX_PILE]; /* les éléments de la pile */

int sommet; /* position du sommet */

} Pile;

// Déclaration des fonctions gérant la pile

Pile pile_vide ();

Pile empiler (Pile p, Element e);

Pile depiler (Pile p);

Element sommet (Pile p);

Booleen est_vide (Pile p);

#endif

8

type Pile : une

structure à deux

champs

Réalisation d'une Pile Contiguë

/* fichier "Tpile.c" */

#include "Tpile.h"

// Définition des fonctions gérant la pile

// initialiser une nouvelle pile

Pile pile_vide() {

Pile p;

p.sommet = -1;

return p;

}

// tester si la pile est vide

Booleen est_vide(Pile p) {

if (p.sommet == -1) return vrai;

return faux;

}

// Valeur du sommet de pile

Element sommet(Pile p) {

/* pré-condition : pile non vide ! */

if (est_vide(p)) {

printf("Erreur: pile vide !\n");

exit(-1);

}

return (p.elements)[p.sommet];

}

// ajout d'un élément

Pile empiler(Pile p, Element e) {

if (p.sommet >= MAX_PILE-1) {

printf("Erreur : pile pleine !\n");

exit(-1);

}

(p.sommet)++;

(p.elements)[p.sommet] = e;

return p;

}

// enlever un élément

Pile depiler(Pile p) {

/* pré-condition : pile non vide !*/

if (est_vide(p)) {

printf("Erreur: pile vide !\n");

exit(-1);

}

p.sommet--;

return p;

}

9

Exemple d'Utilisation d'une Pile Contiguë

/* fichier "UTpile.c" */

#include <stdio.h>

#include "Tpile.h"

int main () {

Pile p = pile_vide();

p = empiler(p,50);

p = empiler(p,5);

p = empiler(p,20);

p = empiler(p,10);

printf("%d au sommet après empilement de 50, 5, 20 et"

" 10\n", sommet(p));

p = depiler(p);

p = depiler(p);

printf("%d au sommet après dépilement de 10 et 20\n",

sommet(p));

return 0;

}

10

Pile chaînée
11

p

Pil

e

10 20

50

/* Pile chaînée en C */

// type des éléments

typedef int element;

// type Cellule

typedef struct cellule {

element valeur;

struct cellule *suivant;

} Cellule;

// type Pile

typedef Cellule *Pile;

Sommet de la pile

pointée par p

Cellule contenant

la valeur 5

Pointeur sur cellule
suivante

Pointeur
NULL

Complexité

 Les opérations sur les piles sont toutes en O(1)

 Ceci est valable pour les deux représentations proposées

12

Applications d'une Pile

Exemples (1)
 Vérification du bon équilibrage d’une expression

parenthèsée :

 Pour vérifier qu'une expression parenthèsée est équilibrée, à
chaque rencontre d'une parenthèse ouvrante on l'empile et à
chaque rencontre d'une parenthèse fermante on dépile ;

 Evaluation des expressions arithmétiques postfixées
(expressions en notation polonaise inverse) :

 Pour évaluer une telle expression, on applique chaque opérateur
aux deux opérandes qui le précédent. Il suffit d'utiliser une pile
dans laquelle les opérandes sont empilés, alors que les opérateurs
dépilent deux éléments, effectuent l'opération et empilent le
résultat. Par exemple, l'expression postfixée 2 3 5 * + 1 – s'évalue
comme suit : ((2 (3 5 *) +) 1 –) = 16 ;

 Conversion d’une expression en notation infixe
(parenthèsée) en notation postfixée ;

13

Applications d'une Pile

Exemples (2)

Gestion par le compilateur des appels de
fonctions :
 les paramètres, l’adresse de retour et les variables locales sont stockés dans

la pile de l’application

Mémorisation des appels de procédures
imbriquées au cours de l’exécution d’un
programme, et en particulier les appels des
procédures récursives ;

Parcours « en profondeur » de structures
d'arbres (voir arbres) ;

14

Les Files (Queues)
15

Notion de File (Queue)

 Les files sont très utilisées en informatique

 Notion intuitive :
 File d'attente à un guichet, file de documents à imprimer, …

 Une file est une structure linéaire permettant de stocker et de
restaurer des données selon un ordre FIFO (First In, First Out ou
« premier entré, premier sorti »)

 Dans une file :
 Les insertions (enfilements) se font à une extrémité appelée queue de

la file et les suppressions (défilements) se font à l'autre extrémité
appelée tête de la file

16

Exemple de File

 queue

 queue D queue

 queue C C D

 queue E E E C
queue A A A A E

tête B tête B tête B tête B tête B tête A

17
Enfiler B

Enfiler A

Enfiler E

Enfiler C

Enfiler D

Défiler B

Type Abstrait File

Type File

Utilise Elément, Booléen

Opérations

file_vide : → File

est_vide : File → Booléen

enfiler : File x Elément → File

défiler : File → File

tête : File → Elément

Préconditions

défiler(f) est-défini-ssi est_vide(f) = faux

tête(f) est-défini-ssi est_vide(f) = faux

Axiomes

Soit, e : Element, f : File

est_vide(file_vide) = vrai

est_vide(enfiler(f,e)) = faux

si est_vide(f) = vrai alors tête(enfiler(f,e)) = e

si est_vide(f) = faux alors tête(enfiler(f,e)) = tête(f)

si est_vide(f) = vrai alors défiler(enfiler(f,e)) = file_vide

si est_vide(f) = faux

alors défiler(enfiler(f,e)) = enfiler(défiler(f),e)

18

Opérations sur une File

 file_vide : → File

 opération d'initialisation ; la file créée est vide

 est_vide : File → Booléen

 teste si file vide ou non

 tête : File → Elément

 permet de consulter l'élément situé en tête de file ; n'a pas de
sens si file vide

 enfiler : File x Elément → File

 ajoute un élément dans la file

 défiler : File → File

 enlève l'élément situé en tête de file ; n'a pas de sens si file vide

19

Représentation d'une File

 Représentation contiguë (par tableau) :

 Les éléments de la file sont rangés dans un tableau

 Deux entiers représentent respectivement les positions de la tête et de la queue
de la file

 Représentation chaînée (par pointeurs) :

 Les éléments de la file sont chaînés entre eux (voir listes chaînées)

 Un pointeur sur le premier élément désigne la file et représente la tête de cette
file

 Un pointeur sur le dernier élément représente la queue de file

 Une file vide est représentée par le pointeur NULL

20

Représentation Contiguë d'une File

(par tableau simple)

 tête de file : position précédant premier élément

 queue de file : position du dernier élément

 Initialisation : tête  queue  -1

 Inconvénient : on ne peut plus ajouter des éléments dans la file, alors
qu'elle n'est pas pleine !

21

Représentation Contiguë d'une File

(par tableau simple) (1)22

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

6

6

0 1 2 3 4 5 6 7 8 9

10 20 30 40 50tab

tete

queue

1

6

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

-1

-1

0 1 2 3 4 5 6 7 8 9

5 2 10 20 30 40 50tab

tete

queue

-1

6File initialement vide de

taille maximale = 10
(1)

(3) (4)

File après ajout de 5, 2,

10, 20, 30, 40 et 50
(2)

File après suppression

de 5 et 2

File après suppression

de 10, 20, 30, 40 et 50

Représentation Contiguë d'une File

(par tableau simple) (2)23

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

6

6

(5)

File vide

0 1 2 3 4 5 6 7 8 9

5 15 10tab

tete

queue

6

9 File après ajout de

5, 15 et 10
(6)

0 1 2 3 4 5 6 7 8 9

10tab

tete

queue

8

9 On ne peut plus

ajouter dans la file !!
(8)

0 1 2 3 4 5 6 7 8 9

10tab

tete

queue

8

9 File après

suppression 5 et 15
(7)

File Contiguë24

/* File contiguë en C */

// taille maximale file

#define MAX_FILE 10

// type des éléments

typedef int Element;

// type File

typedef struct {

Element tab[MAX_FILE];

int tete;

int queue;

} File;

0 1 2 3 4 5 6 7 8 9

10 20 30 40 50tab

tete

queue

1

6

File

Tableau de taille

maximale 10

Position qui précède le

premier élément de la file

Position du dernier

élément de la file

Spécification d'une File Contiguë

/* fichier "Tfile.h" */

#ifndef _FILE_TABLEAU

#define _FILE_TABLEAU

#include "Booleen.h"

// Définition du type File (implémentée par un tableau simple)

#define MAX_FILE 10 /* taille maximale d'une file */

typedef int Element; /* les éléments sont des int */

typedef struct {

Element tab[MAX_FILE]; /* les éléments de la file */

int tete; /* position précédant premier élément */

int queue; /* position dernier élément */

} File;

// Déclaration des fonctions gérant la pile

File file_vide ();

File enfiler (File f, Element e);

File defiler (File f);

Element tete (File f);

Booleen est_vide (File f);

#endif

25

type File : une structure

à trois champs

Réalisation d'une File

Contiguë
/* fichier "Tfile.c" */

#include "Tfile.h"

// Définition des fonctions gérant la file

// initialiser une nouvelle file

File file_vide() {

File f;

f.queue = f.tete = -1;

return f;

}

// tester si la file est vide

Booleen est_vide(File f) {

if (f.tete == f.queue) return vrai;

return faux;

}

// valeur en tête de file

Element tete(File f) {

/* pré-condition : file non vide ! */

if (est_vide(f)) {

printf("Erreur: file vide !\n");

exit(-1);

}

return (f.tab)[f.tete+1];

}

// ajout d'un élément

File enfiler(File f, Element e) {

if (f.queue == MAX_FILE-1) {

printf("Erreur: on ne peut ajouter !\n");

exit(-1);

}

(f.queue)++;

(f.tab)[f.queue] = e;

return f;

}

// enlever un élément

File defiler(File f) {

/* pré-condition : file non vide !*/

if (est_vide(f)) {

printf("Erreur: file vide !\n");

exit(-1);

}

f.tete++;

return f;

}

26

Représentation Contiguë d'une File

(par tableau simple avec décalage)

 Décaler les éléments de la file après chaque suppression

 Inconvénient : décalage très coûteux si la file contient plusieurs

d'éléments

27

Représentation Contiguë d'une File

(par tableau simple avec décalage) 28

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

-1

-1

0 1 2 3 4 5 6 7 8 9

10 2

0

30 40 50tab

tete

queue

-1

4

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

-1

-1

0 1 2 3 4 5 6 7 8 9

5 2 10 20 30 40 50tab

tete

queue

-1

6File initialement vide de

taille maximale = 10
(1)

(3) (4)

File après ajout de 5, 2,

10, 20, 30, 40 et 50
(2)

File après suppression

de 5 et 2

File après suppression

de 10, 20, 30, 40 et 50

Représentation Contiguë d'une File

(par tableau simple avec décalage) 29

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

-1

-1

(5)

File vide

0 1 2 3 4 5 6 7 8 9

5 15 10tab

tete

queue

-1

2 File après ajout de

5, 15 et 10
(6)

0 1 2 3 4 5 6 7 8 9

10 5 6 20 8 35 25 33 4 80tab

tete

queue

-1

9
Après ajout de 5, 6, 20, 8,

35, 25, 33, 4 et 80, File

pleine!!(8)

0 1 2 3 4 5 6 7 8 9

10tab

tete

queue

-1

0 File après

suppression 5 et 15
(7)

Représentation Contiguë d'une File

(Par tableau circulaire)

Gérer le tableau de manière

circulaire : suivant de l'élément à la
position iest l'élément à la position (i+1)

modulo MAX_FILE

Convention : file autorisée à contenir

MAX_FILE-1 éléments

Initialisation : tête  queue  0

30

File Contiguë Circulaire

(Exemple)

31

Représentation d'une File Contiguë

circulaire(1)32

0 1 2 3 4 5 6 7 8 9

tab

tete

queue

7

7

0 1 2 3 4 5 6 7 8 9

10 20 30 40 50

tete

queue

2

7

0 1 2 3 4 5 6 7 8 9

tete

queue

0

0

0 1 2 3 4 5 6 7 8 9

5 2 10 20 30 40 50tab

tete

queue

0

7
File initialement vide

qui peut contenir au

plus 9 éléments

(4)

File après ajout de 5, 2,

10, 20, 30, 40 et 50
(2)

File après suppression

de 5 et 2

File après suppression

de 10, 20, 30, 40 et 50

Réalisation d'une File Contiguë

Circulaire (2)

33

0 1 2 3 4 5 6 7 8 9

tete

queue

7

7
File vide

0 1 2 3 4 5 6 7 8 9

10 5 15tab

tete

queue

7

0 File après ajout de

5, 15 et 10
(6)

0 1 2 3 4 5 6 7 8 9

10 5 6 20 8 35 25 33 15tab

tete

queue

8

7
Après ajout de 5, 6, 20, 8,

35, 25, et 33,

File pleine!!(8)

0 1 2 3 4 5 6 7 8 9

10 15

tete

queue

8

0 File après

suppression 5

Réalisation d'une File Contiguë Circulaire
34

/* fichier "TCfile.c" */

#include "Tfile.h"

// Définition des fonctions gérant la file

// initialiser une nouvelle file

File file_vide() {

File f;

f.queue = f.tete = 0;

return f;

}

// tester si la file est vide

Booleen est_vide(File f) {

if (f.tete == f.queue) return vrai;

return faux;

}

// valeur en tête de file

Element tete(File f) {

/* pré-condition : file non vide ! */

if (est_vide(f)) {

printf("Erreur: file vide !\n");

exit(-1);

}

return (f.tab)[(f.tete+1) % MAX_FILE];

}

// ajout d'un élément

File enfiler(File f, Element e) {

if (f.tete == (f.queue+1) % MAX_FILE) {

printf("Erreur : file pleine !\n");

exit(-1);

}

f.queue=(f.queue+1) % MAX_FILE;

(f.tab)[f.queue] = e;

return f;

}

// enlever un élément

File defiler(File f) {

/* pré-condition : file non vide !*/

if (est_vide(f)) {

printf("Erreur: file vide !\n");

exit(-1);

}

f.tete=(f.tete+1) % MAX_FILE;

return f;

}

File chaînée
35

tete

Fil

e

10 20

50

/* File chaînée en C */

// type des éléments

typedef int element;

// type Cellule

typedef struct cellule {

element valeur;

struct cellule *suivant;

} Cellule;

// type File

typedef struct {

Cellule *tete;

Cellule *queue;

} File;

Tête de la file
pointée par tete

Cellule contenant
la valeur 30

Pointeur sur
cellule suivante

Pointeur
NULLqueue

Queue de file

pointée par queue

Complexité

 Les opérations sur les files sont toutes en O(1)

 Ceci est valable pour les deux représentations : file contiguë circulaire et

file chaînée

36

Applications d'une File

Exemples
Gestion des travaux d’impression d’une

imprimante :
 Cas d'une imprimante en réseau, où les tâches d'impressions arrivent

aléatoirement de n'importe quel ordinateur connecté. Les tâches sont
placées dans une file d'attente, ce qui permet de les traiter selon leur ordre
d'arrivée

Ordonnanceur (dans les systèmes
d’exploitation) :
 Maintenir une file de processus en attente d’un temps machine ;

Parcours « en largeur » d’un arbre (voir arbres)

37

Cours
Structures de

données

Arbres (Trees)
Pr F.Omary
2019-2020

1

Objectifs

�Etudier des structures non
linéaires
�Arbres binaires
�Arbres binaires de recherche
�Arbres maximiers ou Tas
�Arbres équilibrés

2

C
ontenu

�
Introduction

�
Term

inologie
�

A
rbres binaires

�
A

rbres binaires de recherche
�

A
rbres m

axim
iers ou Tas

�
A

rbres équilibrés

3

A
rb

res (Trees)
Introduction

4

N
otion d

'A
rb

re (Tree)

�
Les arbres sont les structures de données les plus
im

portantes en inform
atique

�
C

e sont des structures non linéaires
qui perm

ettent
d’obtenir des algorithm

es plus perform
ants que

lorsqu’on utilise des structures de données linéaires
telles que les listes et les tableaux

�
Ils perm

ettent une organisation naturelle des
données

5

N
otion d

'A
rb

re (Tree)
Exem

p
les

�
O

rganisation des fichiers dans les systèm
es

d'exploitation ;

�
O

rganisation des inform
ations dans un systèm

e de bases
de données ;

�
Représentation de la structure syntaxique des
program

m
es sources dans les com

pilateurs ;

�
Représentation d'une table de m

atières ;

�
Représentation d'un arbre généalogique ;

�
… 6

A
rb

res (Trees)
Term

inologie
7

Term
inologie (1)

�
Un arb

re est un ensem
b

le d
'élém

ents ap
pelés nœ

uds (ou som
m

ets),
liés p

ar une relation (d
ite d

e "p
a

renté")ind
uisant une structure

hiérarchiq
ue p

a
rm

i ces nœ
ud

s.

�
Un nœ

ud
, com

m
e tout élém

ent d
'une liste, p

eut être d
e n'im

p
orte

q
uel type.

8

Term
inologie (1) (suite)

�
D

'une m
a

nière p
lus form

elle, une structure
d

'a
rb

re d
e typ

e d
e b

a
se T est :

�
soit la

 structure vide
;

�
soit un noeud

 d
e typ

e T, a
p

p
elé racine, a

ssocié à
 un nom

b
re fini d

e structures
d

'a
rb

re d
isjointes d

u typ
e d

e b
a

se T a
p

p
elées sous arbres

�
C

'est une d
éfinition récursive ; la

 récursivité est
une p

rop
riété d

es a
rb

res et d
es a

lgorithm
es

q
ui les m

a
nip

ulent

�
Une liste

est un ca
s p

a
rticulier d

es a
rb

res
(arbre dégénéré), où tout noeud

 a
 a

u p
lus un

sous a
rb

re

9

Illustra
tion &

 Exem
p

le

�
Pour illustrer une structure
d

'a
rb

re, on m
od

élise le
p

lus souvent un nœ
ud

p

a
r une inform

a
tion

inscrite d
a

ns un cercle et
les liens p

a
r d

es tra
its.

�
Par convention, on

d
essine les a

rb
res a

vec la

ra
cine en ha

ut et les
b

ra
nches d

irigées vers le
b

a
s.

10

L
a racine

E
xem

ple d'arbre form
é de 7

nœ
uds (des entiers)

Term
inologie (2)

�
La term

inologie utilisée dans les structures
d'arbres est em

pruntée :
�

aux arbres généalogiques :
�

Père ;

�
Fils ;

�
Frère ;

�
Descendant ;

�
…

�
et à la botanique :
�

Feuille ;

�
Branche ;

�
…

11

Term
inologie (3)

�
Fils (ou enfants) :
�

C
haque nœ

ud d'un arbre pointe vers un ensem
ble éventuellem

ent
vide d'autres nœ

uds ; ce sont ses fils (ses enfants).
�

Sur l'exem
ple précédent, le nœ

ud 5 a deux fils : 1 et 3, le nœ
ud 1 a

un fils : 4, et le nœ
ud 3 a trois fils : 2, 6 et 7.

�
Père :
�

Tous les nœ
uds d'un arbre, sauf un, ont un père et un seul. Un nœ

ud p
est père du nœ

ud n si et seulem
ent si n est fils de p.

�
Par exem

ple, le père de 2 est 3, celui de 3 et 5.

�
Frères :
�

Deux nœ
uds ayant le m

êm
e père.

�
Les nœ

uds 2, 6 et 7 sont des frères.

�
Racine :
�

Le seul nœ
ud sans père.

�
5 est la racine de l'arbre précédent.

12

Term
inologie (4)

�
Feuilles (ou nœ

uds term
inaux, ou nœ

uds externes) :
�

C
e sont des noeuds sans fils.

�
Par exem

ple, 4, 2, 6 et 7.

�
N

œ
ud interne :

�
Un noeud qui n'est pas term

inal.
�

Par exem
ple, 1, 3 et 5.

�
Degré d'un noeud :
�

Le nom
bre de fils de ce noeud.

�
Sur l'exem

ple, 5 est de degré deux, 1 est de degré un, 3 est de
degré trois et les feuilles (4, 2, 6, 7) sont de degré nul.

�
Degré d'un arbre (ou arité) :
�

Plus grand degré des nœ
uds de l'arbre. Un arbre de degré n est dit

n-aire
�

Sur l'exem
ple, l'arbre est un arbre 3-aire.

13

Term
inologie (5)

�
Taille d'un arbre :
�

Le nom
bre total des nœ

uds de l'arbre.
�

Sur l'exem
ple, l'arbre est de taille 7.

�
C

hem
in :

�
Une suite de noeuds d'un arbre (n

1 , n
2 , …

, n
k) tel que n

i = père(n
i +1) pour 1≤i≤k-

1 est appelée chem
in entre le nœ

ud n
1 et le nœ

ud n
k .

�
La longueur d'un chem

in est égale au nom
bre de nœ

uds qu'il contient m
oins

1.
�

Sur l'exem
ple, le chem

in qui m
ène du nœ

ud 5 au nœ
ud 6 est de longueur 2.

�
Branche :
�

Un chem
in qui com

m
ence à la racine et se term

ine à une feuille.
�

Par exem
ple, les chem

ins (5, 1, 4), (5, 3, 2), (5, 3, 6) et (5, 3, 7).

�
A

ncêtre :
�

Un nœ
ud A

 est un ancêtre d'un nœ
ud B s'il existe un chem

in de A
 vers B.

�
Par exem

ple, les ancêtres de 2 sont 2, 3 et 5

�
Descendant :
�

Un nœ
ud A

 est un descendant d'un nœ
ud B s'il existe un chem

in de B vers A
.

�
Sur l'exem

ple, 5 adm
et les 7 nœ

uds de l'arbre com
m

e descendants.

14

Term
inologie (6)

�
Sous arbre :
�

Un sous arbre d'un arbre A
 est constitué de tous les

descendants d'un nœ
ud quelconque de A

.
�

Les ensem
bles de noeuds {3, 2, 6, 7} et {2} form

ent deux sous
arbres de l'exem

ple précédent.

�
Hauteur (ou profondeur, ou niveau) d'un noeud :
�

Longueur du chem
in qui relie la racine à ce nœ

ud.
�

La racine est elle m
êm

e de hauteur 0, ses fils sont de hauteur
1, et les autres noeuds de hauteur supérieure à 1.

�
Hauteur d'un arbre :
�

Plus grande profondeur des nœ
uds de l'arbre supposé non

vide, c'est-à-dire h(A
) = M

ax{h(x) ; x noeud de A
}

�
L'arbre de l'exem

ple est de profondeur 2.
�

Par convention, un arbre vide a une hauteur de -1.

15

Term
inologie (7)

�
A

rbre dégénéré ou filiform
e :

�
Un arbre dont chaque nœ

ud a au plus au fils

16

Term
inologie (7)

�
A

rbre ordonné :
�

Un arbre où la position respective des sous arbres reflète une relation
d'ordre. En d'autres term

es, si un nœ
ud a k fils, il existe un 1er fis, un 2èm

e
fils, …

, et un kèm
e fils.

�
Les deux arbres de la figure qui suit sont différents si on les regarde
com

m
e des arbres ordonnés, m

ais identiques si on les regarde com
m

e de
sim

ples arbres.

17

Term
inologie (8)

�
A

rbre binaire :
�

Un arbre où chaque noeud a au plus deux fils.

�
Q

uand un nœ
ud de cet arbre a un seul fils, on précise s'il s'agit

du fils gauche
ou du fils droit.

�
La figure qui suit m

ontre un exem
ple d'arbre binaire dans

lequel les nœ
uds contiennent des caractères.

18

Term
inologie (9)

�
A

rbre binaire com
plet :

�
A

rbre binaire dont chaque niveau est rem
pli.

19

Term
inologie (10)

�
A

rbre binaire parfait (ou presque com
plet) :

�
A

rbre binaire dont chaque niveau est rem
pli sauf

éventuellem
ent le dernier

�
Dans ce cas les nœ

uds term
inaux (feuilles) sont groupés

le plus à gauche possible.

20

Term
inologie (11)

�
Facteur d'équilibre d'un nœ

ud d'un arbre
binaire :
�

Hauteur du sous arbre partant du fils gauche
du nœ

ud m
oins la hauteur du sous arbre

partant de son fils droit.

�
A

rbre binaire équilibré (au sens des
hauteurs) :
�

Un arbre binaire tel que pour chaque nœ
ud,

la valeur absolue du facteur d'équilibre est
inférieure ou égal à un.

�
Sur l'exem

ple qui suit, on place à côté de
chaque nœ

ud son facteur d'équilibre.

21

10

14

4

8

16

2

6

12

0

1

0

0

0

0

-1

1

A
rb

res Bina
ires

(Bina
ry Trees)

22

D
éfinition

�
Un arbre binaire

A
est :

�
soit vide (A

 = () ou
A

 = ø),

�
soit de la form

e
A

 = <r, A
1, A

2>,c-à
-d

 com
p

osé :

�
d

'un nœ
ud

 ra
p

p
elé

racine
contena

nt un élém
ent

�
et d

e d
eux a

rb
res b

inaires d
isjoints A

1
et A

2, a
p

p
elés

resp
ectivem

ent sous arbre gauche
(ou fils gauche) et sous

arbre droit(ou fils droit).

23

Exem
p

le d
'a

rb
re b

ina
ire

24

Typ
e A

b
stra

it A
rb

re_Bina
ire

T
y
p
e
A
r
b
r
e
_
B
i
n
a
i
r
e

U
t
i
l
i
s
e
N
o
e
u
d
,

E
l
é
m
e
n
t
,

B
o
o
l
é
e
n

O
p
é
r
a
t
i
o
n
s

a
r
b
r
e
_
v
i
d
e

:

→

A
r
b
r
e
_
B
i
n
a
i
r
e

e
s
t
_
v
i
d
e

:

A
r
b
r
e
_
B
i
n
a
i
r
e

→

B
o
o
l
é
e
n

c
o
n
s

:

N
o
e
u
d

x

A
r
b
r
e
_
B
i
n
a
i
r
e

x

A
r
b
r
e
_
B
i
n
a
i
r
e

→

A
r
b
r
e
_
B
i
n
a
i
r
e

r
a
c
i
n
e

:

A
r
b
r
e
_
B
i
n
a
i
r
e

→

N
o
e
u
d

g
a
u
c
h
e

:

A
r
b
r
e
_
B
i
n
a
i
r
e

→

A
r
b
r
e
_
B
i
n
a
i
r
e

d
r
o
i
t
e

:

A
r
b
r
e
_
B
i
n
a
i
r
e

→

A
r
b
r
e
_
B
i
n
a
i
r
e

c
o
n
t
e
n
u

:

N
o
e
u
d

→

E
l
é
m
e
n
t

P
r
é
c
o
n
d
i
t
i
o
n
s

r
a
c
i
n
e
(
A
)

e
s
t
-
d
é
f
i
n
i
-
s
s
i
e
s
t
_
v
i
d
e
(
A
)

=

f
a
u
x

g
a
u
c
h
e
(
A
)

e
s
t
-
d
é
f
i
n
i
-
s
s
i
e
s
t
_
v
i
d
e
(
A
)

=

f
a
u
x

d
r
o
i
t
e
(
A
)

e
s
t
-
d
é
f
i
n
i
-
s
s
i
e
s
t
_
v
i
d
e
(
A
)

=

f
a
u
x

A
x
i
o
m
e
s

S
o
i
t
,

r

:

N
œ
u
d
,

A
1
,

A
2

:

A
r
b
r
e
_
B
i
n
a
i
r
e

r
a
c
i
n
e
(
<
r
,

A
1
,

A
2
>
)

=

r

g
a
u
c
h
e
(
<
r
,

A
1
,

A
2
>
)

=

A
1

d
r
o
i
t
e
(
<
r
,

A
1
,

A
2
>
)

=

A
2

25

O
p

éra
tions sur un A

rb
re

Bina
ire (1)

�
a
r
b
r
e
_
v
i
d
e
:

→

A
r
b
r
e
_
B
i
n
a
i
r
e

�
op

éra
tion d

'initia
lisa

tion; crée un a
rb

re b
ina

ire vide.

�
e
s
t
_
v
i
d
e

:

A
r
b
r
e
_
B
i
n
a
i
r
e
→

B
o
o
l
é
e
n

�
teste si un a

rb
re b

inaire est vide ou non.

�
c
o
n
s

:

N
o
e
u
d
 x

A
r
b
r
e
_
B
i
n
a
i
r
e
x

A
r
b
r
e
_
B
i
n
a
i
r
e
→

A
r
b
r
e
_
B
i
n
a
i
r
e

�
cons(r,G

,D
)construit un a

rb
re b

inaire d
ont le sous a

rb
re

ga
uche est G

et le sous a
rb

re d
roit est D

, et rest le nœ
ud

ra

cine q
ui contient une d

onnée d
e typ

e Elém
ent.

�
r
a
c
i
n
e
 :

A
r
b
r
e
_
B
i
n
a
i
r
e
→

N
o
e
u
d

�
si A

est un a
rb

re b
ina

ire non vide a
lors r

a
c
i
n
e
(
A
)

retourne
le nœ

ud
 ra

cine d
e A, sinon un m

essa
ge d

'erreur.

26

O
p

éra
tions sur un A

rb
re

Bina
ire (2)

�
g
a
u
c
h
e

:

A
r
b
r
e
_
B
i
n
a
i
r
e

→

A
r
b
r
e
_
B
i
n
a
i
r
e

�
si A

est un a
rb

re b
ina

ire non vid
e a

lors g
a
u
c
h
e
(
A
)

retourne le sous a
rb

re
ga

uche d
e A, sinon un m

essa
ge d

'erreur.

�
d
r
o
i
t
e

:

A
r
b
r
e
_
B
i
n
a
i
r
e

→

A
r
b
r
e
_
B
i
n
a
i
r
e

�
si A

est un a
rb

re b
ina

ire non vid
e a

lors d
r
o
i
t
e
(
A
)

retourne le sous a
rb

re
d

roit d
e A, sinon un m

essa
ge d

'erreur.

�
c
o
n
t
e
n
u

:

N
o
e
u
d

→

E
l
é
m
e
n
t

�
p

erm
et d’a

ssocier à
 cha

q
ue noeud

 d
'un a

rb
re b

ina
ire une inform

a
tion d

e
typ

e Elém
ent.

27

O
p

éra
tions A

uxilia
ires

E
x
t
e
n
s
i
o
n

T
y
p
e

A
r
b
r
e
_
B
i
n
a
i
r
e

U
t
i
l
i
s
e

E
n
t
i
e
r
,

B
o
o
l
é
e
n

O
p
é
r
a
t
i
o
n
s

t
a
i
l
l
e

:

A
r
b
r
e
_
B
i
n
a
i
r
e
→

E
n
t
i
e
r

h
a
u
t
e
u
r
 :

A
r
b
r
e
_
B
i
n
a
i
r
e
→

E
n
t
i
e
r

f
e
u
i
l
l
e
 :

A
r
b
r
e
_
B
i
n
a
i
r
e
→

B
o
o
l
é
e
n

P
r
é
c
o
n
d
i
t
i
o
n
s

A
x
i
o
m
e
s

S
o
i
t
,

r

:

N
o
e
u
d
,

A
1
,

A
2

:

A
r
b
r
e
_
B
i
n
a
i
r
e

t
a
i
l
l
e
(
a
r
b
r
e
_
v
i
d
e
)

=

0

t
a
i
l
l
e
(
<
r
,

A
1
,

A
2
>
)

=

1

+

t
a
i
l
l
e
(
A
1
)

+

t
a
i
l
l
e
(
A
2
)

ha
u
t
e
u
r
(
a
r
b
r
e_
v
i
d
e
)

=

-1

s
i

h
a
u
t
e
u
r
(
A
1
)

>

h
a
u
t
e
u
r
(
A
2
)

a
l
o
r
s

h
a
u
t
e
u
r
(
<
r
,

A
1
,

A
2
>
)

=

1
+
h
a
u
t
e
u
r
(
A
1
)

s
i
n
o
n

h
a
u
t
e
u
r
(
<
r
,

A
1
,

A
2
>
)

=

1

+

h
a
u
t
e
u
r
(
A
2
)

s
i

e
s
t
_
v
i
d
e
(
A
)

=

f
a
u
x

e
t

e
s
t
_
v
i
d
e
(
g
a
u
c
h
e
(
A
)
)

=

v
r
a
i

e
t

e
s
t
_
v
i
d
e
(
d
r
o
i
t
(
A
)
)

=

v
r
a
i

a
l
o
r
s

f
e
u
i
l
l
e
(
A
)

=

v
r
a
i

s
i
n
o
n

f
e
u
i
l
l
e
(
A
)

=

f
a
u
x

28

Pa
rcours d

'a
rb

re b
ina

ire
�

Un parcours d'arbre perm
et d'accéder à chaque nœ

ud de l'arbre :
�

Un traitem
ent (test, affichage, com

ptage, etc.), dépendant de l’application
considérée, est effectué sur l’inform

ation portée par chaque nœ
ud

�
C

haque parcours de l'arbre définit un ordre sur les nœ
uds

�
O

n distingue :
�

Les parcours de gauche à droite (le fils gauche d'un nœ
ud précède le fils

droit) ;

�
Les parcours de droite à gauche (le fils droit d'un nœ

ud précède le fils
gauche).

�
O

n ne considèrera que les parcours de gauche à droite

�
O

n distingue aussi deux catégories de parcours d'arbres :
�

Les parcours en profondeur
;

�
Les parcours en largeur.

29

Pa
rcours en p

rofond
eur

�
Soit un arbre binaire A

 = <r, A
1, A

2>

�
O

n définit trois parcours en profondeur de cet arbre :
�

Le parcours préfixe ;

�
Le parcours infixe ou sym

étrique ;

�
Le parcours postfixe ou suffixe.

30

Pa
rcours en p

rofond
eur

Pa
rcours p

réfixe
�

En abrégé RG
D

(Racine, G
auche, Droit)

�
C

onsiste à effectuer dans l'ordre :
�

Le traitem
ent de la racine r ;

�
Le parcours préfixe du sous arbre gauche A

1 ;

�
Le parcours préfixe du sous arbre droit A

2.

�
L'ordre correspondant s'appelle l'ordre préfixe

31

Pa
rcours en p

rofond
eur

Pa
rcours infixe ou sym

étriq
ue

�
En abrégé G

RD
(G

auche, Racine, Droit)

�
C

onsiste à effectuer dans l'ordre :
�

Le parcours infixe du sous arbre gauche A
1 ;

�
Le traitem

ent de la racine r ;

�
Le parcours infixe du sous arbre droit A

2.

�
L'ordre correspondant s'appelle l'ordre infixe

32

Pa
rcours en p

rofond
eur

p
a

rcours p
ostfixe ou suffixe

�
En abrégé G

DR
(G

auche, Droit, Racine)

�
C

onsiste à effectuer dans l'ordre :
�

Le parcours postfixe du sous arbre gauche A
1 ;

�
Le parcours postfixe du sous arbre droit A

2 ;

�
Le traitem

ent de la racine r.

�
L'ordre correspondant s'appelle l'ordre suffixe

33

Exem
ple d

e Pa
rcours en p

rofond
eur

(a
fficha

ge d
u contenu d

es nœ
ud

s)
34

L
e parcours préfixe affiche les nœ

uds dans l'ordre : 1, 2, 4, 5, 3, 6, 8, 9, 12, 13, 7, 10, 11
L

e parcours infixe affiche les nœ
uds dans l'ordre : 4, 2, 5, 1, 8, 6, 12, 9, 13, 3, 10, 7, 11

L
e parcours postfixe affiche les nœ

uds dans l'ordre : 4, 5, 2, 8, 12, 13, 9, 6, 10, 11, 7, 3, 1

Pa
rcours en la

rgeur

�
O

n explore les noeuds :
�

niveau par niveau,

�
de gauche à droite,

�
en com

m
ençant par la racine.

�
Exem

ple :
�

Le parcours en largeur de l'arbre de la figure précédente
affiche la séquence d'entiers suivante : 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13

35

Rep
résenta

tions d
'un a

rb
re

b
ina

ire

�
Représentation par tableau (par contiguïté)

�
Représentation par pointeurs (par chaînage)

36

Rep
résenta

tion contiguë d
'un

a
rbre b

ina
ire

�
O

n caractérise un arbre binaire par :
�

sa taille (nom
bre de nœ

uds) ;
�

sa racine (indice de son em
placem

ent dans le tableau de nœ
uds)

�
un tableau de nœ

uds.

�
C

haque nœ
ud contient trois données :

�
une inform

ation de type Elém
ent ;

�
deux entiers (indices dans le tableau désignant respectivem

ent
l'em

placem
ent des fils gauche et droit du nœ

ud).

37

Rep
résenta

tion contiguë d
'un

a
rbre b

ina
ire

#
d
e
f
i
n
e
N
B
_M
A
X_
N
O
E
U
D
S
1
5

t
y
p
e
d
e
f
i
n
t
E
le
m
e
n
t
;

t
y
p
e
d
e
f
s
t
ru
c
t
n
o
e
u
d
 {

E
l
e
m
e
nt

v
al
;

i
n
t

f
g;

i
n
t

f
d;

}

N
o
e
u
d;

t
y
p
e
d
e
f
N
o
eu
d
 T
a
b
N
[
N
b_
M
A
X_
N
OE
U
D
S
]
;

t
y
p
e
d
e
f
s
t
ru
c
t
a
r
b
r
e
 {

i
n
t

n
b_
n
o
eu
d
s;

i
n
t

r
ac
i
n
e;

T
a
b
N

le
s
_
no
e
ud
s
;

}

A
r
b
r
e_
B
i
na
i
re

38

Exem
p

le d
e Rep

résenta
tion contiguë

39

a

c

d

b

 e

f
g

k

l

m

10
2

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
val

d

a
g

b
c

f

m
e

l

k

fg

-1
4

-1
1

12

-1
-1

7
8

-1

nb_noeuds

racine

les_noeuds

fd

9
5

-1
-1

10

-1
-1

3
-1

-1

A
utre rep

résentation contiguë d
'un a

rbre
b

ina
ire

�
Repose sur l'ordre hiérarchique (num

érotation des
nœ

uds niveau par niveau et de gauche à droite)

�
O

n rappelle que pour stocker un arbre binaire de
hauteur h, il faut un tableau de 2

h+1-1 élém
ents

�
O

n organise le tableau de la façon suivante :
�

Le noeud racine a pour indice 0 (en langage C
) ;

�
Soit le noeud d’indice i dans le tableau, son fils gauche a
pour indice 2i +1, et son fils droit a pour indice 2(i+1).

�
Représentation idéale pour les arbres binaires
parfaits. En effet, elle ne gaspille pas d'espace.

40

A
utre rep

résentation contiguë d
'un

a
rbre b

ina
ire (Exem

p
les)

a

c

d

b

f

k

l

h

41

a

d

b

f

a

c

d

b

 e

f
g

k

l

m

0

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

a

b

d

f

0
1

2
3

4
5

6
7

a
b

c
d

h
k

l
f

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
a

b
c

d

k
l

e

m

f

g

Rep
résenta

tion cha
înée d

'un
a

rbre b
ina

ire

�
C

haque nœ
ud a trois cham

ps :
�

val (l'élém
ent stocké dans le noeud) ;

�
fg

(pointeur surfils gauche) ;
�

fd
(pointeur sur fils droit).

�
Un arbre est désigné par un pointeur sur sa
racine

�
Un arbre vide est représenté par le pointeur
N

ULL

42

Rep
résenta

tion cha
înée en C

 d
'un a

rbre
b

ina
ire

t
y
p
e
d
e
f

i
n
t

E
l
e
m
e
n
t
;

t
y
p
e
d
e
f

s
t
r
u
c
t

n
o
e
u
d

*
P
n
o
e
u
d
;

t
y
p
e
d
e
f

s
t
r
u
c
t

n
o
e
u
d

{

E
l
e
m
e
n
t

v
a
l
;

P
n
o
e
u
d

f
g
;

P
n
o
e
u
d

f
d
;

}

N
o
e
u
d
;

t
y
p
e
d
e
f

N
o
e
u
d

*
A
r
b
r
e
_
B
i
n
a
i
r
e
;

43

Exem
p

le d
e Rep

résenta
tion cha

înée
d

'un a
rbre b

ina
ire

44

a

c

d

b

 e

f
g

k

l

m

Réa
lisa

tion cha
înée d

'un a
rbre b

ina
ire

A
r
b
r
e
_
B
i
n
a
i
r
e

a
r
b
r
e
_
v
i
d
e
(
)

{

r
e
t
u
r
n

N
U
L
L
;

}B
o
o
l
e
e
n

e
s
t
_
v
i
d
e
(
A
r
b
r
e
_
B
i
n
a
i
r
e

A
)

{

r
e
t
u
r
n

A

=
=

N
U
L
L

;

}P
n
o
e
u
d

n
o
u
v
e
a
u
_
n
o
e
u
d
(
E
l
e
m
e
n
t

e
)

{

/
/

f
a
i
r
e

u
n
e

a
l
l
o
c
a
t
i
o
n

m
é
m
o
i
r
e

e
t

p
l
a
c
e
r

l
'
é
l
é
m
e
n
t

e

/
/

e
n

c
a
s

d
'
e
r
r
e
u
r

d
'
a
l
l
o
c
a
t
i
o
n
,

l
e

p
o
i
n
t
e
u
r

r
e
n
v
o
y
é

e
s
t

N
U
L
L

P
n
o
e
u
d

p

=

(
P
n
o
e
u
d
)

m
a
l
l
o
c
(
s
i
z
e
o
f
(
N
o
e
u
d
)
)
;

i
f

(
p

!
=

N
U
L
L
)

{

p
-
>
v
a
l

=

e
;

p
-
>
f
g

=

N
U
L
L
;

p
-
>
f
d

=

N
U
L
L
;

}r
e
t
u
r
n

(
p
)
;

}

45

Réa
lisa

tion cha
înée d

'un a
rb

re b
ina

ire
46

A
r
b
r
e
_
B
i
n
a
i
r
e

c
o
n
s
(
N
o
e
u
d

*
r
,

A
r
b
r
e
_
B
i
n
a
i
r
e

G
,

A
r
b
r
e
_
B
i
n
a
i
r
e

D
)

{

r
-
>
f
g

=

G

;

r
-
>
f
d

=

D

;

r
e
t
u
r
n

r

;

}N
o
e
u
d

r
a
c
i
n
e
(
A
r
b
r
e
_
B
i
n
a
i
r
e

A
)

{

/
/

p
r
é
c
o
n
d
i
t
i
o
n

:

A

e
s
t

n
o
n

v
i
d
e

!

i
f

(
e
s
t
v
i
d
e
(
A
)
)

{

p
r
i
n
t
f
(
"
E
r
r
e
u
r

:

A
r
b
r
e

v
i
d
e

!
\
n
"
)
;

e
x
i
t
(
-
1
)
;

}r
e
t
u
r
n

(
*
A
)

;

}

A
r
b
r
e
_
B
i
n
a
i
r
e

g
a
u
c
h
e
(
A
r
b
r
e
_
B
i
n
a
i
r
e

A
)

{

/
/

p
r
é
c
o
n
d
i
t
i
o
n

:

A

e
s
t

n
o
n

v
i
d
e

!

i
f

(
e
s
t
v
i
d
e
(
A
)
)

{

p
r
i
n
t
f
(
"
E
r
r
e
u
r

:

A
r
b
r
e

v
i
d
e

!
\
n
"
)
;

e
x
i
t
(
-
1
)
;

}r
e
t
u
r
n

A
-
>
f
g

;

/
*

o
u

b
i
e
n

(
*
A
)
.
f
g
;

*
/

}A
r
b
r
e
_
B
i
n
a
i
r
e

d
r
o
i
t
e
(
A
r
b
r
e
_
B
i
n
a
i
r
e

A
)

{

/
/

p
r
é
c
o
n
d
i
t
i
o
n

:

A

e
s
t

n
o
n

v
i
d
e

!

i
f

(
e
s
t
v
i
d
e
(
A
)
)

{

p
r
i
n
t
f
(
"
E
r
r
e
u
r

:

A
r
b
r
e

v
i
d
e

!
\
n
"
)
;

e
x
i
t
(
-
1
)
;

}r
e
t
u
r
n

A
-
>
f
d

;

/
*

o
u

b
i
e
n

(
*
A
)
.
f
d
;

*
/

}E
l
e
m
e
n
t

c
o
n
t
e
n
u
(
N
o
e
u
d

n
)

{

r
e
t
u
r
n

n
.
v
a
l
;

}

Exem
p

les d
'A

p
p

lica
tions d

'A
rb

re
Binaire

�
Recherche dans un ensem

ble de valeurs :
�

Les a
rb

res b
ina

ires d
e recherche ;

�
Tri d’un ensem

ble de valeurs :
�

Le
p

a
rcours G

RD
d’un a

rb
re b

ina
ire d

e recherche ;
�

Un a
lgorithm

e d
e tri effica

ce utilisa
nt une structure d

e ta
s ;

�
Représentation d’une expression arithm

étique :
�

Un p
a

rcours G
D

R
p

our a
voir une nota

tion p
ostfixée ;

�
M

éthodes de com
pression :

�
Le cod

a
ge d

e H
uffm

a
n

utilisa
nt d

es a
rb

res b
ina

ires ;
�

La
 com

p
ression d’im

a
ges utilisa

nt d
es q

ua
d

trees (a
rb

res q
ua

terna
ires,

ou cha
q

ue nœ
ud

 non feuille a
 exa

ctem
ent q

ua
tre fils) ;

�
…

47

A
rb

res d
e Recherche Eq

uilibrés
Exem

p
les (3)

�
Les B arbres :
�

A
rbres de recherche équilibrés qui sont conçus pour être efficaces sur

d'énorm
es m

asses de données stockées sur m
ém

oires secondaires ;

�
C

haque nœ
ud perm

et de stocker plusieurs clés ;

�
G

énéralem
ent, la taille d'un nœ

ud est optim
isée pour coïncider avec la

taille d'un bloc (ou page) du périphérique, en vue d'économ
iser les

coûteux accès d'entées sorties.

�
…

48

Arbres Binaires de

Recherche

(Binary Search Trees)
Pr F.Omary

2019-2020

1

Notion d'Arbre binaire de

recherche

 C'est un arbre binaire particulier :

 Permet d'obtenir un algorithme de recherche proche

dans l'esprit de la recherche dichotomique ;

 Pour lequel les opérations d'ajout et de suppression d'un

élément sont aussi efficaces.

 Cet arbre utilise l'existence d'une relation d'ordre sur

les éléments, représentée par une fonction clé, à

valeur entière.

2

Arbre binaire de recherche

Définition

 Un arbre binaire de recherche (binary search tree en anglais), en
abrégé ABR, est un arbre binaire tel que pour tout nœud :

 les clés de tous les noeuds du sous-arbre gauche sont inférieures ou égales à la
clé du nœud,

 les clés de tous les noeuds du sous-arbre droit sont supérieures à la clé du
nœud.

 Chaque nœud d'un arbre binaire de recherche désigne un élément
qui est caractérisé par une clé (prise dans un ensemble totalement
ordonné) et des informations associées à cette clé.

 Dans toute illustration d'un arbre binaire de recherche, seules les clés
sont représentées. On supposera aussi que toute clé identifie de
manière unique un élément.

3

Arbre binaire de recherche

Exemple

4

L'arbre de la figure

suivante est un arbre

binaire de recherche

Cet arbre représente

l’ensemble :
E = {a, d, e, g, i, l, q, t}

muni de l’ordre alphabétique

Arbre binaire de recherche

Remarque

5

 Plusieurs représentations possibles

d’un même ensemble par un arbre

binaire de recherche

 En effet, la structure précise de

l’arbre binaire de recherche est

déterminée :

 par l’algorithme d’insertion utilisé,

 et par l’ordre d’arrivée des éléments.

 Exemple :

 L’arbre binaire de recherche de la

figure qui suit représente aussi

E = {a, d, e, g, i, l, q, t}

Opérations sur les arbres binaires

de recherche

 Le type abstrait arbre binaire de recherche, noté
Arbre_Rech, est décrit de la même manière que le type

Arbre_Binaire

 On reprend les opérations de base des arbres binaires,

excepté le fait que dans des arbres binaires de

recherche, on suppose l'existence de l'opération clé sur
le type abstrait Element

 On définit, en tenant compte du critère d'ordre, les

opérations spécifiques de ce type d'arbre concernant :

 la recherche d'un élément dans l'arbre ;

 l'insertion d'un élément dans l'arbre ;

 la suppression d'un élément de l'arbre.

6

Recherche d'un élément

Principe de l'algorithme :
 On compare la clé de l'élément cherché à la clé de la

racine de l'arbre ;

 Si la clé est supérieure à la clé de la racine, on effectue

une recherche dans le fils droit ;

 Si la clé est inférieure à la clé de la racine, on effectue

une recherche dans le fils gauche ;

 La recherche s'arrête quand on ne peut plus continuer

(échec) ou quand la clé de l'élément cherché est égale

à la clé de la racine d'un sous arbre (succès).

7

Recherche d'un élément

Exemple

25

14

12 17

22

50

43 84

111

43>25

43<50

43==43

8

 la figure suivante

illustre la

recherche de
l'élément de clé

43 dans un arbre

binaire de

recherche.

 Les flèches

indiquent le

chemin de la

recherche

Recherche d'un élément

Spécification

Extension Type Arbre_Rech

Utilise Elément, Booléen

Opérations

Rechercher : Elément x Arbre_Rech → Booléen

Axiomes

Soit, x : Elément, r : Nœud, G, D : Arbre_Rech

Rechercher(x, arbre_vide) = faux

si clé(x) = clé(contenu(r))

alors Rechercher(x, <r, G, D>) = vrai

si clé(x) < clé(contenu(r))

alors Rechercher(x, <r, G, D>) = Rechercher(x,
G)

si clé(x) > clé(contenu(r))

alors Rechercher(x, <r, G, D>) = Rechercher(x,
D)

9

Recherche d'un élément

Réalisation en C

Booleen Rechercher (Arbre_Rech A, Element e) {

if (est_vide(A) == vrai)

return faux; // e n’est pas dans l’arbre
else {

if (e == A->val)

return vrai; // e est dans l’arbre
else if (e < A->val)

// on poursuit la recherche dans le SAG
du

// noeud courant

return Rechercher(A->fg , e);

else

// on poursuit la recherche dans le SAD
du

// noeud courant

return Rechercher(A->fd , e);

}

}

10

Recherche d'un élément

Autre Spécification

Extension Type Arbre_Rech

Utilise Elément

Opérations

Rechercher : Elément x Arbre_Rech → Arbre_Rech

Axiomes

Soit, x : Elément, r : Nœud, G, D : Arbre_Rech

Rechercher(x, arbre_vide) = arbre_vide

si clé(x) = clé(contenu(r))

alors Rechercher(x, <r, G, D>) = <r, G, D>)

si clé(x) < clé(contenu(r))

alors Rechercher(x, <r, G, D>) = Rechercher(x, G)

si clé(x) > clé(contenu(r))

alors Rechercher(x, <r, G, D>) = Rechercher(x, D)

11

Ajout d'un élément

 La technique d'ajout spécifiée ici est dite "ajout en feuille", car
tout nouvel élément se voit placé sur une feuille de l'arbre

 Le principe est simple :

 si l'arbre initial est vide, le résultat est formé d'un arbre binaire de

recherche réduit à sa racine, celle-ci contenant le nouvel élément ;

 sinon, l'ajout se fait (récursivement) dans le fils gauche ou le fils droit,

suivant que l'élément à ajouter est de clé inférieure ou supérieure à

celle de la racine.

 Remarque :

 si l'élément à ajouter est déjà dans l'arbre, l'hypothèse d'unicité des

éléments pour certaines applications fait qu'on ne réalise pas l'ajout

12

Ajout d'un élément

Exemple

13

Les figures suivantes illustrent l'ajout successif

de e, i, a, t, d, g, q et l dans un arbre binaire

de recherche, initialement vide

Ajout "en feuille" d'un élément

Spécification

Extension Type Arbre_Rech

Utilise Elément

Opérations

Ajouter_feuille : Elément x Arbre_Rech → Arbre_Rech

Axiomes

Soit, x : Elément, r : Nœud, G, D : Arbre_Rech

Ajouter_feuille(x, arbre_vide) = <x, arbre_vide,
arbre_vide>

si clé(x) ≤ clé(contenu(r))

alors

Ajouter_feuille(x, <r, G, D>) = <r,
Ajouter_feuille(x, G), D>

sinon

Ajouter_feuille(x, <r, G, D>) = <r, G,
Ajouter_feuille(x, D)>

14

Ajout "en feuille" d'un élément

Réalisation

fonction Ajouter_feuille(x : Elément, A : Arbre_Rech) :
Arbre_Rech

si est_vide(A) alors

Pnoeud r = nouveau_noeud(x)

si est_vide(r) alors <erreur>

retourner cons(r, arbre_vide(), arbre_vide())

sinon

si x > contenu(racine(A)) alors

retourner cons(A, gauche(A), Ajouter_feuille(x, droite(A)))

sinon

Si x< contenu(racine(A) alors

retourner cons(A, Ajouter_feuille(x, gauche(A)) ,droite(A))

fsi

fsi

fsi

ffonction

15

Ajout "en feuille" d'un élément

Réalisation en C

Arbre_Rech Ajouter_feuille(Element x, Arbre_Rech A) {

if (est_vide(A)) {

Pnoeud r = nouveau_noeud(x);

if (r == NULL) {

printf("Erreur : Pas assez de mémoire !\n");

exit(-1);

}

return cons(r, arbre_vide(), arbre_vide());

}

else

if (x > contenu(racine(A)))

return cons(A, gauche(A), Ajouter_feuille(x, droite(A)));

else

if (x < contenu (racine(A))// pas d’ajout lorsque x=contenu(A)

return cons(A, Ajouter_feuille(x, gauche(A)), droite(A));

}

16

Suppression d'un élément

 La suppression est délicate :

 Il faut réorganiser l'arbre pour qu'il vérifie la propriété d'un arbre

binaire de recherche

 La suppression commence par la recherche du nœud qui

porte l'élément à supprimer. Ensuite, il y a trois cas à

considérer, selon le nombre de fils du noeud à supprimer :

 si le noeud est sans fils (une feuille), la suppression est immédiate

;

 si le noeud a un seul fils, on le remplace par ce fils ;

 si le noeud a deux fils (cas général), on choisit de remplacer ce

nœud, soit par le plus grand élément de son sous arbre gauche

(son prédécesseur), soit par le plus petit élément de son sous

arbre droit (son successeur).

17

Suppression d'un élément

Exemple 1

18

La figure qui suit illustre la suppression de la

feuille qui porte la clé 13

Suppression d'un élément

Exemple 2

19

 La figure qui suit illustre la suppression du
nœud qui porte la clé 16

Ce nœud n'a qu'un seul fils ; le sous arbre de
racine portant la clé 18

Ce sous arbre devient fils gauche du nœud
qui porte la clé 20

Suppression d'un élément

Exemple 3

20

 La figure qui suit illustre le cas d'un nœud à deux fils.

 La clé 15 à supprimer se trouve à la racine de l'arbre. La racine
a deux fils ; on choisit de remplacer sa clé par la clé de son
prédécesseur.



 Ainsi, la clé 14 est mise à la racine de l'arbre. On est alors
ramené à la suppression du nœud du prédécesseur.

 Comme le prédécesseur est le nœud le plus à droite du sous
arbre gauche, il n'a pas de fils droit, donc il a zéro ou un fils, et
sa suppression est couverte par les deux premiers cas.

Suppression d'un élément

Cas général

 On choisit ici de remplacer le noeud à supprimer par son

prédécesseur (le nœud le plus à droite de son sous arbre gauche)

 On a besoin de deux opérations supplémentaires :

 une opération Max qui retourne l'élément de clé maximale dans un

arbre binaire de recherche ;

 une opération SupprimerMax qui retourne l'arbre privé de son plus

grand élément.

21

Suppression d'un élément: Spécification
Extension Type Arbre_Rech

Utilise Elément

Opérations

Max : Arbre_Rech → Elément

SupprimerMax : Arbre_Rech → Arbre_Rech

Supprimer : Elément x Arbre_Rech → Arbre_Rech

Pré-conditions

Max(A) est_défini_ssi est_vide(A) = faux

SupprimerMax(A) est_défini_ssi est_vide(A) = faux

Axiomes

Soit, x : Elément, r : Nœud, G, D : Arbre_Rech

si est_vide(D) = vrai alors Max(<r, G, D>) = r

sinon Max(<r, G, D>) = Max(D)

si est_vide(D) = vrai alors SupprimerMax(<r, G, D>) = G

sinon SupprimerMax(<r, G, D>) = <r, G, SupprimerMax(D)>

Supprimer(x, arbre_vide) = arbre_vide

si clé(x) = clé(contenu(r)) et est_vide(D) = vrai

alors Supprimer(x, <r, G, D>) = G

sinon si clé(x) = clé(contenu(r)) et est_vide(G) = vrai

alors Supprimer(x, <r, arbre_vide, D>) = D

sinon si clé(x) = clé(contenu(r))

alors Supprimer(x, <r, G, D>) = <Max(G),SupprimerMax(G), D>

si clé(x) < clé(contenu(r))

alors Supprimer(x, <r, G, D>) = <r, Supprimer(x, G), D>

si clé(x) > clé(contenu(r))

alors Supprimer(x, <r, G, D>) = <r, G, Supprimer(x, D)>

22

Suppression d'un élément

Réalisation

fonction Max(A : Arbre_Rech) : Pnoeud

(* A doit être non vide ! *)

si est_vide(droite(A))

alors retourner A

sinon retourner Max(droite(A))

fsi

ffonction

fonction SupprimerMax(A : Arbre_Rech) : Arbre_Rech

(* A doit être non vide ! *)

si est_vide(droite(A))

alors

retourner gauche(A)

sinon

retourner cons(A, gauche(A), SupprimerMax(droite(A)))

fsi

ffonction

23

Cette fonction retourne un pointeur
sur le nœud contenant la plus grand

élément d'un arbre binaire de
recherche

Cette fonction supprime le plus grand
élément d'un arbre binaire de recherche

Suppression d'un élément

Réalisation (suite)

fonction Supprimer(x : Elément, A : Arbre_Rech) : Arbre_Rech

si est_vide(A) alors retourner A (* ou <erreur> *)

sinon

si x > contenu(racine(A)) alors

retourner cons(A, gauche(A), Supprimer(x ,droite(A)))

sinon

si x < contenu(racine(A)) alors

retourner cons(A, Supprimer(x, gauche(A)), droite(A))

sinon // x= contenu (racine(A))

si est_vide(droite(A)) alors retourner gauche(A)

sinon

si est_vide(gauche(A)) alors retourner droite(A)

sinon // ni droite (A) est vide ni gauche(A)

retourner cons(Max(gauche(A)), SupprimerMax(gauche(A)), droite(A))

fsi

fsi

fsi

fsi

fsi

ffonction

24

Arbre Binaire de Recherche

Complexité des Opérations

 On montre que, les opérations de

recherche, insertion et suppression dans un

arbre binaire de recherche contenant n

éléments sont :

 en moyenne en O(log2(n)) ;

 dans le pire des cas en O(h) ;

où h désigne la hauteur de l'arbre

 Si l’arbre est dégénéré, sa hauteur étant n-1,

ces trois opérations sont en O(n)

 Si l'arbre est équilibré, les opérations sont en

O(log2(n)) (d'où leur intérêt...)

25

Arbres Maximiers

ou Tas (Heaps)
26

Notion d'Arbre Maximier (ou

Tas)

 Appelé aussi monceau (Heap en anglais)

 C'est un arbre binaire parfait tel que la clé de chaque noeud
est supérieure ou égale aux clés de tous ses fils

 L'élément maximum de l'arbre se trouve donc à la racine

 Rappel :
 Pour un arbre binaire parfait, tous les niveaux sont entièrement

remplis sauf éventuellement le dernier et, dans ce cas, les feuilles
du dernier niveau sont regroupées le plus à gauche possible

 Un tas est un arbre binaire partiellement ordonné :
 Les nœuds sur chaque branche sont ordonnés sur celle-ci ;

 Ceux d'un même niveau ne le sont pas nécessairement.

 Un tas dans lequel chaque nœud enfant a une clé inférieure
(resp., supérieure) ou égale à la clé de son père est appelé
arbre maximier (max heap) (resp., arbre minimier (max
heap))

27

Arbre Maximier (ou Tas)

Exemple

28

Type Abstrait Tas

Type Tas

Utilise Booléen, Elément

Opérations

tas_vide : → Tas

est_vide : Tas → Booléen

max : Tas → Elément

ajouter : Tas x Elément → Tas

supprimerMax : Tas → Tas

appartient : Tas x Elément → Booléen

Préconditions

max(T) est_défini_ssi est_vide(T) = faux

supprimerMax(T) est_défini_ssi est_vide(T) = faux

ajouter(T,e) est_défini_ssi appartient(T,e) = faux

Axiomes

Soit, T, T1 : Tas, e : Elément

si est_vide(T) = vrai alors appartient(T,e) = faux

appartient(T,max(T)) = vrai

si appartient(T,e) = vrai alors max(T) ≥ e

29

Opérations sur un Tas

 tas_vide : → Tas

 Opération d'initialisation; crée un tas vide

 est_vide : Tas → Booléen

 Vérifie si un tas est vide ou non

 max : Tas → Elément

 Retourne le plus grand élément d'un tas

 ajouter : Tas x Elément → Tas

 Ajoute un élément dans un tas

 supprimerMax : Tas → Tas

 Supprime le plus grand élément d'un tas

 appartient : Tas x Elément → Booléen

 Vérifie si un élément appartient ou non à un tas

30

Représentation d'un Tas

 Il existe une représentation compacte pour les arbres

binaires parfaits, et donc pour les tas :

 La représentation par tableau, basée sur la numérotation des
nœuds niveau par niveau et de gauche à droite

 Les numéros d'un nœud sont donc les indices dans un

tableau. En outre, ce tableau s'organise de la façon suivante

:

 le noeud racine a pour indice 0 ;

 soit le noeud d’indice i dans le tableau, son fils gauche a pour
indice 2i +1, et son fils droit a pour indice 2(i+1) ;

 si un nœud a un indice i ≠ 0, alors son père a pour indice

 On déduit de cette organisation, où n désigne le nombre

d'éléments du tas, que :

 un nœud d'indice i est une feuille si 2i+1 ≥ n

 un nœud d'indice i a un fis droit si 2(i+1) < n

31

 1)/2(i −

Représentation d'un Tas

Exemple

32

Un tas avec sa numérotation hiérarchique Représentation du tas par un tableau

Représentation en C d'un

Tas

#define MAX_ELEMENTS 200 // taille
maximum du tas

typedef int Element // un élément est
un int

typedef struct {

int taille; // nombre d'éléments dans le
tas

Element tableau[MAX]; // les éléments
du tas

} Tas;

33

Opérations sur un Tas

Trois opérations

fondamentales :

Ajout d'un élément ;

Suppression du maximum ;

Recherche du maximum.

34

Opération d'Ajout

Principe :
 Créer un nouveau nœud contenant la clé du nouvel

élément ;

 Insérer cette clé le plus à gauche possible sur le dernier

niveau du tas (ou si le dernier niveau est plein, à l'extrême

gauche d'un nouveau niveau). La nouvelle clé est insérée

dans la première case non utilisée du tableau ;

 Faire "remonter cette nouvelle clé" à sa place en la

permutant avec la clé de son père, tant qu'elle est plus

grande que celle de son père.

35

Opération d'Ajout

Exemple (1)

36

◼ Supposons qu'on veuille insérer la valeur 21 dans le tas représenté ci-

dessous :

◼ On place la valeur 21 juste à droite de la dernière feuille,

◼ c'est-à-dire dans la case d'indice 10 dans le tableau.

Opération d'Ajout

Exemple (2)

37

◼ On compare 21, la nouvelle donnée insérée, avec la donnée contenue

dans le nœud père, autrement dit on compare la donnée de la case

d'indice 10 du tableau avec la donnée de la case d'indice = 4.

◼ Puisque 21 est plus grand que 5, on les échange.

Opération d'Ajout

Exemple (3)

38

Le nouvel arbre

binaire obtenu n'est

pas un tas :
 La valeur 21 du nœud d'indice 4

est plus grande que la valeur 15

de son nœud père (d'indice = 1)

 Echanger les contenus des

nœuds d'indices respectifs 1 et 4

Opération d'Ajout

Exemple (4)

39

Puisque 21 est plus

petit que 23 :
 L'opération d'ajout est terminée

;

 On a bien obtenu un tas.

Opération d'Ajout

Pseudo-code

fonction ajouter(Tas t, Elément e) : Tas

début

i  t.taille

t.taille  i+1

t.tableau[i]  e

tant que ((i > 0) et

(t.tableau[i] > t.tableau[(i-1) div 2]))
faire {

échanger(t.tableau[i], t.tableau[(i-1) div
2]

i  (i-1) div 2

}

retourner (t)

fin

40

Opération d'Ajout

Complexité
La complexité de l'opération d'ajout est en

O(h), où h est la hauteur du tas :

 On ne fait que remonter un chemin ascendant d'une feuille vers la racine (en

s'arrêtant éventuellement avant).

 La hauteur d'un tas de taille n est précisément égale à

et donc l'ajout demande un temps O(log(n)).

41

 (n)log 2

Opération de Suppression du

Maximum

 Principe :

 Remplacer la clé du nœud racine par la clé du nœud situé

le plus à droite du dernier niveau du tas. Ce dernier nœud

est alors supprimé ;

 Réorganiser l'arbre, pour qu'il respecte la définition du tas,

en faisant descendre la clé de l'élément de la racine à sa

bonne place en permutant avec le plus grand des fils.

42

Opération de Suppression du

Maximum (Exemple) (1)

43

Supposons qu'on désire supprimer la valeur

23 contenue dans la racine du tas illustré

par la figure suivante :

Opération de Suppression du

Maximum (Exemple) (2)

44

On commence alors par remplacer le contenu du
nœud racine par celui du dernier nœud du tas :

 Ce dernier nœud est alors supprimé ;

 Ceci est illustré par la figure suivante :

Opération de Suppression du

Maximum (Exemple) (3)

45

 L'arbre obtenu est parfait mais n'est pas un tas :
 la clé contenue dans la racine a une valeur plus petite que

les valeurs des clés de ses fils ;

 Cette clé de valeur 2 est alors échangée avec la plus
grande clé de ses fils, à savoir 15 ;

 L'arbre obtenu est représenté par la figure suivante :

Opération de Suppression du

Maximum (Exemple) (4)

46

 Encore une fois, cet arbre

n'est pas un tas. On le

réorganise pour qu'il

respecte la définition du tas

◼ Le dernier arbre obtenu est
bien un tas ; il est illustré par
la figure suivante :

Opération de Suppression du

Maximum (Pseudo-code) (1)

 Une version qui utilise la procédure Entasser

 La procédure Entasser :

 permet de faire descendre la valeur en t[i] de manière

que l'arbre de racine en i devienne un tas ;

 suppose que les sous arbres de racines en 2i+1 (fils

gauche du nœud en i) et en 2i+2 (fils droit du nœud en i)

sont des tas.

47

Opération de Suppression du

Maximum (Pseudo-code) (2)

procédure Entasser(Tableau t[0 .. n-1], Entier
i)

début

si ((2i+2 == n) ou (t[2i+1] ≥ t[2i+2])) alors

k  2i+1

sinon

k  2i+2

fsi

si t[i] < t[k] alors

échanger (t[i], t[k])

si k  ((n div 2)- 1) alors

Entasser(t, k)

fsi

fsi

fin

48

Opération de Suppression du

Maximum (Pseudo-code) (3)

fonction supprimerMax (t : tas) : tas

(* le tas t est supposé non vide !! *)

début

t.taille  t.taille – 1

t.tableau[0]  t.tableau[t.taille]

Entasser(t, 0)

retourner (t)

fin

49

Opération de Suppression

du Maximum (Complexité)

 La complexité de la suppression est la même que

celle de l'insertion, c-à-d O(log(n)) :

 En effet, on ne fait que suivre un chemin descendant

depuis la racine.

50

Opération de Recherche du

Maximum

(Pseudo-code & Complexité)

 L'opération de recherche du maximum est
immédiate dans les tas

 Elle prend un temps constant O(1)

51

fonction Max (t : tas) : Elément

(* le tas t est supposé non vide !! *)

début

retourner (t.tableau[0])

fin

Exemples d'Applications des Tas

 Files de priorités (Priority queues) :

 Les tas sont fréquemment utilisés pour implémenter des files de priorités.

 A l'opposé des files standard, une file de priorités détruit l'élément de plus
haute (ou plus basse) priorité.

 La signification de la "priorité" d'un élément dépend de l'application

 A tout instant, on peut insérer un élément de priorité arbitraire dans une file de
priorités. Si l'application souhaite la destruction de l'élément de plus haute
priorité, on utilise un arbre maximier.

 Tri par tas (Heapsort):

 Les opérations sur les tas permettent de résoudre un problème de tri à l’aide
d’un algorithme appelé tri par tas (heapsort).

 Cet algorithme a la même complexité temporelle, O(n log(n)), que le tri
rapide (quicksort). Mais, en pratique, une bonne implémentation de ce
dernier le bat d'un petit facteur constant.

52

Algorithme du Tri par Tas

(Principe)

 Supposons qu'on veut trier, en ordre croissant, un tableau

T de n éléments.

 Principe :

 L’algorithme du tri par tas commence, en utilisant la fonction
ConstruireTas, par construire un tas dans le tableau à trier T ;

 Ensuite, il prend l'élément maximal du tas, qui se trouve en T[0],
l'échange avec T[n-1], et rétablit la propriété de tas, en utilisant
l'appel de fonction Entasser(T,0) pour le nouveau tableau à n-1
éléments (la case T[n-1] n'est pas considérée) ;

 L'algorithme de tri par tas répète ce processus pour le tas de
taille n-1 jusqu'à la taille 2.

53

Algorithme du Tri par Tas

(Pseudo-code) (1)

fonction Tri_par_Tas(Tableau T[0 .. n-1]) :
Tableau

début

T  ConstruireTas(T)

pour i  (n-1) à 1 par pas -1 faire

Echanger(T[0], T[i])

n  n-1

Entasser (T, i)

retourner (T)

fin

54

ConstruireTas produit un tas
à partir d'un tableau T

Entasser sert à garantir le maintien de la
propriété de tas pour l'arbre de racine en i

Algorithme du Tri par Tas

(Pseudo-code) (2)

fonction ConstruireTas(Tableau T[0 .. n-1]) : Tas

début

pour i  ((n div 2) - 1) à 0 par pas -1 faire

Entasser (T, i)

retourner (T)

fin

55

Les feuilles sont
des tas à un

élément !

ConstruireTas

Exemple (1)

0 1 2 3 4 5 6 7 8 9

T 4 1 3 2 16 9 10 14 8 7

56

 Illustration de l'action ConstruireTas sur un

tableau d'entiers contenant 10 éléments

 Remarquer que les nœuds qui portent les

valeurs 9, 10, 14, 8 et 7 sont biens des feuilles, et

donc des tas à un élément.

ConstruireTas: Exemple (2)57

Tri par Tas : Exemple (1)58

 Les figures qui suivent
illustrent l'action du tri
par tas après
construction du tas

Chaque tas est
montré au début
d'une itération de la
boucle

Tri par Tas : Exemple (2)59

0 1 2 3 4 5 6 7 8 9

T 1 2 3 4 7 8 9 10 14 16

Tableau final : trié

Algorithme du Tri par Tas

Complexité

 On montre que l'appel à ConstruireTas prend un temps
O(n)

 Chacun des (n-1) appels à Entasser prend un temps
O(log(n))

 Par conséquent, l'algorithme du tri par tas s'exécute
en O(n log(n))

60

Introduction aux Arbres

de Recherche Equilibrés

 (Balanced Search Trees)

61

Notion d'Arbres

de Recherche Equilibrés

 La définition des arbres équilibrés impose que la différence entre les

hauteurs des fils gauche et des fils droit de tout noeud ne peut

excéder 1

 Il faut donc maintenir l'équilibre de tous les noeuds au fur et à

mesure des opérations d'insertion ou de suppression d'un nœud

 Quand il peut y avoir un déséquilibre trop important entre les deux

fils d'un noeud, il faut recréer un équilibre par :

 des rotations d'arbres ou par éclatement de nœuds (cas des arbres B)

 Les algorithmes de rééquilibrage sont très compliqués :

 On cite entre autres, quelques exemples d'arbres équilibrés pour les quels les
opérations de recherche, d’insertion et de suppression sont en O(log(n))

62

Arbres de Recherche Equilibrés

Exemples (1)

Les arbres AVL :
 Introduits par Adelson-Velskii Landis Landis (d'où le nom d'AVL) dans

les années 60 ;

 Un arbre AVL est un arbre binaire de recherche stockant une

information supplémentaire pour chaque noeud : son facteur

d'équilibre ;

 Le facteur d'équilibre représente la différence des hauteurs entre son

sous arbre gauche et son sous arbre droit ;

 Au fur et à mesure que des nœuds sont insérés ou supprimés, un

arbre AVL s'ajuste de lui-même pour que tous ses facteurs

d'équilibres restent à 0, -1 ou 1.

63

Arbres de Recherche Equilibrés

Exemples (2)

 Les arbres rouges et noirs :

 Des arbres binaires de recherche qui se maintiennent

eux-mêmes approximativement équilibrés en colorant

chaque nœud en rouge ou noir ;

 En contrôlant cette information de couleur dans chaque

noeud, on garantit qu’aucun chemin ne peut être deux

fois plus long qu'un autre, de sorte que l’arbre reste

équilibré.

64

Arbres de Recherche Equilibrés

Exemples (3)

 Les B arbres :

 Arbres de recherche équilibrés qui sont conçus pour être

efficaces sur d'énormes masses de données stockées sur

mémoires secondaires ;

 Chaque nœud permet de stocker plusieurs clés ;

 Généralement, la taille d'un nœud est optimisée pour

coïncider avec la taille d'un bloc (ou page) du périphérique,

en vue d'économiser les coûteux accès d'entées sorties.

…

65

Cours

Structures de

données

Arbres (Trees)
Pr F.Omary

2019-2020

1

Objectifs

Etudier des structures non

linéaires

Arbres binaires

Arbres binaires de recherche

Arbres maximiers ou Tas

Arbres équilibrés

2

Contenu

 Introduction

 Terminologie

 Arbres binaires

 Arbres binaires de recherche

 Arbres maximiers ou Tas

 Arbres équilibrés

3

Arbres (Trees)
Introduction

4

Notion d'Arbre (Tree)

 Les arbres sont les structures de données les plus

importantes en informatique

Ce sont des structures non linéaires qui permettent
d’obtenir des algorithmes plus performants que

lorsqu’on utilise des structures de données linéaires

telles que les listes et les tableaux

 Ils permettent une organisation naturelle des

données

5

Notion d'Arbre (Tree)

Exemples
 Organisation des fichiers dans les systèmes

d'exploitation ;

 Organisation des informations dans un système de bases
de données ;

 Représentation de la structure syntaxique des
programmes sources dans les compilateurs ;

 Représentation d'une table de matières ;

 Représentation d'un arbre généalogique ;

 …

6

Arbres (Trees)
Terminologie

7

Terminologie (1)

 Un arbre est un ensemble d'éléments appelés nœuds (ou sommets),

liés par une relation (dite de "parenté") induisant une structure

hiérarchique parmi ces nœuds.

 Un nœud, comme tout élément d'une liste, peut être de n'importe

quel type.

8

Terminologie (1) (suite)

D'une manière plus formelle, une structure
d'arbre de type de base T est :
 soit la structure vide ;

 soit un noeud de type T, appelé racine, associé à un nombre fini de structures
d'arbre disjointes du type de base T appelées sous arbres

C'est une définition récursive ; la récursivité est
une propriété des arbres et des algorithmes
qui les manipulent

Une liste est un cas particulier des arbres
(arbre dégénéré), où tout noeud a au plus un
sous arbre

9

Illustration & Exemple

 Pour illustrer une structure

d'arbre, on modélise le

plus souvent un nœud

par une information

inscrite dans un cercle et

les liens par des traits.

 Par convention, on

dessine les arbres avec la

racine en haut et les

branches dirigées vers le

bas.

10

La racine

Exemple d'arbre formé de 7

nœuds (des entiers)

Terminologie (2)

La terminologie utilisée dans les structures

d'arbres est empruntée :
 aux arbres généalogiques :

 Père ;

 Fils ;

 Frère ;

 Descendant ;

 …

 et à la botanique :

 Feuille ;

 Branche ;

 …

11

Terminologie (3)

 Fils (ou enfants) :
 Chaque nœud d'un arbre pointe vers un ensemble éventuellement

vide d'autres nœuds ; ce sont ses fils (ses enfants).

 Sur l'exemple précédent, le nœud 5 a deux fils : 1 et 3, le nœud 1 a
un fils : 4, et le nœud 3 a trois fils : 2, 6 et 7.

 Père :
 Tous les nœuds d'un arbre, sauf un, ont un père et un seul. Un nœud p

est père du nœud n si et seulement si n est fils de p.

 Par exemple, le père de 2 est 3, celui de 3 et 5.

 Frères :
 Deux nœuds ayant le même père.

 Les nœuds 2, 6 et 7 sont des frères.

 Racine :
 Le seul nœud sans père.

 5 est la racine de l'arbre précédent.

12

Terminologie (4)

 Feuilles (ou nœuds terminaux, ou nœuds externes) :
 Ce sont des noeuds sans fils.

 Par exemple, 4, 2, 6 et 7.

 Nœud interne :
 Un noeud qui n'est pas terminal.

 Par exemple, 1, 3 et 5.

 Degré d'un noeud :
 Le nombre de fils de ce noeud.

 Sur l'exemple, 5 est de degré deux, 1 est de degré un, 3 est de
degré trois et les feuilles (4, 2, 6, 7) sont de degré nul.

 Degré d'un arbre (ou arité) :
 Plus grand degré des nœuds de l'arbre. Un arbre de degré n est dit

n-aire

 Sur l'exemple, l'arbre est un arbre 3-aire.

13

Terminologie (5)
 Taille d'un arbre :

 Le nombre total des nœuds de l'arbre.

 Sur l'exemple, l'arbre est de taille 7.

 Chemin :
 Une suite de noeuds d'un arbre (n1, n2, …, nk) tel que ni = père(ni+1) pour 1≤i≤k-

1 est appelée chemin entre le nœud n1 et le nœud nk.

 La longueur d'un chemin est égale au nombre de nœuds qu'il contient moins
1.

 Sur l'exemple, le chemin qui mène du nœud 5 au nœud 6 est de longueur 2.

 Branche :
 Un chemin qui commence à la racine et se termine à une feuille.

 Par exemple, les chemins (5, 1, 4), (5, 3, 2), (5, 3, 6) et (5, 3, 7).

 Ancêtre :
 Un nœud A est un ancêtre d'un nœud B s'il existe un chemin de A vers B.

 Par exemple, les ancêtres de 2 sont 2, 3 et 5

 Descendant :
 Un nœud A est un descendant d'un nœud B s'il existe un chemin de B vers A.

 Sur l'exemple, 5 admet les 7 nœuds de l'arbre comme descendants.

14

Terminologie (6)

 Sous arbre :

 Un sous arbre d'un arbre A est constitué de tous les
descendants d'un nœud quelconque de A.

 Les ensembles de noeuds {3, 2, 6, 7} et {2} forment deux sous
arbres de l'exemple précédent.

 Hauteur (ou profondeur, ou niveau) d'un noeud :

 Longueur du chemin qui relie la racine à ce nœud.

 La racine est elle même de hauteur 0, ses fils sont de hauteur
1, et les autres noeuds de hauteur supérieure à 1.

 Hauteur d'un arbre :

 Plus grande profondeur des nœuds de l'arbre supposé non
vide, c'est-à-dire h(A) = Max{h(x) ; x noeud de A}

 L'arbre de l'exemple est de profondeur 2.

 Par convention, un arbre vide a une hauteur de -1.

15

Terminologie (7)

Arbre dégénéré ou filiforme :
 Un arbre dont chaque nœud a au plus au fils

16

Terminologie (7)

Arbre ordonné :
 Un arbre où la position respective des sous arbres reflète une relation

d'ordre. En d'autres termes, si un nœud a k fils, il existe un 1er fis, un 2ème

fils, …, et un kème fils.

 Les deux arbres de la figure qui suit sont différents si on les regarde

comme des arbres ordonnés, mais identiques si on les regarde comme de

simples arbres.

17

Terminologie (8)

 Arbre binaire :

 Un arbre où chaque noeud a au plus deux fils.

 Quand un nœud de cet arbre a un seul fils, on précise s'il s'agit
du fils gauche ou du fils droit.

 La figure qui suit montre un exemple d'arbre binaire dans
lequel les nœuds contiennent des caractères.

18

Terminologie (9)

Arbre binaire complet :
 Arbre binaire dont chaque niveau est rempli.

19

Terminologie (10)

Arbre binaire parfait (ou presque complet) :
 Arbre binaire dont chaque niveau est rempli sauf

éventuellement le dernier

 Dans ce cas les nœuds terminaux (feuilles) sont groupés
le plus à gauche possible.

20

Terminologie (11)

 Facteur d'équilibre d'un nœud d'un arbre
binaire :
 Hauteur du sous arbre partant du fils gauche

du nœud moins la hauteur du sous arbre
partant de son fils droit.

 Arbre binaire équilibré (au sens des
hauteurs) :
 Un arbre binaire tel que pour chaque nœud,

la valeur absolue du facteur d'équilibre est
inférieure ou égal à un.

 Sur l'exemple qui suit, on place à côté de
chaque nœud son facteur d'équilibre.

21

 1
0

1
4

4

8 1
6

2

6

1
2

0

1

0 0

0

0

-1

1

Arbres Binaires

(Binary Trees)
22

Définition

 Un arbre binaire A est :

 soit vide (A = () ou A = ø),

 soit de la forme A = <r, A1, A2>, c-à-d composé :

 d'un nœud r appelé racine contenant un élément

 et de deux arbres binaires disjoints A1 et A2, appelés
respectivement sous arbre gauche (ou fils gauche) et sous
arbre droit (ou fils droit).

23

Exemple d'arbre binaire24

Type Abstrait Arbre_Binaire

Type Arbre_Binaire

Utilise Noeud, Elément, Booléen

Opérations

arbre_vide : → Arbre_Binaire

est_vide : Arbre_Binaire → Booléen

cons : Noeud x Arbre_Binaire x Arbre_Binaire → Arbre_Binaire

racine : Arbre_Binaire → Noeud

gauche : Arbre_Binaire → Arbre_Binaire

droite : Arbre_Binaire → Arbre_Binaire

contenu : Noeud → Elément

Préconditions

racine(A) est-défini-ssi est_vide(A) = faux

gauche(A) est-défini-ssi est_vide(A) = faux

droite(A) est-défini-ssi est_vide(A) = faux

Axiomes

Soit, r : Nœud, A1, A2 : Arbre_Binaire

racine(<r, A1, A2>) = r

gauche(<r, A1, A2>) = A1

droite(<r, A1, A2>) = A2

25

Opérations sur un Arbre

Binaire (1)
 arbre_vide : → Arbre_Binaire

 opération d'initialisation; crée un arbre binaire vide.

 est_vide : Arbre_Binaire → Booléen

 teste si un arbre binaire est vide ou non.

 cons : Noeud x Arbre_Binaire x Arbre_Binaire →

Arbre_Binaire

 cons(r,G,D) construit un arbre binaire dont le sous arbre
gauche est G et le sous arbre droit est D, et r est le nœud
racine qui contient une donnée de type Elément.

 racine : Arbre_Binaire → Noeud

 si A est un arbre binaire non vide alors racine(A) retourne
le nœud racine de A, sinon un message d'erreur.

26

Opérations sur un Arbre

Binaire (2)

 gauche : Arbre_Binaire → Arbre_Binaire

 si A est un arbre binaire non vide alors gauche(A) retourne le sous arbre

gauche de A, sinon un message d'erreur.

 droite : Arbre_Binaire → Arbre_Binaire

 si A est un arbre binaire non vide alors droite(A) retourne le sous arbre

droit de A, sinon un message d'erreur.

 contenu : Noeud → Elément

 permet d’associer à chaque noeud d'un arbre binaire une information de

type Elément.

27

Opérations Auxiliaires
Extension Type Arbre_Binaire

Utilise Entier, Booléen

Opérations

taille : Arbre_Binaire → Entier

hauteur : Arbre_Binaire → Entier

feuille : Arbre_Binaire → Booléen

Préconditions

Axiomes

Soit, r : Noeud, A1, A2 : Arbre_Binaire

taille(arbre_vide) = 0

taille(<r, A1, A2>) = 1 + taille(A1) + taille(A2)

hauteur(arbre_vide) = -1

si hauteur(A1) > hauteur(A2) alors hauteur(<r, A1, A2>) = 1+hauteur(A1)

sinon hauteur(<r, A1, A2>) = 1 + hauteur(A2)

si est_vide(A) = faux et est_vide(gauche(A)) = vrai

et est_vide(droit(A)) = vrai

alors feuille(A) = vrai

sinon feuille(A) = faux

28

Parcours d'arbre binaire

 Un parcours d'arbre permet d'accéder à chaque nœud de l'arbre :

 Un traitement (test, affichage, comptage, etc.), dépendant de l’application

considérée, est effectué sur l’information portée par chaque nœud

 Chaque parcours de l'arbre définit un ordre sur les nœuds

 On distingue :

 Les parcours de gauche à droite (le fils gauche d'un nœud précède le fils

droit) ;

 Les parcours de droite à gauche (le fils droit d'un nœud précède le fils

gauche).

 On ne considèrera que les parcours de gauche à droite

 On distingue aussi deux catégories de parcours d'arbres :

 Les parcours en profondeur ;

 Les parcours en largeur.

29

Parcours en profondeur

 Soit un arbre binaire A = <r, A1, A2>

 On définit trois parcours en profondeur de cet arbre :

 Le parcours préfixe ;

 Le parcours infixe ou symétrique ;

 Le parcours postfixe ou suffixe.

30

Parcours en profondeur

Parcours préfixe
 En abrégé RGD (Racine, Gauche, Droit)

 Consiste à effectuer dans l'ordre :

 Le traitement de la racine r ;

 Le parcours préfixe du sous arbre gauche A1 ;

 Le parcours préfixe du sous arbre droit A2.

 L'ordre correspondant s'appelle l'ordre préfixe

31

Parcours en profondeur

Parcours infixe ou symétrique
 En abrégé GRD (Gauche, Racine, Droit)

 Consiste à effectuer dans l'ordre :

 Le parcours infixe du sous arbre gauche A1 ;

 Le traitement de la racine r ;

 Le parcours infixe du sous arbre droit A2.

 L'ordre correspondant s'appelle l'ordre infixe

32

Parcours en profondeur

parcours postfixe ou suffixe

 En abrégé GDR (Gauche, Droit, Racine)

 Consiste à effectuer dans l'ordre :

 Le parcours postfixe du sous arbre gauche A1 ;

 Le parcours postfixe du sous arbre droit A2 ;

 Le traitement de la racine r.

 L'ordre correspondant s'appelle l'ordre suffixe

33

Exemple de Parcours en profondeur

(affichage du contenu des nœuds)
34

Le parcours préfixe affiche les nœuds dans l'ordre : 1, 2, 4, 5, 3, 6, 8, 9, 12, 13, 7, 10, 11
Le parcours infixe affiche les nœuds dans l'ordre : 4, 2, 5, 1, 8, 6, 12, 9, 13, 3, 10, 7, 11
Le parcours postfixe affiche les nœuds dans l'ordre : 4, 5, 2, 8, 12, 13, 9, 6, 10, 11, 7, 3, 1

Parcours en largeur

 On explore les noeuds :

 niveau par niveau,

 de gauche à droite,

 en commençant par la racine.

 Exemple :

 Le parcours en largeur de l'arbre de la figure précédente

affiche la séquence d'entiers suivante : 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13

35

Représentations d'un arbre

binaire

 Représentation par tableau (par contiguïté)

 Représentation par pointeurs (par chaînage)

36

Représentation contiguë d'un

arbre binaire
On caractérise un arbre binaire par :

 sa taille (nombre de nœuds) ;

 sa racine (indice de son emplacement dans le tableau de nœuds)

 un tableau de nœuds.

Chaque nœud contient trois données :
 une information de type Elément ;

 deux entiers (indices dans le tableau désignant respectivement
l'emplacement des fils gauche et droit du nœud).

37

Représentation contiguë d'un

arbre binaire

#define NB_MAX_NOEUDS 15

typedef int Element;

typedef struct noeud {

Element val;

int fg;

int fd;

} Noeud;

typedef Noeud TabN[Nb_MAX_NOEUDS];

typedef struct arbre {

int nb_noeuds;

int racine;

TabN les_noeuds;

} Arbre_Binaire

38

Exemple de Représentation contiguë
39

 a

c

d

b

e

f

g

k

l

m

10 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

val d a g b c f m e l k

fg -1 4 -1 1 12 -1 -1 7 8 -1

n
b

_
n

o
e
u

d
s

r
a

c
in

e

le
s
_

n
o

e
u

d
s

fd 9 5 -1 -1 10 -1 -1 3 -1 -1

Autre représentation contiguë d'un arbre

binaire

 Repose sur l'ordre hiérarchique (numérotation des
nœuds niveau par niveau et de gauche à droite)

 On rappelle que pour stocker un arbre binaire de
hauteur h, il faut un tableau de 2h+1-1 éléments

 On organise le tableau de la façon suivante :

 Le noeud racine a pour indice 0 (en langage C) ;

 Soit le noeud d’indice i dans le tableau, son fils gauche a
pour indice 2i +1, et son fils droit a pour indice 2(i+1).

 Représentation idéale pour les arbres binaires
parfaits. En effet, elle ne gaspille pas d'espace.

40

Autre représentation contiguë d'un

arbre binaire (Exemples)

a

c

d

b

f

k

l

h

41

 a

d

b

f

 a

c

d

b

e

f

g

k

l

m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b d f

0 1 2 3 4 5 6 7

a b c d h k l f

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a b c d k l e m f g

Représentation chaînée d'un

arbre binaire

Chaque nœud a trois champs :
 val (l'élément stocké dans le noeud) ;

 fg (pointeur sur fils gauche) ;

 fd (pointeur sur fils droit).

Un arbre est désigné par un pointeur sur sa
racine

Un arbre vide est représenté par le pointeur
NULL

42

Représentation chaînée en C d'un arbre

binaire

typedef int Element;

typedef struct noeud *Pnoeud;

typedef struct noeud {

Element val;

Pnoeud fg;

Pnoeud fd;

} Noeud;

typedef Noeud *Arbre_Binaire;

43

Exemple de Représentation chaînée

d'un arbre binaire44

 a

c

d

b

e

f

g

k

l

m

Réalisation chaînée d'un arbre binaire

Arbre_Binaire arbre_vide() {

return NULL;

}

Booleen est_vide(Arbre_Binaire A) {

return A == NULL ;

}

Pnoeud nouveau_noeud(Element e) {

// faire une allocation mémoire et placer l'élément e

// en cas d'erreur d'allocation, le pointeur renvoyé est
NULL

Pnoeud p = (Pnoeud) malloc(sizeof(Noeud));

if (p != NULL) {

p->val = e;

p->fg = NULL;

p->fd = NULL;

}

return (p);

}

45

Réalisation chaînée d'un arbre binaire
46

Arbre_Binaire cons(Noeud *r,

Arbre_Binaire G,

Arbre_Binaire D) {

r->fg = G ;

r->fd = D ;

return r ;

}

Noeud racine(Arbre_Binaire A) {

// précondition : A est non vide !

if (estvide(A)) {

printf("Erreur : Arbre vide !\n");

exit(-1);

}

return (*A) ;

}

Arbre_Binaire gauche(Arbre_Binaire A) {

// précondition : A est non vide !

if (estvide(A)) {

printf("Erreur : Arbre vide !\n");

exit(-1);

}

return A->fg ; /* ou bien (*A).fg; */

}

Arbre_Binaire droite(Arbre_Binaire A) {

// précondition : A est non vide !

if (estvide(A)) {

printf("Erreur : Arbre vide !\n");

exit(-1);

}

return A->fd ; /* ou bien (*A).fd; */

}

Element contenu(Noeud n) {

return n.val;

}

Exemples d'Applications d'Arbre

Binaire

 Recherche dans un ensemble de valeurs :
 Les arbres binaires de recherche ;

 Tri d’un ensemble de valeurs :
 Le parcours GRD d’un arbre binaire de recherche ;

 Un algorithme de tri efficace utilisant une structure de tas ;

 Représentation d’une expression arithmétique :

 Un parcours GDR pour avoir une notation postfixée ;

 Méthodes de compression :
 Le codage de Huffman utilisant des arbres binaires ;

 La compression d’images utilisant des quadtrees (arbres quaternaires,
ou chaque nœud non feuille a exactement quatre fils) ;

 …

47

Arbres de Recherche Equilibrés

Exemples (3)

Les B arbres :
 Arbres de recherche équilibrés qui sont conçus pour être efficaces sur

d'énormes masses de données stockées sur mémoires secondaires ;

 Chaque nœud permet de stocker plusieurs clés ;

 Généralement, la taille d'un nœud est optimisée pour coïncider avec la

taille d'un bloc (ou page) du périphérique, en vue d'économiser les

coûteux accès d'entées sorties.

…

48

Arbres Binaires de
Recherche
(Binary Search Trees)

Pr F.Omary
2019-2020

1

N
otion d

'A
rbre binaire d

e
recherche
�

C
'est un arbre binaire particulier :
�

Perm
et d'obtenir un algorithm

e de recherche proche
dans l'esprit de la recherche dichotom

ique ;

�
Pour lequel les opérations d'ajout et de suppression d'un
élém

ent sont aussi efficaces.

�
C

et arbre utilise l'existence d'une relation d'ordre sur
les élém

ents, représentée par une fonction clé, à
valeur entière.

2

A
rbre binaire d

e recherche
D

éfinition
�

Un arbre binaire de recherche (binary
search

tree
en anglais), en

abrégé A
BR, est un arbre binaire tel que pour tout nœ

ud :
�

les clés de tous les noeudsdu sous-arbre gauche sont inférieures ou égales à la
clé du nœ

ud,

�
les clés de tous les noeudsdu sous-arbre droit sont supérieures à la clé du
nœ

ud.

�
C

haque nœ
ud d'un arbre binaire de recherche désigne un élém

ent
qui est caractérisé par une clé (prise dans un ensem

ble totalem
ent

ordonné) et des inform
ations associées à cette clé.

�
Dans toute illustration d'un arbre binaire de recherche, seules les clés
sont représentées. O

n supposera aussi que toute clé identifie de
m

anière unique un élém
ent.

3

A
rbre binaire d

e recherche
Exem

ple
4

�
L'arbre de la figure
suivante est un arbre
binaire de recherche

�
C

et arbre représente
l’ensem

ble :
E = {a, d, e, g, i, l, q, t}

m
uni de l’ordre alphabétique

A
rbre binaire d

e recherche
Rem

arque
5

�
Plusieurs représentations possibles
d’un m

êm
e ensem

ble par un arbre
binaire de recherche

�
En effet, la structure précise de
l’arbre binaire de recherche est
déterm

inée :
�

par l’algorithm
e d’insertion utilisé,

�
et par l’ordre d’arrivée des élém

ents.

�
Exem

ple :
�

L’arbre binaire de recherche de la
figure qui suit représente aussi

E = {a, d, e, g, i, l, q, t}

O
péra

tions sur les arbres binaires
d

e recherche

�
Le type abstrait arbre binaire de recherche, noté
A
r
b
r
e
_
R
e
c
h, est décrit de la m

êm
e m

anière que le type
A
r
b
r
e
_
B
i
n
a
i
r
e

�
O

n reprend les opérations de base des arbres binaires,
excepté le fait que dans des arbres binaires de
recherche, on suppose l'existence de l'opération clé sur
le type abstrait E

l
e
m
e
n
t

�
O

n définit, en tenant com
pte du critère d'ordre, les

opérations spécifiques de ce type d'arbre concernant :
�

la recherche d'un élém
ent dans l'arbre ;

�
l'insertion d'un élém

ent dans l'arbre ;

�
la suppression d'un élém

ent de l'arbre.

6

Recherche d
'un élém

ent

�
Principe de l'algorithm

e :
�

O
n com

pare la clé de l'élém
ent cherché à la clé de la

racine de l'arbre ;

�
Si la clé est supérieure à la clé de la racine, on effectue
une recherche dans le fils droit ;

�
Si la clé est inférieure à la clé de la racine, on effectue
une recherche dans le fils gauche ;

�
La recherche s'arrête quand on ne peut plus continuer
(échec) ou quand la clé de l'élém

ent cherché est égale
à la clé de la racine d'un sous arbre (succès).

7

Recherche d
'un élém

ent
Exem

ple

25

14

12
17

22

50

43
84

111

43>25

43<50

43==43

8

�
la figure suivante
illustre la
recherche de
l'élém

ent de clé
43 dans un arbre
binaire de
recherche.

�
Les flèches
indiquent le
chem

in de la
recherche

Recherche d
'un élém

ent
Spécification

E
x
t
e
n
s
i
o
n

T
y
p
e

A
r
b
r
e
_
R
e
c
h

U
t
i
l
i
s
e

E
l
é
m
e
n
t
,

B
o
o
l
é
e
n

O
p
é
r
a
t
i
o
n
s

R
e
c
h
e
r
c
h
e
r
 :

E
l
é
m
e
n
t
 x

A
r
b
r
e
_
R
e
c
h
→

B
o
o
l
é
e
n

A
x
i
o
m
e
s

S
o
i
t
,

x

:

E
l
é
m
e
n
t
,

r

:

N
œ
u
d
,

G
,

D

:

A
r
b
r
e
_
R
e
c
h

R
e
c
h
e
r
c
h
e
r
(
x
,

a
r
b
r
e
_
v
i
d
e
)

=

f
a
u
x

s
i

c
l
é
(
x
)

=

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s

R
e
c
h
e
r
c
h
e
r
(
x
,

<
r
,

G
,

D
>
)

=

v
r
a
i

s
i

c
l
é
(
x
)

<

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s
R
e
c
h
er
ch
e
r(
x,

<
r,
 G
,
 D
>)

=
 R
ec
h
er
ch
e
r
(x
,

G
)

s
i

c
l
é
(
x
)

>

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s

R
e
c
h
e
r
c
h
e
r
(
x
,

<
r
,

G
,

D
>
)

=

R
e
c
h
e
r
c
h
e
r
(
x
,

D
)

9

Recherche d
'un élém

ent
Réalisation en C

B
o
o
l
e
e
n

R
e
c
h
e
r
c
h
e
r

(
A
r
b
r
e
_
R
e
c
h

A
,

E
l
e
m
e
n
t

e
)

{

i
f

(

e
s
t
_
v
i
d
e
(
A
)

=
=

v
r
a
i

)

r
e
t
u
r
n

f
a
u
x
;

/
/

e

n’e

s
t

p
a
s

d
a
n
s

l’a

r
b
r
e

e
l
s
e

{

i
f

(

e

=
=

A
-
>
v
a
l

)
r
e
t
u
r
n

v
r
a
i
;

/
/

e

e
s
t

d
a
n
s

l’a

r
b
r
e

e
l
s
e

i
f

(

e

<

A
-
>
v
a
l
)

/
/

o
n

p
o
u
r
s
u
i
t

l
a

r
e
c
h
e
r
c
h
e

d
a
n
s

l
e

S
A
G

d
u

/
/

n
o
e
u
d

c
o
u
r
a
n
t

r
e
t
u
r
n

R
e
c
h
e
r
c
h
e
r
(
A
-
>
f
g
,

e
)
;

e
l
s
e/
/

o
n

p
o
u
r
s
u
i
t

l
a

r
e
c
h
e
r
c
h
e

d
a
n
s

l
e

S
A
D

d
u

/
/

n
o
e
u
d

c
o
u
r
a
n
t

r
e
t
u
r
n

R
e
c
h
e
r
c
h
e
r
(
A
-
>
f
d
,

e
)
;

}
}

10

Recherche d
'un élém

ent
A

utre Spécification

E
x
t
e
n
s
i
o
n

T
y
p
e

A
r
b
r
e
_
R
e
c
h

U
t
i
l
i
s
e

E
l
é
m
e
n
t

O
p
é
r
a
t
i
o
n
s

R
e
c
h
e
r
c
h
e
r

:

E
l
é
m
e
n
t

x

A
r
b
r
e
_
R
e
c
h

→

A
r
b
r
e
_
R
e
c
h

A
x
i
o
m
e
s

S
o
i
t
,

x

:

E
l
é
m
e
n
t
,

r

:

N
œ
u
d
,

G
,

D

:

A
r
b
r
e
_
R
e
c
h

R
e
c
h
e
r
c
h
e
r
(
x
,

a
r
b
r
e
_
v
i
d
e
)

=

a
r
b
r
e
_
v
i
d
e

s
i

c
l
é
(
x
)

=

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s

R
e
c
h
e
r
c
h
e
r
(
x
,

<
r
,

G
,

D
>
)

=

<
r
,

G
,

D
>
)

s
i

c
l
é
(
x
)

<

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s

R
e
c
h
e
r
c
h
e
r
(
x
,

<
r
,

G
,

D
>
)

=

R
e
c
h
e
r
c
h
e
r
(
x
,

G
)

s
i

c
l
é
(
x
)

>

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s

R
e
c
h
e
r
c
h
e
r
(
x
,

<
r
,

G
,

D
>
)

=

R
e
c
h
e
r
c
h
e
r
(
x
,

D
)

11

A
jout d

'un élém
ent

�
La technique d'ajout spécifiée ici est dite "ajout en feuille", car
tout nouvel élém

ent se voit placé sur une feuille de l'arbre

�
Le principe est sim

ple :
�

si l'arbre initial est vide, le résultat est form
é d'un arbre binaire de

recherche réduit à sa racine, celle-ci contenant le nouvel élém
ent ;

�
sinon, l'ajout se fait (récursivem

ent) dans le fils gauche ou le fils droit,
suivant que l'élém

ent à ajouter est de clé inférieure ou supérieure à
celle de la racine.

�
Rem

arque :
�

si l'élém
ent à ajouter est déjà dans l'arbre, l'hypothèse d'unicité des

élém
ents pour certaines applications fait qu'on ne réalise pas l'ajout

12

A
jout d

'un élém
ent

Exem
ple

13�
Les figures suivantes illustrent l'ajout successif
de e, i, a, t, d, g, q et l dans un arbre binaire
de recherche, initialem

ent vide

A
jout "en feuille" d

'un élém
ent

Spécification

E
x
t
e
n
s
i
o
n

T
y
p
e

A
r
b
r
e
_
R
e
c
h

U
t
i
l
i
s
e

E
l
é
m
e
n
t

O
p
é
r
a
t
i
o
n
s

A
j
o
u
t
e
r
_
f
e
u
i
l
l
e

:

E
l
é
m
e
n
t

x

A
r
b
r
e
_
R
e
c
h
→

A
r
b
r
e
_
R
e
c
h

A
x
i
o
m
e
s

S
o
i
t
,

x

:

E
l
é
m
e
n
t
,

r

:

N
œ
u
d
,

G
,

D

:

A
r
b
r
e
_
R
e
c
h

A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x
,

a
r
b
r
e
_
v
i
d
e
)

=

<
x
,

a
r
b
r
e
_
v
i
d
e
,

a
r
b
r
e
_
v
i
d
e
>

s
i

c
l
é
(
x
)

≤

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s

A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x
,

<
r
,

G
,

D
>
)

=

<
r
,

A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x
,

G
)
,

D
>

s
i
n
o
n

A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x
,

<
r
,

G
,

D
>
)

=

<
r
,

G
,

A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x
,

D
)
>

14

A
jout "en feuille" d

'un élém
ent

Réa
lisation

f
o
n
c
t
i
o
n

A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x

:

E
l
é
m
e
n
t
,

A

:

A
r
b
r
e
_
R
e
c
h

)

:

A
r
b
r
e
_
R
e
c
h

s
i

e
s
t
_
v
i
d
e
(
A
)

a
l
o
r
s

P
n
o
e
u
d

r

=

n
o
u
v
e
a
u
_
n
o
e
u
d
(
x
)

s
i

e
s
t
_
v
i
d
e
(
r
)

a
l
o
r
s

<
e
r
r
e
u
r
>

r
e
t
o
u
r
n
e
r

c
o
n
s
(
r
,

a
r
b
r
e
_
v
i
d
e
(
)
,

a
r
b
r
e
_
v
i
d
e
(
)
)

s
i
n
o
n

s
i

x

>

c
o
n
t
e
n
u
(
r
a
c
i
n
e
(
A
)
)

a
l
o
r
s

r
e
t
o
u
r
n
e
r

c
o
n
s
(
A
,

g
a
u
c
h
e
(
A
)
,

A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x
,

d
r
o
i
t
e
(
A
)
)
)

s
i
n
o
n

S
i

x
<

c
o
n
t
e
n
u
(
r
a
c
i
n
e
(
A
)

a
l
o
r
s

r
e
t
o
u
r
n
e
r

c
o
n
s
(
A
,

A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x
,

g
a
u
c
h
e
(
A
)
)

,
d
r
o
i
t
e
(
A
)
)

f
s
i

f
s
i

f
s
i

f
f
o
n
c
t
i
o
n

15

A
jout "en feuille" d

'un élém
ent

Réalisation en C

A
r
b
r
e
_
R
e
c
h
A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
E
l
e
m
e
n
t
x
,

A
r
b
r
e
_
R
e
c
h
A
)

{

i
f

(
e
s
t
_
v
i
d
e
(
A
)
)

{

P
n
o
e
u
d
r

=

no
u
v
e
a
u
_
n
o
eu
d
(x
);

i
f

(
r

=
=

N
U
L
L
)

{

p
r
i
n
t
f
(
"
E
r
r
e
u
r

:

P
a
s

a
s
s
e
z

d
e

m
é
m
o
i
r
e

!
\
n
"
)
;

e
x
i
t
(
-
1
)
;

}

r
e
t
u
r
n

c
o
n
s
(
r
,

a
r
b
r
e
_
v
i
d
e
(
)
,

a
r
b
r
e
_
v
i
d
e
(
)
)
;

}e
l
s
e

i
f

(
x

>

c
o
n
t
e
n
u
(
r
a
c
i
n
e
(
A
)
)
)

r
e
t
u
r
n

c
o
n
s
(
A
,

g
a
u
c
h
e
(
A
)
,

A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x
,

d
r
o
i
t
e
(
A
)
)
)
;

e
l
s
e

i
f

(
x

<

c
o
n
t
e
n
u

(
r
a
c
i
n
e
(
A
)
)
/
/

p
a
s

d
’
a
j
o
u
t

l
o
r
s
q
u
e

x
=
c
o
n
t
e
n
u
(
A
)

r
e
t
u
r
n

c
o
n
s
(
A
,

A
j
o
u
t
e
r
_
f
e
u
i
l
l
e
(
x
,

g
a
u
c
h
e
(
A
)
)
,

d
r
o
i
t
e
(
A
)
)
;

}

16

Suppression d
'un élém

ent

�
La suppression est délicate :
�

Il faut réorganiser l'arbre pour qu'il vérifie la propriété d'un arbre
binaire de recherche

�
La suppression com

m
ence par la recherche du nœ

ud qui
porte l'élém

ent à supprim
er. Ensuite, il y a trois cas à

considérer, selon le nom
bre de fils du noeud

à supprim
er :

�
si le noeud

est sans fils (une feuille), la suppression est im
m

édiate
;

�
si le noeud

a un seul fils, on le rem
place par ce fils ;

�
si le noeud

a deux fils (cas général), on choisit de rem
placer ce

nœ
ud, soit par le plus grand élém

ent de son sous arbre gauche
(son prédécesseur), soit par le plus petit élém

ent de son sous
arbre droit (son successeur).

17

Suppression d
'un élém

ent
Exem

ple 1
18�

La figure qui suit illustre la suppression de la
feuille qui porte la clé 13

Suppression d
'un élém

ent
Exem

ple 2
19�

La figure qui suit illustre la suppression du
nœ

ud qui porte la clé 16

�
C

e nœ
ud n'a qu'un seul fils ; le sous arbre de

racine portant la clé 18

�
C

e sous arbre devient fils gauche du nœ
ud

qui porte la clé 20

Suppression d
'un élém

ent
Exem

ple 3
20

�
La figure qui suit illustre le cas d'un nœ

ud à deux fils.

�
La clé 15 à supprim

er se trouve à la racine de l'arbre. La racine
a deux fils ; on choisit de rem

placer sa clé par la clé de son
prédécesseur.

�

�
A

insi, la clé 14 est m
ise à la racine de l'arbre. O

n est alors
ram

ené à la suppression du nœ
ud du prédécesseur.

�
C

om
m

e le prédécesseur est le nœ
ud le plus à droite du sous

arbre gauche, il n'a pas de fils droit, donc il a zéro ou un fils, et
sa suppression est couverte par les deux prem

iers cas.

Suppression d
'un élém

ent
C

a
s général

�
O

n choisit ici de rem
placer le noeud à supprim

erpar son
prédécesseur (le nœ

ud le plus à droite de son sous arbre gauche)

�
O

n a besoin de deux opérations supplém
entaires :

�
une opération M

a
x

qui retourne l'élém
ent de clé m

axim
ale dans un

arbre binaire de recherche ;
�

une opération Su
p
p
r
i
m
e
r
M
a
x

qui retourne l'arbre privé de son plus
grand élém

ent.

21

Suppression d
'un élém

ent: Spécification
E
x
t
e
n
s
i
o
n

T
y
p
e

A
r
b
r
e
_
R
e
c
h

U
t
i
l
i
s
e

E
l
é
m
e
n
t

O
p
é
r
a
t
i
o
n
s

M
a
x

:

A
r
b
r
e
_
R
e
c
h
→

E
l
é
m
e
n
t

S
u
p
p
r
i
m
e
r
M
a
x

:

A
r
b
r
e
_
R
e
c
h
→

A
r
b
r
e
_
R
e
c
h

S
u
p
p
r
i
m
e
r

:

E
l
é
m
e
n
t

x

A
r
b
r
e
_
R
e
c
h
→

A
r
b
r
e
_
R
e
c
h

P
r
é
-
c
o
n
d
i
t
i
o
n
s

M
a
x
(
A
)

e
s
t
_
d
é
f
i
n
i
_
s
s
i

e
s
t
_
v
i
d
e
(
A
)

=

f
a
u
x

S
u
p
p
r
i
m
e
r
M
a
x
(
A
)

e
s
t
_
d
é
f
i
n
i
_
s
s
i

e
s
t
_
v
i
d
e
(
A
)

=

f
a
u
x

A
x
i
o
m
e
s

S
o
i
t
,

x

:

E
l
é
m
e
n
t
,

r

:

N
œ
u
d
,

G
,

D

:

A
r
b
r
e
_
R
e
c
h

s
i

e
s
t
_
v
i
d
e
(
D
)

=

v
r
a
i

a
l
o
r
s

M
a
x
(
<
r
,

G
,

D
>
)

=

r

s
i
n
o
n

M
a
x
(
<
r
,

G
,

D
>
)

=

M
a
x
(
D
)

s
i

e
s
t
_
v
i
d
e
(
D
)

=

v
r
a
i

a
l
o
r
s

S
u
p
p
r
i
m
e
r
M
a
x
(
<
r
,

G
,

D
>
)

=

G

s
i
n
o
n

S
u
p
p
r
i
m
e
r
M
a
x
(
<
r
,

G
,

D
>
)

=

<
r
,

G
,

S
u
p
p
r
i
m
e
r
M
a
x
(
D
)
>

S
u
p
p
r
i
m
e
r
(
x
,

a
r
b
r
e
_
v
i
d
e
)

=

a
r
b
r
e
_
v
i
d
e

s
i

c
l
é
(
x
)

=

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

e
t

e
s
t
_
v
i
d
e
(
D
)

=

v
r
a
i

a
l
o
r
s

S
u
p
p
r
i
m
e
r
(
x
,

<
r
,

G
,

D
>
)

=

G

s
i
n
o
n

s
i

c
l
é
(
x
)

=

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

e
t

e
s
t
_
v
i
d
e
(
G
)

=

v
r
a
i

a
l
o
r
s

S
u
p
p
r
i
m
e
r
(
x
,

<
r
,

a
r
b
r
e
_
v
i
d
e
,

D
>
)

=

D

s
i
n
o
n

s
i

c
l
é
(
x
)

=

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s

S
u
p
p
r
i
m
e
r
(
x
,

<
r
,

G
,

D
>
)

=

<
M
a
x
(
G
)
,
S
u
p
p
r
i
m
e
r
M
a
x
(
G
)
,

D
>

s
i

c
l
é
(
x
)

<

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s

S
u
p
p
r
i
m
e
r
(
x
,

<
r
,

G
,

D
>
)

=

<
r
,

S
u
p
p
r
i
m
e
r
(
x
,

G
)
,

D
>

s
i

c
l
é
(
x
)

>

c
l
é
(
c
o
n
t
e
n
u
(
r
)
)

a
l
o
r
s

S
u
p
p
r
i
m
e
r
(
x
,

<
r
,

G
,

D
>
)

=

<
r
,

G
,

S
u
p
p
r
i
m
e
r
(
x
,

D
)
>

22

Suppression d
'un élém

ent
Réa

lisation

f
o
n
c
t
i
o
n

M
a
x
(
A

:

A
r
b
r
e
_
R
e
c
h
)

:

P
n
o
e
u
d

(
*

A

d
o
i
t

ê
t
r
e

n
o
n

v
i
d
e

!

*
)

s
i

e
s
t
_
v
i
d
e
(
d
r
o
i
t
e
(
A
)
)

a
l
o
r
s

r
e
t
o
u
r
n
e
r

A

s
i
n
o
n

r
e
t
o
u
r
n
e
r

M
a
x
(
d
r
o
i
t
e
(
A
)
)

f
s
i

f
f
o
n
c
t
i
o
n

f
o
n
c
t
i
o
n

S
u
p
p
r
i
m
e
r
M
a
x
(
A

:

A
r
b
r
e
_
R
e
c
h
)

:

A
r
b
r
e
_
R
e
c
h

(
*

A

d
o
i
t

ê
t
r
e

n
o
n

v
i
d
e

!

*
)

s
i

e
s
t
_
v
i
d
e
(
d
r
o
i
t
e
(
A
)
)

a
l
o
r
s

r
e
t
o
u
r
n
e
r

g
a
u
c
h
e
(
A
)

s
i
n
o
n

r
e
t
o
u
r
n
e
r

c
o
n
s
(
A
,

g
a
u
c
h
e
(
A
)
,

S
u
p
p
r
i
m
e
r
M
a
x
(
d
r
o
i
t
e
(
A
)
)
)

f
s
i

f
f
o
n
c
t
i
o
n

23

C
ette fonction retourne un pointeur

sur le nœ
ud contenant la plus grand

élém
ent d'un arbre binaire de

recherche

C
ette fonction supprim

e le plus grand
élém

ent d'un arbre binaire de recherche

Suppression d
'un élém

ent
Réalisation (suite)

f
o
n
c
t
i
o
n

S
u
p
p
r
i
m
e
r
(
x

:

E
l
é
m
e
n
t
,

A

:

A
r
b
r
e
_
R
e
c
h
)

:

A
r
b
r
e
_
R
e
c
h

s
i

e
s
t
_
v
i
d
e
(
A
)

a
l
o
r
s

r
e
t
o
u
r
n
e
r

A

(
*

o
u

<
e
r
r
e
u
r
>

*
)

s
i
n
o
n

s
i

x

>

c
o
n
t
e
n
u
(
r
a
c
i
n
e
(
A
)
)

a
l
o
r
s

r
e
t
o
u
r
n
e
r

c
o
n
s
(
A
,

g
a
u
c
h
e
(
A
)
,

S
u
p
p
r
i
m
e
r
(
x

,
d
r
o
i
t
e
(
A
)
)
)

s
i
n
o
n

s
i

x

<

c
o
n
t
e
n
u
(
r
a
c
i
n
e
(
A
)
)

a
l
o
r
s

r
e
t
o
u
r
n
e
r

c
o
n
s
(
A
,

S
u
p
p
r
i
m
e
r
(
x
,

g
a
u
c
h
e
(
A
)
)
,

d
r
o
i
t
e
(
A
)
)

s
i
n
o
n

/
/

x
=

c
o
n
t
e
n
u

(
r
a
c
i
n
e
(
A
)
)

s
i

e
s
t
_
v
i
d
e
(
d
r
o
i
t
e
(
A
)
)

a
l
o
r
s

r
e
t
o
u
r
n
e
r

g
a
u
c
h
e
(
A
)

s
i
n
o
n

s
i

e
s
t
_
v
i
d
e
(
g
a
u
c
h
e
(
A
)
)

a
l
o
r
s

r
e
t
o
u
r
n
e
r

d
r
o
i
t
e
(
A
)

s
i
n
o
n

/
/

n
i

d
r
o
i
t
e

(
A
)

e
s
t

v
i
d
e

n
i

g
a
u
c
h
e
(
A
)

r
e
t
o
u
r
n
e
r

c
o
n
s
(
M
a
x
(
g
a
u
c
h
e
(
A
)
)
,

S
u
p
p
r
i
m
e
r
M
a
x
(
g
a
u
c
h
e
(
A
)
)
,

d
r
o
i
t
e
(
A
)
)

f
s
i

f
s
i

f
s
i

f
s
i

f
s
i

f
f
o
n
c
t
i
o
n

24

A
rbre Binaire d

e Recherche
C

om
plexité d

es O
pérations

�
O

n m
ontre que, les opérations de

recherche, insertion et suppression dans un
arbre binaire de recherche contenant n
élém

ents sont :
�

en m
oyenne en O

(log
2 (n)) ;

�
dans le pire des cas en O

(h) ;

où h désigne la hauteur de l'arbre

�
Si l’arbre est dégénéré, sa hauteur étant n-1,
ces trois opérations sont en O

(n)

�
Si l'arbre est équilibré, les opérations sont en
O

(log
2 (n)) (d'où leur intérêt...)

25

A
rbres M

axim
iers

ou Tas (Heaps)
26

N
otion d

'A
rbre M

a
xim

ier (ou
Tas)
�

A
ppelé aussi m

onceau (Heap en anglais)
�

C
'est un arbre binaire parfait tel que la clé de chaque noeud

est supérieure ou égale aux clés de tous ses fils
�

L'élém
ent m

axim
um

 de l'arbre se trouve donc à la racine

�
Rappel :
�

Pour un arbre binaire parfait, tous les niveaux sont entièrem
ent

rem
plis sauf éventuellem

ent le dernier et, dans ce cas, les feuilles
du dernier niveau sont regroupées le plus à gauche possible

�
Un tas est un arbre binaire partiellem

ent ordonné
:

�
Les nœ

uds sur chaque branche sont ordonnés sur celle-ci ;
�

C
eux d'un m

êm
e niveau ne le sont pas nécessairem

ent.

�
Un tas dans lequel chaque nœ

ud enfant a une clé inférieure
(resp., supérieure) ou égale à la clé de son père est appelé
arbre m

axim
ier(m

ax heap) (resp., arbre m
inim

ier (m
ax

heap))

27

A
rbre M

a
xim

ier (ou Ta
s)

Exem
ple

28

Type A
bstra

it Ta
s

T
y
p
e

T
as

U
t
i
l
i
s
e

B
o
o
l
é
e
n
,

E
l
é
m
e
n
t

O
p
é
r
a
t
io
n
s

t
a
s
_
v
i
d
e

:

→

T
a
s

e
s
t
_
v
i
d
e

:

T
a
s

→

B
o
o
l
é
e
n

m
a
x

:

T
a
s

→

E
l
é
m
e
n
t

a
j
o
u
t
e
r
:

T
a
s

x

E
l
é
m
e
n
t

→

T
a
s

s
u
p
p
r
i
m
e
r
M
a
x
:

T
a
s

→

T
a
s

a
p
p
a
r
t
i
e
n
t

:

T
a
s

x

E
l
é
m
e
n
t

→

B
o
o
l
é
e
n

P
r
é
c
o
n
di
t
i
on
s

m
a
x
(
T
)

e
s
t
_
d
é
f
i
n
i
_
s
s
i

e
s
t
_
v
i
d
e
(
T
)

=

f
a
u
x

s
u
p
p
r
i
m
e
r
M
a
x
(
T
)

e
s
t
_
d
é
f
i
n
i
_
s
s
i

e
s
t
_
v
i
d
e
(
T
)

=

f
a
u
x

a
j
o
u
t
e
r
(
T
,
e
)

e
s
t
_
d
é
f
i
n
i
_
s
s
i

a
p
p
a
r
t
i
e
n
t
(
T
,
e
)

=

f
a
u
x

A
x
i
o
m
e
s

S
o
i
t
,

T
,

T
1

:

T
a
s
,

e

:

E
l
é
m
e
n
t

s
i

e
s
t
_
v
i
d
e
(
T
)

=

v
r
a
i

a
l
o
r
s

a
p
p
a
r
t
i
e
n
t
(
T
,
e
)

=

f
a
u
x

a
p
p
a
r
t
i
e
n
t
(
T
,
m
a
x
(
T
)
)

=

v
r
a
i

s
i

a
p
p
a
r
t
i
e
n
t
(
T
,
e
)

=

v
r
a
i

a
l
o
r
s

m
a
x
(
T
)

≥

e

29

O
péra

tions sur un Tas

�
t
a
s
_
v
i
de

:

→

T
a
s

�
O

p
ération d

'initialisation; crée un tas vid
e

�
e
s
t
_
v
i
de

:

T
a
s

→

B
o
o
l
é
e
n

�
V
érifie si un ta

s est vid
e ou non

�
m
a
x

:

T
a
s

→

E
l
é
m
e
n
t

�
Retourne le p

lus grand
 élém

ent d
'un tas

�
a
j
o
u
t
e
r
 :

T
a
s
 x

E
l
é
m
e
n
t

→

T
a
s

�
A

joute un élém
ent d

ans un tas

�
s
u
p
p
r
i
m
e
r
M
a
x
 :

T
a
s

→

T
a
s

�
Sup

p
rim

e le p
lus grand

 élém
ent d

'un tas

�
a
p
p
a
r
t
i
e
n
t
 :
 T
a
s
 x

E
l
é
m
e
n
t

→

B
o
o
l
é
e
n

�
V
érifie si un élém

ent a
p

p
artient ou non à

un tas

30

Représenta
tion d

'un Tas
�

Il existe une représentation com
pacte pour les arbres

binaires parfaits, et donc pour les tas :

�
La représentation par tableau, basée sur la num

érotation des
nœ

uds niveau par niveau et de gauche à droite

�
Les num

éros d'un nœ
ud sont donc les indices dans un

tableau. En outre, ce tableau s'organise de la façon suivante
:

�
le noeud

racine a pour indice 0 ;

�
soit le noeud

d’indice i dans le tableau, son fils gauche a pour
indice 2i +1, et son fils droit a pour indice 2(i+1) ;

�
si un nœ

ud a un indice i ≠ 0, alors son père a pour indice

�
O

n déduit de cette organisation, où n désigne le nom
bre

d'élém
ents du tas, que :

�
un nœ

ud d'indice i est une feuille si 2i+1 ≥ n

�
un nœ

ud d'indice i a un fis droit si 2(i+1) < n

31

¬
¼

1)/2
(i−

Représenta
tion d

'un Tas
Exem

ple
32

U
n tas avec sa num

érotation hiérarchique
R

eprésentation du tas par un tableau

Représenta
tion en C

 d
'un

Tas

#
d
e
f
i
n
e

M
A
X
_
E
L
E
M
E
N
T
S

2
0
0

/
/

t
a
i
l
l
e

m
a
x
i
m
u
m

d
u

t
a
s

t
y
p
e
d
e
f

i
n
t

E
l
e
m
e
n
t

/
/

u
n

é
l
é
m
e
n
t

e
s
t

u
n

i
n
t

t
y
p
e
d
e
f

s
t
r
u
c
t

{

i
n
t

t
a
i
l
l
e
;

/
/

n
o
m
b
r
e

d
'
é
l
é
m
e
n
t
s

d
a
n
s

l
e

t
a
s

E
l
e
m
e
n
t

t
a
b
l
e
a
u
[
M
A
X
]
;

/
/

l
e
s

é
l
é
m
e
n
t
s

d
u

t
a
s

}

T
a
s
;

33

O
p

érations sur un Tas

�
Trois opérations
fondam

entales :
�

A
jout d'un élém

ent ;
�

Suppression du m
axim

um
 ;

�
Recherche du m

axim
um

.

34

O
p

ération d
'A

jout

�
Principe :
�

C
réer un nouveau nœ

ud contenant la clé du nouvel
élém

ent ;

�
Insérer cette clé le plus à gauche possible sur le dernier
niveau du tas (ou si le dernier niveau est plein, à l'extrêm

e
gauche d'un nouveau niveau). La nouvelle clé est insérée
dans la prem

ière case non utilisée du tableau ;

�
Faire "rem

onter cette nouvelle clé" à sa place en la
perm

utant avec la clé de son père, tant qu'elle est plus
grande que celle de son père.

35

O
péra

tion d
'A

jout
Exem

ple (1)
36◼

Supposons qu'on veuille insérer la valeur 21 dans le tas représenté ci-
dessous :
◼

O
n place la valeur 21 juste à droite de la dernière feuille,

◼
c'est-à-dire dans la case d'indice 10 dans le tableau.

O
péra

tion d
'A

jout
Exem

ple (2)
37◼

O
n com

pare 21, la nouvelle donnée insérée, avec la donnée contenue
dans le nœ

ud père, autrem
ent dit on com

pare la donnée de la case
d'indice 10 du tableau avec la donnée de la case d'indice =

 4.
◼

Puisque 21 est plus grand que 5, on les échange.

O
péra

tion d
'A

jout
Exem

ple (3)
38

�
Le nouvel arbre
binaire obtenu n'est
pas un tas :
�

La valeur 21 du nœ
ud d'indice 4

est plus grande que la valeur 15
de son nœ

ud père (d'indice
= 1)

�
Echanger les contenus des
nœ

uds d'indices respectifs 1 et 4

O
péra

tion d
'A

jout
Exem

ple (4)
39

�
Puisque 21 est plus
petit que 23 :
�

L'opération d'ajout est term
inée

;

�
O

n a bien obtenu un tas.

O
péra

tion d
'A

jout
Pseud

o-cod
e

f
o
n
c
t
i
o
n

a
j
o
u
t
e
r
(
T
a
s

t
,

E
l
é
m
e
n
t

e
)

:

T
a
s

d
é
b
u
t

i
m

t
.
t
a
i
l
l
e

t
.
t
a
i
l
l
e

m
i
+
1

t
.
t
a
b
l
e
a
u
[
i
]

m

e
t
a
n
t

q
u
e

(
(
i
>

0
)

e
t

(
t
.
t
a
b
l
e
a
u
[
i
]

>

t
.
t
a
b
l
e
a
u
[
(
i
-
1
)

d
i
v

2
]
)
)

f
a
i
r
e

{

é
c
h
a
n
g
e
r
(
t
.
t
a
b
l
e
a
u
[
i
]
,

t
.
t
a
b
l
e
a
u
[
(
i
-
1
)

d
i
v

2
]
i

m
(
i
-
1
)

d
i
v

2

}r
e
t
o
u
r
n
e
r

(
t
)

f
i
n

40

O
péra

tion d
'A

jout
C

om
plexité

�
La com

plexité de l'opération d'ajout est en
O

(h), où h est la hauteur du tas :

�
O

n ne fait que rem
onter un chem

in ascendant d'une feuille vers la racine (en
s'arrêtant éventuellem

ent avant).

�
La hauteur d'un tas de taille n est précisém

ent égale à

et donc l'ajout dem
ande un tem

ps O
(log(n)).

41

¬
¼

(n)
log

2

O
pération d

e Suppression d
u

M
axim

um

�
Principe :

�
Rem

placer la clé du nœ
ud racine par la clé du nœ

ud situé

le plus à droite du dernier niveau du tas. C
e dernier nœ

ud

est alors supprim
é ;

�
Réorganiser l'arbre, pour qu'il respecte la définition du tas,

en faisant descendre la clé de l'élém
ent de la racine à sa

bonne place en perm
utant avec le plus grand des fils.

42

O
pération d

e Suppression d
u

M
axim

um
 (Exem

ple) (1)
43

�
Supposons qu'on désire supprim

er la valeur
23 contenue dans la racine du tas illustré
par la figure suivante :

O
pération d

e Suppression d
u

M
axim

um
 (Exem

ple) (2)
44

�
O

n com
m

ence alors par rem
placer le contenu du

nœ
ud racine par celui du dernier nœ

ud du tas :
�

C
e dernier nœ

ud est alors supprim
é ;

�
C

eci est illustré par la figure suivante :

O
pération d

e Suppression d
u

M
axim

um
 (Exem

ple) (3)
45

�
L'arbre obtenu est parfait m

ais n'est pas un tas :
�

la clé contenue dans la racine a une valeur plus petite que
les valeurs des clés de ses fils ;

�
C

ette clé de valeur 2 est alors échangée avec la plus
grande clé de ses fils, à savoir 15 ;

�
L'arbre obtenu est représenté par la figure suivante :

O
pération d

e Suppression d
u

M
axim

um
 (Exem

ple) (4)
46

�
Encore une fois, cet arbre
n'est pas un tas. O

n le
réorganise pour qu'il
respecte la définition du tas

◼
Le dernier arbre obtenu est
bien un tas ; il est illustré par
la figure suivante

:

O
pération d

e Suppression d
u

M
a

xim
um

 (Pseud
o-cod

e) (1)

�
Une version qui utilise la procédure Entasser

�
La procédure Entasser:
�

perm
et de faire descendre la valeur en t[i] de m

anière
que l'arbre de racine en i devienne un tas ;

�
suppose que les sous arbres de racines en 2i+1 (fils
gauche du nœ

ud en i) et en 2i+2
(fils droit du nœ

ud en i)
sont des tas.

47

O
pération d

e Suppression d
u

M
a

xim
um

 (Pseud
o-cod

e) (2)

p
r
o
c
é
d
u
r
e

E
n
t
a
s
s
e
r
(
T
a
b
l
e
a
u

t
[
0

.
.

n
-
1
]
,

E
n
t
i
e
r

i
)

d
é
b
u
t

s
i

(
(
2
i
+
2

=
=

n
)

o
u

(
t
[
2
i
+
1
]

≥

t
[
2
i
+
2
]
)
)

a
l
o
r
s

k
Å

2
i
+
1

s
i
n
o
n

k

Å

2
i
+
2

f
s
i

s
i

t
[
i
]

<

t
[
k
]

a
l
o
r
s

é
c
h
a
n
g
e
r

(t
[
i
]
,

t
[
k
]
)

s
i

k

d
(
(
n

d
i
v

2
)
-

1
)

a
l
o
r
s

E
n
t
a
s
s
e
r
(
t
,

k
)

f
s
i

f
s
i

f
i
n

48

O
pération d

e Suppression d
u

M
a

xim
um

 (Pseud
o-cod

e) (3)

f
o
n
c
t
i
o
n

s
u
p
p
r
i
m
e
r
M
a
x

(
t

:

t
a
s
)

:

t
a
s

(
*

l
e

t
a
s

t

e
s
t

s
u
p
p
o
s
é

n
o
n

v
i
d
e

!
!

*
)

d
é
b
u
t

t
.
t
a
i
l
l
e
 m

t
.
t
a
i
l
l
e

–
1

t
.
t
a
b
l
e
a
u
[
0
]
 m

t
.
t
a
b
l
e
a
u
[
t
.
t
a
i
l
l
e
]

E
n
t
a
s
s
e
r
(
t
,

0
)

r
e
t
o
u
r
n
e
r

(
t
)

f
i
n

49

O
péra

tion d
e Suppression

d
u M

axim
um

 (C
om

plexité)
�

La com
plexité de la suppression est la m

êm
e que

celle de l'insertion, c-à-d O
(log(n)) :

�
En effet, on ne fait que suivre un chem

in descendant
depuis la racine.

50

O
péra

tion d
e Recherche d

u
M

axim
um

(Pseud
o-cod

e &
 C

om
plexité)

�
L'opération de recherche du m

axim
um

 est
im

m
édiate dans les tas

�
Elle prend un tem

ps constant O
(1)

51

f
o
n
c
t
i
o
n

M
a
x

(
t

:

t
a
s
)

:

E
l
é
m
e
n
t

(
*

l
e

t
a
s

t

e
s
t

s
u
p
p
o
s
é

n
o
n

v
i
d
e

!
!

*
)

d
é
b
u
t

r
e
t
o
u
r
n
e
r

(
t
.
t
a
b
l
e
a
u
[
0
]
)

f
i
n

Exem
ples d

'A
pplications d

es Ta
s

�
Files de priorités (Priority

queues) :
�

Les tas sont fréquem
m

ent utilisés pour im
plém

enter des files de priorités.

�
A

 l'opposé des files standard, une file de priorités détruit l'élém
ent de plus

haute (ou plus basse) priorité.

�
La signification de la "priorité" d'un élém

ent dépend de l'application

�
A

 tout instant, on peut insérer un élém
ent de priorité arbitraire dans une file de

priorités. Si l'application souhaite la destruction de l'élém
ent de plus haute

priorité, on utilise un arbre m
axim

ier.

�
Tri par tas

(Heapsort):
�

Les opérations sur les tas perm
ettent de résoudre un problèm

e de tri à l’aide
d’un algorithm

e appelé tri par tas (heapsort).

�
C

et algorithm
e a la m

êm
e com

plexité tem
porelle, O

(n log(n)), que le tri
rapide (quicksort). M

ais, en pratique, une bonne im
plém

entation de ce
dernier le bat d'un petit facteur constant.

52

A
lgorithm

e d
u Tri p

ar Tas
(Principe)

�
Supposons qu'on veut trier, en ordre croissant, un tableau
T de n élém

ents.

�
Principe :
�

L’algorithm
e du tri par tas com

m
ence, en utilisant la fonction

C
onstruireTas, par construire un tas dans le tableau à trier T ;

�
Ensuite, il prend l'élém

ent m
axim

al du tas, qui se trouve en T[0],
l'échange avec T[n-1], et rétablit la propriété de tas, en utilisant
l'appel de fonction Entasser(T,0)pour le nouveau tableau à n-1
élém

ents (la case T[n-1] n'est pas considérée) ;

�
L'algorithm

e de tri par tas répète ce processus pour le tas de
taille n-1 jusqu'à la taille 2.

53

A
lgorithm

e d
u Tri p

ar Tas
(Pseud

o-cod
e) (1)

f
o
n
c
t
i
o
n

T
r
i
_
p
a
r
_
T
a
s
(
T
a
b
l
e
a
u

T
[
0

.
.

n
-
1
]
)

:

T
a
b
l
e
a
u

d
é
b
u
t

T

Å

C
o
n
s
t
r
u
i
r
e
T
a
s
(
T
)

p
o
u
r

i
Å

(
n
-
1
)

à

1

p
a
r

p
a
s

-
1

f
a
i
r
e

E
c
h
a
n
g
e
r
(
T
[
0
]
,

T
[
i
]
)

n

Å

n
-
1

E
n
t
a
s
s
e
r

(
T
,

i
)

r
e
t
o
u
r
n
e
r

(
T
)

f
i
n

54

C
onstruireTas

produit un tas
à partir d'un tableau T

E
ntasser sert à garantir le m

aintien de la
propriété de tas pour l'arbre de racine en i

A
lgorithm

e d
u Tri p

ar Tas
(Pseud

o-cod
e) (2)

f
o
n
c
t
i
o
n

C
o
n
s
t
r
u
i
r
e
T
a
s
(
T
a
b
l
e
a
u

T
[
0

.
.

n
-
1
]
)

:

T
a
s

d
é
b
u
t

p
o
u
r

i
Å

(
(
n
d
i
v

2
)

-

1
)

à

0

p
a
r

p
a
s

-
1

f
a
i
r
e

E
n
t
a
s
s
e
r

(
T
,

i
)

r
e
t
o
u
r
n
e
r

(
T
)

f
i
n

55

Les feuilles sont
des tas à un

élém
ent !

C
onstruireTa

s
Exem

ple (1)

0
1

2
3

4
5

6
7

8
9

T
4

1
3

2
16

9
10

14
8

7

56

�
Illustration de l'action C

onstruireTas
sur un

tableau d'entiers contenant 10 élém
ents

�
Rem

arquer que les nœ
uds qui portent les

valeurs 9, 10, 14, 8 et 7 sont biens des feuilles, et
donc des tas à un élém

ent.

C
onstruireTa

s: Exem
ple (2)

57

Tri p
a

r Tas : Exem
ple (1)

58

�
Les figures qui suivent
illustrent l'action du tri
par tas après
construction du tas

�
C

haque tas est
m

ontré au début
d'une itération de la
boucle

Tri p
a

r Tas : Exem
ple (2)

59

0
1

2
3

4
5

6
7

8
9

T
1

2
3

4
7

8
9

10
14

16

Tableau final : trié

A
lgorithm

e d
u Tri p

ar Tas
C

om
plexité

�
O

n m
ontre que l'appel à C

onstruireTas prend un tem
ps

O
(n)

�
C

hacun des (n-1) appels à Entasser prend un tem
ps

O
(log(n))

�
Par conséquent, l'algorithm

e du tri par tas s'exécute
en O

(n log(n))

60

Introd
uction aux A

rbres
d

e Recherche Equilibrés
�

(Balanced Search Trees)

61

N
otion d

'A
rbres

d
e Recherche Equilibrés

�
La définition des arbres équilibrés im

pose que la différence entre les
hauteurs des fils gauche et des fils droit de tout noeud

ne peut
excéder 1

�
Il faut donc m

aintenir l'équilibre de tous les noeuds
au fur et à

m
esure des opérations d'insertion ou de suppression d'un nœ

ud

�
Q

uand il peut y avoir un déséquilibre trop im
portant entre les deux

fils d'un noeud, il faut recréer un équilibre par :
�

des rotations d'arbres ou par éclatem
ent de nœ

uds (cas des arbres B)

�
Les algorithm

es de rééquilibrage sont très com
pliqués :

�
O

n cite entre autres, quelques exem
ples d'arbres équilibrés pour les quels les

opérations de recherche, d’insertion et de suppression sont en O
(log(n))

62

A
rbres d

e Recherche Equilibrés
Exem

ples (1)

�
Les arbres A

VL :
�

Introduits par A
delson-Velskii Landis Landis (d'où le nom

 d'A
VL) dans

les années 60 ;

�
Un arbre A

VL est un arbre binaire de recherche stockant une
inform

ation supplém
entaire pour chaque noeud : son facteur

d'équilibre ;

�
Le facteur d'équilibre représente la différence des hauteurs entre son
sous arbre gauche et son sous arbre droit ;

�
A

u fur et à m
esure que des nœ

uds sont insérés ou supprim
és, un

arbre A
VL s'ajuste de lui-m

êm
e pour que tous ses facteurs

d'équilibres restent à 0, -1 ou 1.

63

A
rbres d

e Recherche Equilibrés
Exem

ples (2)

�
Les arbres rouges et noirs :

�
Des arbres binaires de recherche qui se m

aintiennent

eux-m
êm

es approxim
ativem

ent équilibrés en colorant

chaque nœ
ud en rouge ou noir ;

�
En contrôlant cette inform

ation de couleur dans chaque

noeud, on garantit qu’aucun chem
in ne peut être deux

fois plus long qu'un autre, de sorte que l’arbre reste

équilibré.

64

A
rbres d

e Recherche Equilibrés
Exem

ples (3)

�
Les B arbres :
�

A
rbres de recherche équilibrés qui sont conçus pour être

efficaces sur d'énorm
es m

asses de données stockées sur

m
ém

oires secondaires ;

�
C

haque nœ
ud perm

et de stocker plusieurs clés ;

�
G

énéralem
ent, la taille d'un nœ

ud est optim
isée pour

coïncider avec la taille d'un bloc (ou page) du périphérique,

en vue d'économ
iser les coûteux accès d'entées sorties.

�
…

65

Les arbres AVL

Pr F.Omary

2019-2020
1

Les Structures de Données

Introduction

 Pourquoi

Les arbres équilibrés rendent les recherches plus efficaces

Trouver comment maintenir un arbre relativement équilibré

au fur et à mesure des insertions (et suppression)

Solution :

 Les arbres AVL (Adelson-Velskii et Landis) : pour tout

sommet, les hauteurs des sous- arbres gauche et

droit diffèrent d’au plus 1.

Rmq : un arbre AVL N'EST PAS un arbre équilibré

2

Exemple d'arbre AVL
3

50

40 80

20

30 70

48

H = 4

H = 3

H = 1

H = 0
H = 0

42

H = 0

H = 0

H = 0

90

H = 1

60

H = 1

47

H = 2

45

H = 2

Rappel : hauteur arbre
vide = -1

Préambule : Rotation droite
4

s1

s2

sa1 sa2

sa3

s2

s1
sa1

sa2 sa3

Rotation droite autour de S1, notée rd(S1)

Préambule : Rotation gauche
5

s2

s1

sa1 sa2

sa3

s1

s2
sa1

sa2 sa3

Insertion dans un arbre AVL

Le principe de l'insertion dans un arbre AVL

est le suivant :

 insérer le nouveau nœud au bon endroit

 au fur et à mesure de la remontée dans l'arbre (du
nœud père du nœud inséré à la racine), rééquilibrer
l'arbre en effectuant les rotations appropriées

6

Choix des rotations
 Notations

 Soient N le noeud courant, Ng son fils gauche et Nd sont fils droit.

 Soient Ngg le fils gauche de Ng et Ngd le fils droit de Ng

Soient Ndg le fils gauche de Nd et Ndd le fils droit de Nd

 Soit h(x) la hauteur de l'arbre de racine le noeud x.

 Algorithme

 Si |h(Ng)-h(Nd)| <= 1, ne rien faire

 Sinon

 Si h(Ng)-h(Nd) = 2 cas (1)

 Si h(Ngg) > h(Ngd) Alors rd(N) cas (1a)

 Sinon rg(Ng) puis rd(N) cas (1b)

 Sinon (h(Ng)-h(Nd) = -2) cas (2)

 Si h(Ndd) > h(Ndg) Alors rg(N) cas (2a)

 Sinon rd(Nd) puis rg(N) cas (2b)

 Fsi

 Fsi

7

Exemple d'ajout : 49

Exemple d'ajout : 49
9

50

40 80

20 45 60 90

30

47

7048

H = 0

H = 1

49

H = 0

H = 0

42
H = 0

H = 1
H = 2

OK

Exemple d'ajout : 49
10

50

40 80

20 45 60

30

47

7048

H = 0

H = 1

49

H = 0

H = 0

42
H = 0

H = 1
H = 2

H = 3

H = 0

H = 1 H = 0

90

H = 2

OK

Exemple d'ajout : 49
11

50

40 80

20 45 60

30

47

7048

H = 0

H = 1

49

H = 0

H = 0

42
H = 0

H = 2

H = 3

H = 0

H = 1 H = 0

90

H = 2

OK

Exemple d'ajout : 46
12 50

40 80

20 60 90

30

47

7048

H = 0

H = 2

49

H = 1

H = 0

42

46

h(Ng) = 0
h(Nd) = 2

h(Ng) – h(Nd) = -2 => cas (2)
h(Ndg) > h(Ndd) =>cas (2b)

N 45

rd(Nd) puis rg(N)

Ng Nd

13 50

40 80

20 60 90

30 42 47 70

48

49

46

h(Ng) = 0
h(Nd) = 2

h(Ng) – h(Nd) = -2 => cas (2)
h(Ndg) > h(Ndd) =>cas (2b)

N 45

rd(Nd) puis rg(N)

Exemple d'ajout : 46

14

Exemple d'ajout : 46

50

40 80

20 60

30

42

47

7048

49

h(Ng) = 0
h(Nd) = 2

h(Ng) – h(Nd) = -2 => cas (2)
h(Ndg) > h(Ndd) =>cas (2b)

rd(Nd) puis rg(N)

H = 0

H = 0

H = 0

46

H = 0

H = 0

H = 0

90

H = 1H = 1

45

H = 1 H = 1

H = 2

H = 2

H = 3

H = 4

1

Graphes

1

Objectifs

• Etudier une nouvelle structure de données
non linéaire, plus générale, où chaque
élément peut posséder plusieurs
prédécesseurs et plusieurs successeurs :

– Terminologie

– Type Abstrait de Données Graphe

– Représentation et implémentation

– Parcours d’un graphe

2

2

Notion de Graphes

• Les graphes sont l’une des structures de données les plus utilisées en
informatique :
– Les algorithmes permettant de les manipuler constituent les fondements de

l’informatique
– Il existe des centaines de problèmes informatiques qui sont définis en termes de

graphes

• Les graphes servent généralement à modéliser des problèmes en termes de
relations ou de connexions entre des objets

• Les objets sont représentés par des sommets

• Les relations ou connexions sont représentées par des arcs reliant les sommets

• Les graphes peuvent être orientés (les arcs vont d’un sommet à l’autre dans un
sens précis) ou non orientés (les arcs n’ont pas de sens)

3

Exemples

• Dans une carte de liaisons aériennes, les villes sont des sommets
du graphe et l’existence d’une liaison aérienne entre deux villes
est la relation du graphe

• Dans le graphe du flot de contrôle d’un programme, les boîtes
(instructions ou tests) sont les sommets, et les flèches indiquent
les enchaînements possibles entre celles-ci

• Dans une entreprise où certaines tâches doivent être exécutées
avant d’autres, on peut schématiser l’ordonnancement des
tâches par un graphe où les sommets sont les tâches et où il
existe un arc entre deux tâches ti et tj seulement si ti doit être
terminée juste avant d’exécuter tj

4

3

Graphe Orienté (Définitions)

• Un graphe orienté G est un couple (S,A), où :
– S est un ensemble fini d’éléments appelés sommets (vertex

en anglais, au pluriel vertices)

– A est un ensemble fini de paires (ordonnées) de sommets,
appelées arcs (arc en anglais)

• On écrit G = (S,A) pour représenter le graphe

• Un graphe orienté est dit complet si quels que soient
deux sommets distincts, il existe un arc les reliant dans
un sens ou dans l'autre

5

Graphe Orienté (Exemple 1)

• Soient S ={1,2,3,4,5,6} et
A={(1;2),(1;3),(2;3),(3;1),(3;4),(4;3),(5;6),(6;5),(6;6)}

• (S, A) est un graphe orienté qui peut être représenté
par :

6

4

Graphe Orienté (Exemple 2)
• Soit le graphe orienté G=(S,A) où

– S = {1,2,3,4,5,6,7,8,9} et

– A={(1,4);(2,3);(2,8);(3,6);(3,7);(4,3);(5,2);(7,1);(8,3);(8,8)}

7

Graphe Orienté (Terminologie) (1)

• Soit G = (S, A) un graphe orienté. Si X = (a,b)∈A,
on dit que :
– a est adjacent à b

– a est un prédécesseur de b.

– b est un successeur de a.

– a est l’origine de l’arc X.

– b est l'extrémité de l’arc X.

– X est incident au sommet a et au sommet b.

– De plus, si a = b, on dit que X est une boucle.

8

5

Graphe Orienté (Terminologie) (2)

• On appelle chemin d’un graphe orienté G une suite (finie) d’arcs
de G telle que l’extrémité d’un arc est toujours confondue avec
l’origine du suivant.

• L’origine du premier arc de la suite est appelé origine du chemin.
• L’extrémité du dernier arc de la suite est appelé extrémité du

chemin
• La longueur d’un chemin est le nombre d’arcs qui le composent
• Un chemin est dit simple si tous les arcs qui le composent sont

différents.
• Un chemin est dit élémentaire si tous les sommets qui le

composent sont différents.
• On appelle circuit tout chemin dont l’origine et l’extrémité sont

confondues.

9

Exemple

• En reprenant l’exemple 1, on a :
– {(1,3);(3,1);(1,2)} est un chemin simple non élémentaire d’origine

1 et d’extrémité 2.

– {(1,2);(2,3);(3,4)} est un chemin simple et élémentaire. Ce chemin
est de longueur 3

– {(2,3);(3,4);(4,3);(3,1);(1,2)} est un circuit simple et non
élémentaire

– {(6,6)}est un circuit de longueur 1. C’est une boucle

10

6

Graphe Orienté (Terminologie) (3)

• Soient u et v deux sommets d’un graphe orienté. On dit
que :

– v est un descendant de u s’il existe un chemin allant u à v

– v est un ascendant de u s’il existe un chemin allant v à u.

– Un sommet v tel qu’il n’existe aucun chemin de u à v dans G est
dit inaccessible (ou non atteignable) à partir de u.

– Un sommet est dit isolé s’il n’est accessible par aucun autre
sommet du graphe

• Il est à noter que les sommets d’un circuit sont tous
ascendants et descendants les uns des autres

11

Exemple

• En reprenant l’exemple 2 :

– On considère le chemin {(5,2);(2,8);(8,3);(3,6)}.

– Le sommet 6 est descendant du sommet 5 mais l’inverse
n’est pas vrai.

– Le sommet 5 est ascendant du sommet 6

– Le sommet 2 est inaccessible depuis le sommet 3.

– Le sommet 9 est isolé du reste du graphe

12

7

Graphe Non Orienté (Définitions)

• Un graphe (simple) non orienté G est un couple (S,A), où
:
– S est un ensemble fini de sommets.

– A est un ensemble fini de paires (non ordonnées) de sommets
de S, appelées arêtes (edge en anglais)

• On écrit G = (S,A) pour représenter le graphe

• Un graphe non orienté est dit complet si quels que
soient deux sommets distincts, il existe une arête les
reliant

13

Graphe Non Orienté (Exemple 1)

• Soient S ={1,2,3,4,5,6} et
A={(1;2),(1;3),(2;3),(3;4),(5;6)}

• (S, A) est un graphe non orienté qui peut être
représenté par :

14

8

Graphe Non Orienté (Exemple 2)

15

 Soit le graphe non orienté G=(S,A) où

 S = {1,2,3,4,5,6,7,8,9} et

 A={(1,4);(1,7);(2,3);(2,5);(2,8);(3,4);(3,6); (3,7);(3,8);(8,8)}

Graphe Non Orienté (Définitions)

• Soit G = (S, A) un graphe non orienté.
– Si X ={a,b}∈A, on dit que a et b sont voisins.

– On appelle chaîne de G une suite (finie) d’arêtes de G telle
que 2 arêtes consécutives dans la suite ont un sommet
commun.

– Un cycle est une chaîne dont l’origine et l’extrémité sont
confondues.

– Une chaîne est dite élémentaire si elle ne contient pas
plusieurs fois le même sommet

– La longueur d’une chaîne est le nombre d’arêtes qui la
composent.

16

9

Graphe Connexe/Fortement Connexe

• Un graphe non orienté G= (S, A) est dit
connexe si et seulement si, pour toute paire
de sommets distincts {x,y} de S, il existe une
chaîne entre les sommets x et y.

• Un graphe orienté G= (S, A) est dit fortement
connexe si et seulement si, pour toute paire
de sommets distincts {x,y} de S, il existe un
chemin de x à y et un chemin de y à x.

17

Notion de Graphe Valué

• Dans de nombreuses applications, il est naturel d’associer une
valeur (on dit aussi un coût ou un poids) aux arcs ou aux
arêtes du graphe.

• Un graphe valué (ou pondéré), orienté (resp. non orienté) est
un triplet (S,A,C) où S est un ensemble fini de sommets, A un
ensemble fini d’arcs (resp. d’arêtes) et C une fonction de A à
valeurs réelles appelée fonction coût

• Ainsi, on pourra traiter des problèmes tels que la recherche
du plus court chemin entre deux sommets d’un graphe

18

10

Exemples de Graphes Valués
• Exemple de graphe orienté valué :

19

 Exemple de graphe non orienté valué :

Distance et Diamètre

• La distance entre deux sommets d’un graphe
est la plus petite longueur des chaînes, ou des
chemins, reliant ces deux sommets.

• Le diamètre d’un graphe est la plus longue
des distances entre deux sommets.

20

11

Notion de Degré

• Dans un graphe orienté, si X=(u, v) est un arc, on dit que X est incident à u
vers l’extérieur. Le nombre d’arcs ayant leur extrémité initiale en u, se
note do+(u) et s’appelle le demi-degré extérieur de u. c’est le nombre de
successeurs de u.

• On définit de même les notions d’arc incident vers l’intérieur et de demi-
degré intérieur qui est noté do-(u). le nombre de prédécesseurs de u.

• Dans un graphe orienté (resp. non orienté), on appelle degré d’un
sommet, et on note do(u), le nombre d’arcs (resp. d’arêtes) dont u est une
extrémité.

• Dans le cas d’un graphe orienté, on a do(u) = do+(u) + do-(u), pour tout
sommet u. C’est le nombre de sommets adjacents à u.

• Un sommet de degré 1 (resp. 0) est dit sommet pendant (resp. isolé)

• Un graphe est dit régulier si les degrés de tous ses sommets sont égaux

21

Exemple

• Dans le graphe suivant :
• d°+(x) = 3, d°-(x) = 2 et d(x) = 5

22

12

Sous-Graphe et Graphe partiel

• Soit G=(S,A) un graphe. Le sous-graphe de G engendré par S’
(un sous-ensemble de S) est le graphe G’ dont les sommets
sont les éléments de S’ et dont les arcs (resp. les arêtes) sont
les arcs (resp. les arêtes) de G ayant leurs deux extrémités
dans S’. Autrement dit, on ignore les sommets de S\S’ ainsi
que les arcs ayant au moins une extrémité dans S\S’.

• Soit G=(S,A) un graphe. Le graphe partiel de G engendré par
A’ (un sous-ensemble de A) est le graphe G’ =(S,A’) dont les
sommets sont les éléments de S et dont les arcs (resp. les
arêtes) sont ceux de A’. Autrement dit, on élimine de G les
arcs (resp. arêtes) de A\A’.

23

Exemples

Un graphe G

24

Un sous-graphe de G

Un graphe partiel de G Un sous-graphe partiel de G

13

Composantes Connexes d’un Graphe
Non Orienté

• On définit la relation :
v est accessible à partir de u si et seulement si il existe un chemin de
longueur k ≥ 0 d'origine u et d'extrémité v.

• C'est une relation d’équivalence :
– elle est réflexive car k = 0 est admis; elle est symétrique car le graphe est

non orienté; elle est transitive, car on "concatène" les chemins.

• Par définition, les composantes connexes d'un graphe non
orienté G sont les classes d'équivalence pour la relation: « être
accessible à partir de ».
– D’une autre manière, on appelle composante connexe un sous-graphe

connexe maximal.

25

Composantes Fortement Connexes
d’un Graphe Orienté

• Pour un graphe orienté, la relation "être accessible à
partir de" est toujours réflexive et transitive, mais elle
n'est plus symétrique. On considère alors sa symétrisée :

v et u sont mutuellement accessibles si et seulement si il existe un chemin

 (de longueur k ≥ 0) d'origine u et d'extrémité v et un chemin (de longueur l ≥ 0)

 d'origine v et d'extrémité u.

• Par définition, les composantes fortement connexes
d'un graphe orienté sont les classes d'équivalence de G
pour la relation : « être mutuellement accessibles ».
– D’une autre manière, on appelle composante fortement

connexe un sous-graphe fortement connexe maximal.

26

14

Exemples

• Le graphe suivant a trois composantes connexes :
{1,6}, {7} et {2,3,4,5}

27

 Le graphe suivant a trois composantes fortement

connexes : {1,7}, {2,3,5,6} et {4}

Point d’Articulation d’un Graphe

• C’est un sommet d'un graphe, qui, si on le supprime,
déconnecte le graphe

• Dans le graphe suivant, les sommets 1, 7, 8 et 10
sont des points d’articulation

28

15

Pont d’un Graphe

• C’est une arête d'un graphe, qui, si on la supprime,
déconnecte le graphe

• Dans le graphe suivant, les arcs (1,2), (7,8), (8,9) et
(10,11) sont des ponts

29

Graphe Bi-Connexe

• Un graphe connexe sans point d’articulation est dit
bi-connexe

• Le graphe suivant n’est pas bi-connexe

30

16

Composantes Bi-Connexes

• Un graphe peut ne pas être bi-connexe mais contenir
des composantes bi-connexes

• Dans une composante bi-connexe, il existe un circuit
entre deux sommets quelconques

31

Notion d’Arbre

• Un graphe non orienté où tous les sommets sont
accessibles les uns des autres est dit connexe.

• On appelle arbre un graphe non orienté connexe et sans
cycle.

32

17

Notion d’Arborescence

• Lorsqu’on oriente les arêtes d’un arbre, le graphe
obtenu est appelé une arborescence.

• Dans une arborescence, on appelle racine un sommet
pour lequel tous les autres sommets sont accessibles (il
n’existe pas toujours de racine).

33

Notion de Forêt

• Une forêt est un graphe non orienté (resp.
orienté) dont chaque composante connexe (resp.
fortement connexe) est un arbre (resp. une
arborescence).

• Exemple de forêt (graphe acyclique) :

34

18

Type Abstrait Graphe
• Parfois, le graphe est donné une fois pour toutes. Les opérations intéressantes

sont :
– test d’existence d’un arc (d’une arête entre deux sommets)
– test d’existence d’un sommet parmi les successeurs d’un autre sommet
– énumération des successeurs d’un sommet. Pour ce faire, il faut connaître le demi-

degré extérieur de tout sommet et le ième successeur d’un sommet
– …

• Le plus souvent, le graphe est évolutif ; on veut donc lui appliquer les opérations :
– ajout et suppression d’un sommet
– ajout et suppression d’un arc
– …

• Deux types abstraits :
– un pour les graphes orientés
– un autre pour les graphes non orientés

• Ces deux types abstraits utilisent le type Sommet :
– pour distinguer les sommets d’un graphe, on les étiquette, soit par des chaînes de

caractères, soit par des numéros (ce qui va être utilisé dans la suite)
35

Type Abstrait Sommet

Type Sommet {on étiquette un sommet par un numéro}

Utilise Entier

Opérations

créer : Entier  Sommet

modifier : Sommet x Entier  Sommet

numéro : Sommet  Entier

Axiomes

numéro(som(i)) = i, pour tout entier i

36

19

Spécification des graphes orientés
(Conventions)

• Quand on ajoute un sommet, celui-ci est isolé (il
n'a aucun arc incident) ;

• Quand on ajoute un arc, si les sommets adjacents
à cet arc n'appartiennent pas au graphe, on les
ajoute ;

• Quand on retire un arc, les sommets adjacents ne
sont pas retirés ;

• Quand on retire un sommet, tous les arcs incidents
sont supprimés.

37

Type Abstrait Graphe (Orienté) (1)

Type Graphe {cas orienté}

Utilise Sommet, Entier, Booléen

Opérations
graphe_vide : → Graphe

ajouter_sommet : Sommet x Graphe → Graphe

ajouter_arc : Sommet x Sommet x Graphe → Graphe

est_sommet : Sommet x Graphe → Booléen

est_arc : Sommet x Sommet x Graphe → Booléen

d°+ : Sommet x Graphe → Entier

ième_succ : Entier x Sommet x Graphe → Sommet

d°- : Sommet x Graphe → Entier

ième_pred : Entier x Sommet x Graphe → Sommet

supprimer_sommet: Sommet x Graphe → Graphe

supprimer_arc : Sommet x Sommet → Graphe

38

20

Type Abstrait Graphe (Orienté) (2)

Préconditions
 ajouter_sommet(s,g) est-défini-ssi est_sommet(s,g) = faux

 ajouter_arc(s,s’,g) est-défini-ssi s ≠ s' ET est_arc(s,s’,g) = faux

 d°+(s,g) est-défini-ssi est_sommet(s,g) = vrai

 d°-(s,g) est-défini-ssi est_sommet(s,g) = vrai

 ième_suc(i,s,g) est-défini-ssi est_sommet(s,g) = vrai

ET (i ≤ d°+(s,g)) = vrai

 supprimer_sommet(s,g) est-défini-ssi est_sommet(s,g) = vrai

 supprimer_arc(s,s'g) est-défini-ssi est_arc(s,s’,g) = vrai

39

Type Abstrait Graphe (Orienté) (3)

Axiomes {pour est_sommet}

 est_sommet(s,graphe_vide()) = faux

 si s = s’ alors est_sommet(s,ajouter_sommet(s’,g)) = faux

 si s ≠ s' alors est_sommet(s,ajouter_sommet(s’,g)) = vrai

 si s = s’ OU s = s’’ alors est_sommet(s,ajouter_arc(s’,s’’,g)) = faux

 si s ≠ s' ET s ≠ s’’ alors

est_sommet(s,ajouter_sommet(s’’,g)) = est_sommet(s,g)

40

21

Type Abstrait Graphe (Orienté) (4)
(Opérations Auxiliaires)

 premsucc : Sommet x Graphe → Sommet

succsuivant : Sommet x Sommet x Graphe → Sommet

 coût : Sommet x Sommet x Graphe → Réel
 ajouter_arc_valué : Sommet x Sommet x Réel x Graphe → Graphe

 nb_sommets : Graphe → Entier

 nb_arcs : Graphe → Entier

41

Représentations des Graphes

• Deux implémentations classiques :
– Par matrice d’adjacence

– Par liste d’adjacence

• D’autres implémentations efficaces pour
certains algorithmes :
– Matrice d’incidence

– Liste des arcs

– …

42

22

Représentation par Matrice
d’Adjacence (1)

• Correspond au cas où l'ensemble de sommets du graphe n'évolue pas

• On représente l'ensemble des arcs par un tableau de booléens

• Le graphe est représenté par une matrice carrée de booléens, dite matrice
d'adjacence, de dimension n si le graphe a n sommets

43

Représentation par Matrice
d’Adjacence (2)

• Dans le cas où le graphe est non orienté, la matrice est symétrique
• Dans le cas où le graphe est valué, on utilise une matrice où :

– l'élément d'indices i et j a pour valeur le poids de l'arc/arête du sommet i au
sommet j, si cet arc/arête existe,

– et sinon une valeur dont on sait qu'elle ne peut être un poids: par exemple, le
plus grand entier utilisable si les poids sont des entiers bornés supérieurement.

44

23

Représentation par Matrice
d’Adjacence (3)

• Avantages :
– tester l'existence d'un arc (ou d'une arête) entre deux sommets: on accède

directement à l'élément de la matrice (en un temps constant).
– il est facile d'ajouter ou de retirer un arc ou une arête
– il facile de parcourir tous les successeurs ou prédécesseurs d'un sommet.

• Inconvénients :
– n tests quel que soit le nombre de successeurs de i. Il en est de même du calcul de

do+ ou de do-.
– une consultation complète de la matrice requiert un temps d'ordre n2
– exige un espace mémoire de O(n2) si le graphe a n sommets, quel que soit le

nombre d'arcs ou d'arêtes du graphe.

• Pour remédier à cet inconvénient, on préfère souvent utiliser une
représentation appelée "par listes d'adjacence".

• Cette représentation convient pour les petits graphes et lorsque l’accès aux
successeurs, et surtout aux prédécesseurs, est important

45

Implémentation en C d’un Graphe par
Matrice d’Adjacence

#define N_MAX 20

typedef struct {

 int g[N_MAX][N_MAX];

 int n;

} GrapheM;

46

24

Représentation par Liste d’Adjacence
(1)

• C’est un tableau de listes chaînées :

– La dimension du tableau est de n (nombre de sommets)

– Chaque sommet du tableau contient une liste chaînée de
sommets qui lui sont adjacents (liste de ses successeurs)

47

Représentation par Liste d’Adjacence
(2)

• Avantages :
– l'espace mémoire utilisé est, pour un graphe orienté avec n sommets et m arcs, en

O(n+m).
– dans le cas d'un graphe non orienté avec m arêtes, l'espace mémoire est en

O(n+2m).
– pour faire un traitement sur les successeurs d'un sommet s, le nombre de sommets

parcourus est exactement le nombre de successeurs de s, soit d°+(s).

• Inconvénients :
– exige, dans le pire de cas, un temps d'ordre n pour tester s'il existe un arc (resp. une

arête) entre un sommet donné x et un sommet y (cas où la liste d'adjacence est de
longueur n-1 et où y est en fin de liste) ou pour l'ajout d'un arc ou d'une arête (avec
test de non répétition).

– ne permet pas de calculer facilement les opérations relatives aux prédécesseurs (d°-
et ième_pred).

• Représentation convenable pour les grands graphes :
– utilisation de moins d’espace mémoire et parcours rapide des successeurs d’un

sommet

48

1

Graphes
;ƐƵŝƚĞͿ

25

Implémentation en C d’un Graphe par
Liste d’Adjacence

#define N_MAX 20
typedef struct cellule {
int sommet;

 struct cellule* suiv;
} Cellule;
typedef Cellule* Liste;

typedef struct {
Liste a[N_MAX];

 int n;
} GrapheL;

49

Matrices vs Listes d’Adjacences de
Graphes Orientés et Non Orientés

50

26

Parcours d’un Graphe
• Parcours de tous les sommets :

– visiter chaque sommet du graphe une seule fois
– appliquer un même traitement en chaque sommet

• Parcours à partir d’un sommet s :
– Parcours en profondeur d’abord (Depth First Search)

• le principe consiste à descendre le plus ”profondément” dans le graphe
à partir de s, en prenant toujours à “gauche”, avant de revenir pour
prendre une autre direction

– Parcours en largeur d’abord (Breadth First Search)
• le principe consiste à visiter les sommets situés à une distance 1 de s,

puis ceux situés à une distance 2 de s, etc...
• d’une autre manière, lorsqu’un sommet x est atteint, tous ses

successeurs y sont visités avant de visiter les autres descendants de x.

51

Parcours d’un Graphe (Exemple)

• Parcours à partir du sommet 1 :
– Parcours en profondeur : 1, 2, 5, 6, 8, 3, 7, 4
– Parcours en largeur : 1, 2, 3, 4, 5, 6, 7, 8

52

27

Parcours en Profondeur (Exemple)

• les numéros correspondants aux sommets
donnant l’ordre dans lequel les sommets sont
visités.

53

Parcours en Largeur (Exemple)

• La numérotation indiquée correspond à un ordre
de visite lors d’un parcours en largeur

54

28

Comment implémenter les deux
parcours dans un graphe ?

• Le type de parcours est fonction du TAD utilisé pour stocker les sommets à
traiter :
– Pile Æ Parcours en profondeur
– File Æ Parcours en largeur

• Parcours en profondeur
– Algorithme récursif : l’utilisation de la pile est implicite (appels récursifs)
– Algorithme itératif : l’utilisation de la pile est explicite

• Parcours en largeur
– Algorithme itératif : l’utilisation de la file est explicite

• Dans tous les cas il faut un mécanisme pour éviter de boucler indéfiniment :
– Marquer les noeuds
– Lister les noeud traités

55

Algorithme de Parcours en Profondeur
(1)

Algorithme parcoursProfondeur(g : Graphe)
 Entrée : un graphe

 Variables locales
 atteint : tableau[Sommet] de booléens
 (* atteint[x] <=> le sommet x a été atteint *)
 x : Sommet
Début
 pour tout sommet x de g faire

 atteint[x] Å faux
 fpour
 pour tout sommet x de g faire

si non atteint[x] alors RechercheProf(x)
 fpour
Fin

56

29

Algorithme de Parcours en Profondeur
(2)

Algorithme RechercheProf(x : Sommet)
 Entrée : un sommet d’un graphe
 (* Étant donnée un sommet x non atteint, cet

algorithme marque x, et tous les sommets y
descendants de x tels qu’il existe un chemin
[x,y] dont aucun sommet n’est marqué *)

 Variables locales :
 y : Sommet

Début
 atteint[x] Å vrai
 pour tout successeur y de x faire
 si non atteint[y] alors RechercheProf(y)
 fpour
Fin

57

Algorithme de Parcours en Profondeur
(Complexité)

• La phase d’initialisation du tableau atteint est
en O(n)

• L’itération de l’algorithme principal est
réalisée exactement en n étapes, pour
chacune il y’a au moins un test réalisé :
– O(n+m), soit O(max(n,m)) dans le cas des listes
d’adjacences

– O(n2) dans le cas des matrices d’adjacences

58

30

Parcours en profondeur
(Ordre de Traitement-Numérotation)

• L’objet des parcours de graphes concerne des traitements que
l’on souhaite opérer sur les graphes :
– Les traitements s’opèrent parfois sur les sommets visités. Il est alors

possible d’opérer un traitement avant ou après la visite du sommet.
– Il y’a donc soit un traitement en préOrdre ou ordre préfixé, soit en

postOrdre ou ordre postfixé. Ceci se traduit par une modification de la
procédure de recherche en profondeur.

59

Algorithme traitement_en_préOrdre(x : Sommet)
 Variables locales :
 y : Sommet
Début
 atteint[x] Å vrai
 <traiter x>
 pour tout successeur y de x faire
 si non atteint[y] alors rechercheProf(y)
 fpour
Fin

Parcours en profondeur
(Traitement en postOrdre)

Algorithme traitement_en_postOrdre(x : Sommet)
 Variables locales :

y : Sommet
Début
 atteint[x] Å vrai
 pour tout successeur y de x faire

si non atteint[y] alors rechercheProf(y)
 <traiter x>
Fin

Exemple : Numérotation en préOrdre(rouge) et en postOrdre(vert) pour un parcours en profondeur

31

Mise en œuvre en C du parcours en
profondeur (1)

#define N_MAX 20

typedef struct cellule {
 int sommet;
 struct cellule *suiv;
} Cellule
typedef cellule* Liste;

typedef struct {
 Liste a[N_MAX];
 int n;
} GrapheL;

typedef int atteint[N_MAX];

/* variables globales déclarées:
GrapheL g;
atteint m; */

61

Mise en œuvre en C du parcours en
profondeur (2)

void parcoursProf(int x) {
 Liste p;
 m[x]=1;
 p=g.a[x];
 while(p!=NULL) {
 if(!m[p->sommet]) parcoursProf(p->sommet);
 p=p->suiv;
 }
}

void main(){
 int x;
 for(x=1;x<g.n;x++) m[x]=0;
 for(x=1;x<g.n;x++)
 if(!m[x]) parcoursProf(x);
}

62

32

Mise en œuvre en C du parcours en
Largeur (1)

• Principe de l’algorithme :
– Il repose sur la notion de file.
– Lors de la visite d’un sommet s, tous ses successeurs non encore

atteints vont être rangés dans la file de manière à conserver la priorité
liée aux distances depuis le sommet origine.

63

typedef struct {
 Liste tete,queue;
} File;

void enfiler(int x,File* f);
int defiler(File* f);
int fileVide(File* f);

Mise en œuvre en C du parcours en
largeur (2)

void parcoursLarg(int x) {
 Liste p;
 initFileVide(&f);
 enfiler(x,&f);
 m[x]=vrai;
 while(!fileVide(f)) {
 x=defiler(f);
 p=g.a[x];
 while(p!=NULL) {
 if (!m[p->sommet]) {

m[p->sommet]=vrai;
enfiler(p->sommet,f);

 }
 p=p->suiv;
 }
 }
}

64

void main(){
 int x;
 for(x=1;x<g.n;x++) m[x]=0;
 for(x=1;x<g.n;x++){
 if(!m[x])

parcoursLarg(x);
 }
}

33

Algorithme de Parcours en Largeur
(Complexité)

• Identique à celle du parcours en profondeur :
– O(n+m) pour les listes d’adjacence
– O(n2) pour les matrices d’adjacence

65

Quelques Applications des Parcours

• Accessibilité :
– Pour connaître les sommets accessibles depuis un sommet donné d'un graphe

(orienté ou non), il suffit de faire un parcours en profondeur à partir de ce
sommet, en marquant les sommets visités

• Composantes connexes :
– Pour déterminer les composantes connexes d’un graphe, il suffit d’appliquer

d’une manière répétitive le parcours DFS ou BFS sur tous les sommets non
encore visités. Il est clair qu’une composante connexe est constituée du sous
graphe dont les sommets sont visités par un seul appel à DFS ou BFS

• Graphe orienté sans circuit :
– Un graphe orienté comporte un circuit si et seulement si, lors du parcours des

sommets accessibles depuis un sommet, on retombe sur ce sommet. Pour
savoir si un graphe est sans circuit, il suffit donc d'adapter DFS ou BFS, en
maintenant une liste des sommets critiques (en cours de visite)

• …

66

34

Algorithme du Parcours en Profondeur
Récursif

Algorithme parcoursEnProfondeurRecursif
(g : Graphe, s : Sommet)

Entrées : un graphe et un sommet

Début
 si non estMarque(s) alors
 marquer(s)
 traiter(g,s)
 pour chaque successeur s’ de s faire

parcoursEnProfondeurRecursif(g,s’)
 fpour
 fsi
Fin

67

Algorithme du Parcours en Largeur

Algorithme parcoursEnLargeurIteratif (g : Graphe, s : Sommet)
 Entrées : un graphe et un sommet du graphe
 Variables locales :
 f : File<Sommet>
 sCourant : Sommet

Début
 f Å file()
 f Å enfiler(f,s)
 tantque non estVide(f) faire
 sCourant Å obtenirElement(f)
 f Å defiler(f)

marquer(sCourant)
traiter(g,sCourant)
pour chaque successeur s’ de sCourant faire

si non estMarque(s’) alors
 f Å enfiler(f,s’)
fsi

fpour
 ftantque
Fin

68

35

Graphes (Applications)
• Algorithmes sur les graphes :

– Algorithmes résolvant les problèmes modélisés par les graphes. Par exemple, les problèmes liés à
l’optimisation des connexions et du routage. On peut citer les algorithmes de calcul des arbres de
recouvrement minimaux, la recherche des plus courts chemins, …

• Tri topologique :
– Il s’agit d’un tri linéaire des sommets dans un graphe orienté acyclique de telle sorte que tous les arcs vont

de gauche à droite. L’une de ses utilisations les plus courantes est de déterminer un ordre acceptable dans
l’accomplissement d’un certain nombre de tâches dépendant les unes des autres

• Coloration de graphes :
– On tente de donner une couleur aux sommets de façon à ce qu’il n’y ait pas deux sommets de même couleur

reliés par un arc. Parfois, on s’intéresse à déterminer le nombre minimum de couleurs réalisant ce but.

• Problèmes de cycles hamiltoniens :
– On travaille sur des cycles hamiltoniens, des chemins passant exactement une fois par tous les sommets d’un

graphe avant de revenir au sommet de départ. Le problème du voyageur de commerce en est un cas
particulier, dans lequel on recherche le circuit hamiltonien de coût minimum.

• Problèmes de clique :
– On travaille sur des régions du graphe où chaque sommet est connecté d’une façon ou d’une autre à tous les

autres sommets. Ces régions s’appelent des cliques. On recherche une clique maximale dans un graphe, ou
une clique d’une certaine taille, …

• …

69

Parcours en Profondeur et Pile
(Exemple)

70

36

Parcours en Largeur et File (Exemple)

71

