Cours
Les Structures de donnéees

SMI4
Année 2019-2020
Pr F.Omary

Plan du cours

» |[nfroduction générale
» Types abstraits de données: TAD
® Premiere partie : Structures de Données Linéaires

» | sfes

Piles

» [les

Deuxieme partie: Structures de Données non
Linéaires

» Arbres

» Tables de hachage

» Graphes

INntfroduction Générale

Objectif Principal:

Méthodologie de construction de programmes par
abstraction

Introduction générale (suite)

= La programmation modulaire est trés conseillée:

- Elle consiste en la constitution de parties « sous-
programmes », indépendantes les unes des autres

- Ces/sous programmes (ou modules) pouvant étre réutilisés
méme dans d’'avires programmes.

lorsqu’on utilise un module, peu importe pour l'utilisateur

la facon dont les opérations sont programmées. Mais il
importe de connaitre les operations que I'on peut faire sur

les données.

Introduction générale (suite)

» Exemple: en langage C on connait bien la fonction
« scanf » mais on ne sait pas comment elle est
implémentée.

= MaAis :Uun module n’est rien si 'on dispose pas de
structures de données appropriée pour stocker ses données.

lus précisément:

Algorithme + Structures de donnés= Programme

Types Abstraits de
Données (TADs)

Spécification & Implémentation

Terminologie

» Spécification: Définition formelle du
comportement d’'une structure de

données

» Dit ce que doif faire la structure de données

» Ne dit pas comment faire (choix de
'implémentation)

» Précis et rigoureux

» Doit éviter de poser des contraintes
d'implémentation.

Motivations

®» Par analogie avec les types primitifs tels que:

» | e typeint :représente un entier.

» || estfourni avec des opérations : + -
/* %.

n'est pas nécessaire de connaitre la représentation interne
ou les algorithmes de ces opérations pour les ufiliser.

En faire de méme avec des types plus complexes et
indépendamment du langage de programmation.

» Mefttre en place un type dont la représentation interne est
cachée

» Definir les opérations nécessaires pour manipuler les données

Motivations(suite)

Autrement dit:

» | a conception d'un algorithme est indépendante de

toute implantation

représentation des données n'est pas fixée ; celles-ci

sont considérées de maniere abstraite

» On s'intéresse a l'ensemble des opérations sur les donneées,
et aux propriétés des opérations, sans dire comment ces
opérations sont réalisées

Definition d'un TAD

= Définition: Un TAD (Data Abstract Type) est un ensemble de valeurs muni

d’opérations sur ces valeurs, sans faire référence a une implémentation particuliere.
» Exemples:

» Dans un algorithme qui manipule des entiers, on s'intéresse, non pas ¢
la peprésentation des entiers, mais aux opérations définies sur les

ntiers : +, -, *,

Type booléen, ensemble de deux valeurs (faux, vrai) muni des

opérations : non, etf, ou
=/ Un TAD est caractérisé par :
= sa signature : définit la syntaxe du type et des opérations ;

= sa sémantique : définit les propriétés des opérations.

Signature d'un TAD

» Comporie :

®» e nom du TAD ;
= Les noms des types des objets utilisés par le TAD ;

= Pour chaque opération, I'énoncé des types des objets
qu’elle recoit et qu’elle renvoie.

» Décrite par les paragraphes :
®» Type
®» Utilise

®» Opérations

Signature d'un TAD
Exemple : TAD Booléen

Type Booléen

Opérations

- Booléen x Booléen = Booléen

ou : Booléen x Booléen = Booléen

Sémantigue d'un TAD

» Précise :

= Les domaines de définition (ou d’application) des
operations ;

= Les propriétés des opérations.

» Décrite par les paragraphes :

®» Préconditions

» Axijiomes

Exemple 1 de TAD
(TAD Booléen)

Type Booléen

Opérations
vrai : =2 Booléen
faux : =2 Booléen
non : Booléen > Booléen

et Booléen x Booléen = Booléen
ou

Préconditions

Booléen x Booléen = Booléen

omes
Soit, a, b : Booléen
non (vrai) = faux
non(non(a)) = a

vrai et a = a

faux et a = faux

a ou b = non(non(a) et non(b))

Exemple 2 de TAD (TAD Vecteur)

Type Vecteur
Utilise Entier, Elément

Opérations
vect : Entier - Vecteur
changer iéme: Vecteur x Entier x Elément - Vecteur
iéme : Vecteur x Entier - Elément
taille : Vecteur -> Entier

Préconditions
véct (i) est défini ssi i 2

0
ieme (v,i) est défini ssi 0 £ i < taille(v)
changer iéme(v,i,e) est défini ssi 0 < i< taille(v)
iomes

Soit, i, j : Entier, e : Elément, v : Vecteur

si 0 £ i < taille(v) alors iéme (changer iéme(v,i,e),i) =
= _

si 0 £ i< taille(v) et 0 £ j < taille(v) et i # j
alors ieme (changer ieme(v,i,e),j) = ieme(v,])
taille(vect(i)) = 1i

taille(changer ieme(v,i,e)) = taille(v)

Opérations

= Trois catégories d'opérations (ou de primitives)

nsfructions : type spécifié apparait, uniquement, comme résultat ;

Observations : type spécifié apparait, uniquement, comme argument ;

De Transformations : type spécifié apparait, a la fois, comme argument et

comme résultat ;

Constante : opérateur sans argument

Opérations Partielles

Une opération peut ne pas étre définie partout

Cela dépend de son domaine de définition

Ceci est traité dans le paragraphe Préconditions

Exemple :
» Opérations iéme et changer iéme du TAD Vecteur

Reutilisation des TADs

= Quand on définit un type, on peut réutiliser des
types déja définis
= La signature du type défini est I'union des signatures

des types utilisés enrichie des nouvelles opérations

= Le type hérite des propriétés des types qui le

constituent

» Exemples:

» TypesEntier etElément utilisés parle TAD Vecteur

Choix des Axiomes

» Le systeme d'axiomes doit étre :

= non contradictoire (consistance)

= complet (complétude suffisante)

Notion de Structure de

Données
» On dit aussi sfructure de données concrete

= Correspond a l'implémentation d'un TAD

mposee d’un algorithme pour chaque
pération, plus éventuellement des données
spécifiques a la structure pour sa gestion

= Un méme TAD peut donner lieu a plusieurs
structures de données, avec des performances
différentes

Implémentation d'un TAD

Pour implémenter un TAD :

» Déclarer Ja structure de données retenue pour représenter
BQFAB : Ir.lmter ace P P

» Défipirles opérations primitives dans un langage particulier :
areahlsaf?& P gage p

Exigences :
Conforme a la spécification du TAD ;
» Efficace en ferme de complexité d’algorithme.

Pour implémenter, on utilise :
» | es types elémentaires ou de base (entiers, caracteres, ...)
®» | es pointeurs ;
» | es tableaux et les enregistrements ;
» | es types predéfinis.

Plusieurs implémentations possibles pour un méme TAD

Implémentation d'un TAD en

» Utiliser {a programmation modulaire (voir cours Programmation) .

=~ RRERURSETRYAERE Le s iniers meme de peites

» Chaque composante logique (un module) regroupe les
oncflons e’rmy%es au ou%qun r(r%jéme %Lérrze. group

= Pour chaque module truc, créer deux fichiers :

ichier. trug.h : l'interf [fi bli X tient |
SoShE i 418 o ppore publiaue) confient o
fichjer tuc.g:la définjtion 1(Io artie privéel; con’riep’r la .
gee%ﬁ? Jon des operﬁ’rlons ou ql,es par la structure. || contient au

INclusion du tichier truc.
Ioui odule ou rc?gramm(f erincipal ,ﬂu' a bFs in d'utiliser les
onctions du modulé truc, devra juste inclure le fruc.h

= Un module C implémente un TAD :

» ['encgpsulgtion_: détqils d'implémentation cachés ; l'interface est
{'o poﬂ% w’s?ble aun Lﬂ“fso’rejr) I |

» g ré%filisafiorr, : IQIgc:er les devx fichier?.du module dans le
repertoire ou I'on developpe l'application.

Structures de
Donnees Lineaires

listes, Piles & Files

Classification

Classification des structures de données

» Une structure de données linéaire est une structure
dans lagquelle les éléments (ou données) sont reliés
seéquentiellement.

» Une structure de données non linéaires permettent de
relier un élément a plusieurs autres éleéments.

Structures de Données
Lineaires

ﬁude des structures de données linéaires : listes, piles et
iles

= Une structure linéaire est un arrangement linéaire
d'éléments liés par la relation successeur

» Ex¢mple: Un tableau (la relation successeur est implicite).

r chaque structure, on présente :

une définition abstraite ;

» |es différentes représentations en mémoire ;
= une implémentation en langage C ;
quelques applications.

Les Listes

Notion de Liste (List) (1)

» Généralisation des piles et des files

» Structure linéaire dans laquelle les éléments peuvent étre traités les uns a la suite

des autres
» Ajout ou retrait d'éléments nimporte ou dans la liste

cces a n'importe quel élément

e liste est une suite finie, éventuellement vide, d'éléments de méme

type repérés par leur rang dans la liste
Chaque élément de la liste est rangé a une certaine place

» Exemple:
» yne liste de SentiersL=<4,1, 7, 3, 1> (place de rang 1 contient la valeur 4)

» yne liste vide L2 = <>

Nofion de Liste (List) (2)

» Les elements d'une liste sont donc ordonnés en

fonction de leur place

= On définit une fonction notée succ qui,
appliquée a toute place sauf la derniere, fournit
la place suivante

= | & nombre total d'éléments, et par consequeni
e places, est appelé longueur de la liste

Une liste vide est d'une longueur égale 0

Exemples de Liste

.+.+ ?-:- -1-.-1- +.

acchal], 3) = s, 2)
cortenujanodsd, 31} = leme(], 3) = a3

longueurt]] =

._;...._1 ._} —:p.—) —:-.
S ——
/

CRONCERIORNC

Inadreet], 3, xp

.—:-.—)-@—1- —1-.—:- —:-.

longuewrily=n + 1

O\

Type Abstrait Liste (1)

Type Liste

Utilise Elément, Booléen, Place
Opérations
liste vide : > Liste
longueur : Liste - Entier

insérer Liste x Entier x Elément - Liste
er : Liste x Entier = Liste
Liste x Entier = Elément
Liste x Entier > Place
Liste x Place = Elément

x

Place = Place

Liste
réconditions

insérer(l,k,e) est-défini-ssi longueur (1) +1

IA IA

k
k
kéme (1,k) est-défini-ssi 1 £ k < longueur (1)

A IA

1
supprimer (1l,k) est-défini-ssi 1 longueur (1)

accés(l,k) est-défini-ssi 1 £ k £ longueur(l)

succ(l,p) est-défini-ssi p # acces(l,longueur(l))

Type Abstrait Liste (2)

Axiomes
Soit, e : Elément, 1, 1' : Liste, k, j : Entier

si 1 = liste_vide alors longueur(l) = 0
sinon si 1 = insérer(l',k,e) alors longueur (l)=longueur(l')+1l

sinon soit 1 = supprimer(l',k)alors longueur (l)=longueur(l')-1

si 1 £ j < k alors kéme (insérer(l,k,e),j) = kéme(l,j)

sinon si j = k alors keéme (insérer(l,k,e),j) = e
sinon kéme (insérer(1l,k,e),j) = keme(l,j-1)

si 1 £ j < k alors kéme (supprimer (1l,k),j) = kéme(l,])

sinon kéme (supprimer (1l,k),j) = kéeme(l,j+1)

succ(l,acces(l,k)) = acces(l,k+1)

contenu(l,acces(l,k)) = keme(l,k)

si 1 £k < j £ longueur(l) alors
contenu(1l,acceées (supprimer(1l,j) ,k)) = contenu(l,acces(l,k))

si 1 £ j £ k £ longueur(l) alors

contenu (1l,acceées (supprimer (1, 3j) , k) contenu(l,acces(1l,k+1))

si 1 £ 3j < k = 1l+longueur(l) alors

contenu(l,acces (insérer(1l,k,e),Jj) contenu(l,acces(1l,3j))

si 1 £k = 3j £ 1l+longueur(l) alors

Il
(1]

contenu(l,acceés (insérer(l,k,e),j)

si 1 £k < j £ 1l+longueur(l) alors

contenu(1l,acces (insérer(1l,k,e),j) contenu(l,acces(1l,3j-1))

Extension Type Abstrait Liste

Extension Type Liste
Opérations

concaténer : Liste x Liste = Liste

est présent : Liste x Elément = Booléen

Préconditions

Axiomes
Soit, e : Element, 1, 1' : Liste, k, j : Entier
longueur (concaténer(l,1')) = longueur(l) + longueur(l')

si k £ longueur(1l)
alors keéeme (concaténer(l,1') ,k)= keme(l,k)

sinon keme (concaténer(l,1') ,k)= keme(l',k-longueur(l))

si longueur(l) = 0 alors est présent(l,e) = faux
sinon si e = keme(l,1) alors est présent(l,e) = vrai

sinon est présent (supprimer(l,1l) ,e)= est présent(l,e)

Operations sur une Liste (1)

®/liste vide : > Liste
» Opéeration d'initialisation ; la liste créee est vide

longueur : Liste =2 Entier
®» Retourne le nombre d'éléments dans la liste

Liste x Entier x Elément : > Liste
®» ingérer(L,j,e): liste obtenue a partir de L en remplacant la

pldce de rang 7 par une place contenant e, sans modifier places
precedentes et’'en décalant places suivantes

® \supprimer : Liste x Entier : -> Liste

supprimer (L, 7) : liste obtenue a partir de L en supprimant la
place de rang j et son contenu, sans modifier places precedentes
et en decalant places suivantes

péerations sur une Liste (2)

®» kéme : Liste x Entier - Elément
» Fournif I'élément de rang donné dans une liste

®» accés : Liste x Entier = Place

» Connaitre la place de rang donné : accés (L, k) estla
place de rang k dans la liste L

®» cdntenu : Liste x Place = Elément

= Conndaitre I'€élément d'une place donneée. contenu (L, p)
= e.danslaliste 1, la place p contient l'element e

succ : Liste x Place = Place

» Passer de place en place. succ (L,p) = p':.dansla liste
L, la place qui succede a la place p est la place p'.
gplerclthon indéefinie si place en entrée est la derniere place

e la liste

rations Auxiliaires sur une Liste

®»concaténer : Liste x Liste = Liste

» Accroche la deuxieme liste en entrée a la fin de la premiéere liste

» es _présent - Liste x Elément = Booléen

» /Teste si un élément figure dans une liste

Représentation Contigué
d'une Liste

» Les éléments sont rangés les uns a coté des autres dans
un tableau

= La ieme case du tableau contient le ieme élément de la liste
= Le rang est donc égal a la place ; ce sont des entiers

» Ja liste est représentée par une structure(ou
enregistrement):

= Un tableau représente les éléments
= Un enlier représente le nombre d'éléments dans la liste

Note :La longueur maximale, MAX LISTE, de la liste doit étfre
connue

Ajout dans une Liste Contigué
Exemple (1)

Ajout dans une Liste Contigué
Exemple (2)

Sl B

S

apression dans une Liste Configué

39

Brple (1)

opression dans une Liste Configué
&mple (2)

Représentation contigue d’'une Liste

= Rappel sur la notion :Enregistrement

L’'enregistrement est ['outil principal de construction de structures de

données complexes.

Il permet de regrouper dans une structure I'ensemble des

cgracteéristiques associees a une entite.

» /Exemple: si un client est caractérisé par un nom, une adresse et un

code postale alors la notion d’enregistrement permettra de
regrouper dans une seule structure I'ensemble de ces

caractéristiques, pourtant de natures différentes

» Autrement dit: une enregistrement permet de regrouper des entités

hétérogenes mais liés logiqguement les unes des autres.

Représentation contigue d’'une Liste

» Definition]:un enregistrement est un ensemble d’éléments de types
differents repéres par un nom. Ses éléments sont appelés des
champs

» Definition2: un enregistrement (appelé aussi structure dans certains
langages) est un type complexe construit a partir de types plus
simples.

» || existe frois catégories d’enregistrement (ou structures):

ructure anonyme: elle n’est pas réutilisable puisqu’elle ne possede

fos de nom:
Exemple: Struct {

float re;

float im:;
}C1, C2.

Représentation contigue d’une Liste

» |'‘acces aux champs s’effectue ainsi:

Cl.re=4.5
Cl.im=6
» Une autre utilisation de ce type d’enregistrement suppose sa
redéfinition.
®» DoNc pour pouvoir la réutiliser, il faut la munir d'un nom.

» Structure semi-nommée

Struct Complexe {
float re;
float im;
}C1, C2

Représentation contigue d’une Liste

» Structure nommée:

» |e type Complexe peut étre construit et nommé ainsi:
typedef struct {

float re;

float im;

} Complexe;

Sl est nécessaire de déclarer cela se fera comme suit:

omplexe CI, C2;
Composition d’enreqistrement:

®» Exemple:

» //définition du type Adresse

Représentation contigue d’une Liste

» //définition du type Adresse
» Typedef struct {

int numero;

char nomRue[50]

char codePostal[d]

char ville[20]

} Adresse

» // définition du type client

» Typedef struct {
char nom[15]
char prenom[15]
Adresse adresse;
} Client

Représentation contigue d’une Liste

» |‘acces aux champs de ces structures imbriquées
peut nécessiter plusieurs occurrences de 'opérateur

point(.)

» Fxemple:

//déclaration de trois variables
Client A, B, C;

L'affectation d’'un numéro de rue dans le champ
numéro du champ adresse d’un client ‘A’ se fera

comme Ssuit:

A.adresse.numero=105 ;

a7

Liste Contigué (Contfiguous List)

/* Liste contigué en C */

// taille maximale liste
#define MAX LISTE 10

// type des éléments
typedef int Element;

// type Place
typedef int Place;

// type Liste

typedef struct {
Element tab[MAX LISTE];
int taille;

} Liste;

Spécification d'une Liste Contigué

/* fichier "TListe.h" */

fndef _LISTE_ TABLEAU
#define _LISTE_TABLEAU

// Définition du type liste (implémentée par tableau)
#define MAX LISTE 100 /* taille maximale de la liste */
typedef int element; /* les éléments sont des int */
typedef int Place; /* la place = le rang (un entier) */

tab[MAX LISTE]; /* les éléments de la liste */

ille; /* nombre d'éléments dans la liste */

// Déclaration des fonctions gérant la liste

int longueur (Liste 1);

Liste inserer (Liste 1, int i, element e);
Liste supprimer (Liste 1, int i);

element keme (Liste 1, int k);

Place acces (Liste 1, int i);

element contenu (Liste 1, Place 1i);

Place succ (Liste 1, Place 1i);
#tendif

Algorithme : option1:Modélisation contigUe statique

Constante Max_Liste=1000
Type Liste=Structure
Tab[Max_Liste]: Element
Taille: entier

Fin strucure
/*insertion d’un élément dans une liste L*/

Fonction insérer (Var L:Liste, rang: enfier, e:Element):
entier

Vari: entier

Algorithme : option1:Modélisation contigUe statique

Début

Sl rang <1 ou rang>(L.taille+1) ou L.taille=Max_liste alors
Erreur

Finsi

Pour i depuis L.taille JSQ rang faire Pas-1

L.tabli] € L.tabli-1]

Finpour // Cette boucle décale les élts a droite de la rang

. fab[rang-1] € e // insertion de I'élement e & sa place
L.taille &« L.taille+]

Retourne (L)

FIN

Representation Chainée d'une Liste

» Les éléments ne sont pas rangés les uns a coté
des autres

= La place d'un élément est I'adresse d'une structure qui
conhe?f I'élément ainsi que la place de I'élément
suivan

» Utilisation de pointeurs pour chainer entre eux les
éléments successifs

La liste est représentée par un pointeur sur une
structure en langage C

= Une structure contient un élément de la liste et un
pointeur sur I'element suivant

= La liste est déterminée par un pointeur sur son premier
élément

» La liste vide est représentée par la constante
prédéfinie NULL

Ajout dans une Liste Chainée Exemple 1

»
»

»
>
(]

Ajout dans une Liste Chainée
Exemple (2)

N/
/\

o

Ajout dans une Liste Chainée
Exemple (3)

—Ci—Ca—C

Suppression dans une Liste Chainée
Exemple (1)

uppression dans une Liste Chainée
emple 2

56

= ==

Suppression dans une Liste Chainée
Exemple (3)

»
» »
»

Liste Chainee (Linked List)

/* Liste chainée en C */

// type des éléments
typedef int element;

// type Place
typedef struct Cellule* Place;

// type Cellule

typedef struct Cellule {
element wvaleur;
struct Cellule *suivant;
} Cellule;

// type Liste
typedef Cellule *Liste;

Spécification d'une Liste Chainée

/* fichier "CListe.h" */

59 _LISTE CHAINEE
S8W'ne LISTE CHAINEE

// Définition du type liste (implémentée par pointeurs)

typedef int element; /* les éléments sont des int */

typedef struct cellule *Place; /* la place = adresse cellule */

typedef struct cellule {
element valeur; /* un éléments de la liste */

struct cellule *suivant; /* adresse cellule suivante */
} Cellule;

typedef Cellule *Liste;

// Declaration des fonctions gérant la liste
Lisgte liste vide (void);

int longueur (Liste 1) ;

Liste inserer (Liste 1, int i, element e);

Liste supprimer (Liste 1, int i) ;

dlement keme (Liste 1, int k) ;

Bllace acces (Liste 1, int i),

Mlement contenu (Liste 1, Place i);

\

e succ (Liste 1, Place 1i);

Realisation d'une Liste Chainée (1)

Liste liste_vide(void) {
return NULL;
}

int longueur (Liste 1) {
int taille=O0;

Liste p=1;
while (p) {
taille++;
pP=p->suivant;

}

frer (Liste 1, int i, element e) {
// précgndition :1 £ i < longueur(l)+1

|| i>longueur(l)+ 1 {

tf ("Erreur : rang non valide !'\n");

13((=) 7

¥ste pc = (Liste)malloc(sizeof (Cellule)) ;
->valeur=e;

->suivant=NULL;

(i==1) {

->suivant=1l;

c;

else {
int j;
Liste p=1;
for (j=1; j<i-1; j++)

p=p->suivant;

pc->suivant=p->suivant;
p->suivant=pc;

}

return 1;

}

Place acces(Liste 1, int k) {

// pas de sens que si 1 £ k £ longueur (1)
int i;

Place p;

if (k<1 || k>longueur(l)) {

printf ("Erreur: rang invalide '\n");

exit(-1);
}
if (k == 1)

return 1;
else {

p=1;

for(i=1; i<k; i++)
p=p->suivant;

return p;

eglisation d'une Liste Chainée (2)

element contenu(Liste 1, Place p) {

/ pas de sens si longueur (l)=0 (liste vide)

if (longueur(l) == 0) {
] :] Liste supprimer (Liste 1, int i) {
printf ("Erreur: liste vide !'\n");

) // précondition : 1 £ i < longueur(l)
exit(-1);
}

return p->valeur;

int j;
Liste p;

) if (i<l || i>longueur(l)) ({

printf ("Erreur: rang non valide!\n");

exit(-1);

Place succ(Liste 1,/ Place p) {

}
if (i == 1) {

// pas de sens sij

== NULL) {

p derniére place de liste

p=1;

printf ("Eyreur: suivant derniére place!\n");

l=1->suivant;
exit(-1)/

}

. else {
p->suivant;

Place q;
g=acces(1l,i-1);

. . =succ(l,q);
elémert keme (Liste 1, int k) {

] g->suivant=p->suivant;
£ de sens que si 1 <= k <= longueur (1)

}
free(p) ;

| | k>longueur(l)) {

intf ("Erreur : rang non valide !'\n");
return 1;

contenu(l, acces(1l,k));

Remarqgues (1)

Ajout au milieu d'une liste connaissant la place
qui précede celle ou s'effectuera I'ajout

® ajouter : Liste x Place x Elément > Liste

®» 5outer (L,p,e) : liste obtenue a partir de L en ajoutant une place
contfenant I'élément e, juste apres la place p

®»/enlever : Liste x Place = Liste

enlever (L,p) :liste obtenue a partir de L en supprimant la place p et son
contenu

Remarques

Liste ajouter (Liste 1,
Place p, element e) {
Liste pc;
pc=(Liste)malloc(sizeof (Cellule)) ;
if (p¢ == NULL) {
p¥intf ("Erreur: Probléme de "
"mémoire\n") ;
exit(-1);
}
pc—>valeur = e;
pc—>suivant = p->suivant;
pP—>suivant = pc
return 1;

}

Liste enlever (Liste 1, Place p) {
// p pointe élément a supprimer
Place pred; // pred pointe avant p
if (p == 1)
1 = succ(l,p):
else {
pred=1;
while (succ(l,pred) != p)
pred = succ(l,pred);
pred->suivant = p->suivant;
}
free(p)

return 1;

}

Variantes de Listes Chainees

» |jste avec téte fictive

» |jste chainée circulaire

» |iste doublement chainée
» |iste doublement chainée circulaire

» |jste triee

Liste avec Téte Fictive

®» Eviter d'avoir un traitement particulier pour le
cas de la téte de liste (opérations d'insertion
et de suppression)

» Mettre en téte de liste une zone qui ne contient pas de valeur ef reste
toujgurs en téte

'Y téte fictive
~
l——»{ el | > | &> ..0—> en

Liste Circulaire

» Le suivant du dernier élement de la liste est le
premier élément

valeur suivant

el # b(el ——>el|0—> ..0—> 0o

T

Liste Doublement Chainee

®» Faciliter le parcours de la liste dans les
deux sens

» ytiliser un double chainage ; chaqgue place repérant a la fois la place
qui la précede et celle qui la suit

e

\valeur suivant
/| el ._‘:," el

quete

Liste Triee
» Dans cette liste, il existe un ordre total sur les clés

= L’'ordre des enregistrements dans la liste respecte I'ordre sur les clés

Complexité

= n désigne le nombre d'éléments d'une liste

Opération Représentation contigué | Représentation chainée
liste vide 0(1) 0(1)
ajout/suppression en téte O(n) O(1)
ajout/suppression générale O(n) O(n)
ajout/suppression en quene 0(1) O(n)
acees (1) O(n)
concaténation O(n) O(1)

Les Piles & Files
(Stacks)

Pr F.Omary

FSR-Université MohammedV
2019-2020

ofion de Pile (Stack]

= Les piles sont tres utilisees en informatique

= Notion intuitive :

= pile d'assiettes, pile de dossiers a traiter, ...

= Une pile est une structure linéaire permettant de stocker et de
réstaurer des données selon un ordre LIFO (Last In, First Out ou
« dernier enfré, premier sorfi »)

Dans une pile :

= |es insertions (empilements) et les suppressions (dépilements) sont
restreintes a une extrémité appelée sommet de la pile.

sommet

sommet

o >

sommet

Exemple de Pile

E
A
B

sommet

W >moO

sommet

W>mOO

sommet

w>mO

Type Abstrait Pile

|

Type Pile
Utilise Elément, Booléen
Opérations

pile vide : > Pile

est vide Pile > Booléen

Pile x Elément - Pile
dépiler Pile > Pile
sommet : Pile - Elément
Précondjitions
iléer (p) est-défini-ssi est vide(p) = faux
t(p) est-défini-ssi est vide(p) = faux

emleer

Soit, e : Element, p : Pile

est vide(pile vide) = vrai

t vide (empiler(p,e)) = faux
épiler (empiler(p,e)) = p
ommet (empiler (p,e)) = e

Opérations sur une Pile

pile vide : = Pile
= opération d'inifialisation ; la pile créée est vide

= est vide : Pile > Booléen
» teste si pile vide ou non

Pile = Elément

prﬁgevTi ee consulter I'élément situé au sommet ; n'a pas de sens

eipiler : Pile x Elément > Pile
» gjoute un élement dans la pile

dépiler : Pile > Pile

= enleve |'élément situé au sommet de la pile ; n'a pas de sens si
pile vide

Représentation d'une Pile

= Représentation contigué (par tableav) :
= Les éléments de la pile sont rangés dans un tableau

= Un entier représente la position du sommet de la pile

= Représentation chainée (par pointeurs) :

= Les éléments de la pile sont chainés entre eux (voir listes chainées)

= Un pointeur sur le premier élément désigne la pile et représente le
sommet de cette pile

Une pile vide est représentée par le pointeur NULL

Pile Contigué

/* Pile contigué en C */

// taille maximale pile
#define MAX PILE 7

// type des éléments
typedef int Element;

// type Pile

typedef struct {

Element elements[MAX PILE];
int sommet;

} Pile;

elements

Spécification d'une Pile

g E yAner "Tpile.h" */
#ifndef _PILE_TABQLXUO n Tlg U@-

#define PILE TABLEAU

#include "Booleen.h"
// Définition du type Pile (implémentée par un tableau)
#define MAX PILE 7 /* taille maximale d'une pile */

typedef int Element; /* les éléments sont des int */

typedef stryct ({

Element elements[MAX PILE]; /* les éléments de la pile */

empiler (Pile p, Element e);

depiler (Pile p)

Realisation d'une Pile Contigué

/* fichier "Tpile.c" */

#include "Tpile.h"

// Définition des fonctions gérant la pile
/[initialiser une nouvelle pile

Pile pile vide() {

Pile p;

p.sommet = -1;

return p;

/ tester si la pile¢/est vide
ooleen est vide(Pile p) {

if (p.sommet =% -1) return vrai;

eturn faux;

: pile non vide ! */

tf ("Erreur: pile vide !'\n");

// ajout d'un élément
Pile empiler (Pile p, Element e) {
if (p.sommet >= MAX PILE-1) {
printf ("Erreur : pile pleine !\n");
exit(-1);
}
(p.sommet) ++;
(p.elements) [p.sommet] = e;

return p;

// enlever un élément
Pile depiler (Pile p) {
/* pré-condition : pile non vide !*/
if (est_vide(p)) {
printf ("Erreur: pile vide !\n");
exit(-1);
}
p.sommet--;
return p;

}

Exemple d'Utilisation d'une Pile Configué

/* fichier "UTpile.c" */
#include <stdio.h>
#include "Tpile.h"

int main () {
Pile p = pile vide();

= empiler (p,50);

= empiler (p,10);

printf ("%d au sommet apres empilement de 50, 5, 20 et"
" 10\n", sommet(p)):;

depiler (p) ;

depiler (p) ;

intf ("$d au sommet aprés dépilement de 10 et 20\n",
sommet (p)) ;

turn O;

Pile chainée

/* Pile chainée en C */

// type des éléments
typedef int element;

// type Cellule
typedef struct cellule {
element valeur;

struct cellule *suivant;
} Cellule;

// type Pile
typedef Cellule *Pile;

Complexité

Les opérations sur les piles sont toutes en O(1)

'» Ceci est valable pour les deux représentations proposées

Applications d'une Pile
Vérific:c:t‘ior,liE éue bmgclﬁiﬁbl(Q]g)e d’'une expression

parenthesee :

= Pour verifier qu'une expression parenthesée est équilibree, a
chaque rencontre d une parenthese ouvrante on lempile et
chaqgue rencontre d'une parenthese fermante on depile ;

= Evaluation des expressions arithmétiques postfixées
(expressions en notation polonaise inverse) :

= P@ur évaluer une felle expression, on opplic%,ue chaque opérateur

x deux opérandes qui le précedent, || suffit d'utiliser une pile
ans laguelle les operandes sont empilés, alors que les operateurs
dépilent deux elements, effectuent 'operation et empilent le
resultat. Par exemple, I'expression postfixee 23 5 * + 1 =s'évalue
commesuit:((2(35*) +)1-)=16;

=\Conversion d’'une expression en notation infixe
arenthesee) en notation posfifixee ;

lications d'une Pile
ples (2)

= Gestion par le compilateur des appels de
fonctions :

= les parametres, I'adresse de refour ef les variables locales sont stockés dans
la pile de I'application

-Me orisation des appels de procedures

imbriquées au cours de I'exécution d'un
programme, et en particulier les appels des
océdures récursives ;

Parcours « en profondeur » de structures
d'arbres (voir arbres) ;

Les Files (Queues)

Nofion de File (Queue)

= Les files sont tres utilisées en informatique

= Notion intuitive :
= File d'attente a un guichet, file de documents a imprimer, ...

Guicher

T [elaurer des Jonneas selon on orare HES st CFirst Sut Sy
((pPremier enire, premier sort))?

ans vune file :

- k??n‘é‘seeﬂg’{;éuﬂssf’é?g’?%’;' i &hicments] e FanF S RRS R AtE e o€
appelee tete de la file

Exemple de File

Type Abstrait File

Type File

tilise Elément, Booléen
pérations
file vide : 2> File
est vide : File = Booléen
enfiler : File x Elément - File
défiler : File - File
téte File -2 Elément
Préconditio

défiler(f) est-défini-ssi est vide(f) = faux
téte(f) est-défini-ssi est vide(f) = faux

, € : Element, £ : File

egt vide(file vide) = vrai

st _vide(enfiler(f,e)) = faux

i est vide(f) = vrai alors téte(enfiler(f,e)) = e

si est vide(f) = faux alors téte(enfiler(f,e)) = téte(f)

si est vide(f) = vrai alors défiler(enfiler(f,e)) = file vide
si est vide(f) = faux

alors défiler (enfiler(f,e)) = enfiler(défiler (f) ,e)

Opérations sur une File

file vide : = File
= opération d'inifialisation ; la file créee est vide

= est vide : File -> Booléen
= feste si file vide ou non

File = Elément

rme;.de consulter I'élément situé en téte de file ; n'a pas de
ns sl file vide

enfiler : File x Elément - File
= gjoute un élement dans la file

défiler : File = File
= enleve |'élément situé en téte de file ; n'a pas de sens si file vide

Représentation d'une File

= | Représentation contigué (par tableav) :
= Les éléments de la file sont rangés dans un tableau

- get;x ﬁnﬁers représentent respectivement les positions de la téte et de la queue
e la file

Représentation chainée (par pointeurs) :

7

= Les éléments de la file sont chainés entre eux (voir listes chainées)

inteur sur le premier élément désigne la file et représente la téte de cette

= Up pointeur sur le dernier élément représente la queue de file

= Pne file vide est représentée par le pointeur NULL

Vv ° ° o0 1

esentation Contigue d
tableau simple)

une File

» téte de file : position precédant premier elément

quevue de file : position du dernier elément

Initiclisation : téte € queue € -1

Infconvénient : on ne peut plus ajouter des éléments dans la file, alors
u'elle n'est pas pleine !

Représentation Contigué d'une File

(par tableau simple) (1)

)

e GG Y

Représentation Contigué d'une File
(oar tableau simple) (2)

File Contigué

/* File contigué en C */

// taille maximale file
#define MAX FILE 10

// type des éléments
typedef int Element;

// type File

typedef struct {
Element tab[MAX FILE];
int tete;

int queue;

} File;

Spécification d'une File Contigué
25

/* fichier "Tfile.h" */
#ifndef FILE TABLEAU
#define FILE TABLEAU

#include "Booleen.h"

// Définition du type File (implémentée par un tableau simple)
#define MAX FILE 10 /* taille maximale d'une file */
typedef int Element; /* les éléments sont des int */

typedef struct {
Element/tab[MAX FILE]; /* les éléments de la
/* position précédant premier élé

int tete;
int queue; /* position dernier
\} File;

/ Declaration des fonctions gérant la pile
Rile file vide ()

\ e enfiler (File £, Element e);
le defiler (File £);

ent tete (File f);

q\een est vide (File £);

Bo

#end

Realisation d'une File

/* fichi "Tflle "ex /
C Ig U(E // ajout d'un élément

#include "Tfile.h" File enfiler (File £, Element e) ({

// Définition des fonctions gérant la file if (f.queue == MAX FILE-1) ({

// initialiser une nouvelle file printf ("Erreur: on ne peut ajouter !'\n");
ile file vide() { exit(-1);

File f; }

f.queue = f.tete = -1; (f.queue) ++;

return £; (f.tab) [f.queue] = e;
return £;
/ tester si la le est vide }
ocoleen est vidé (File f) {
f.queue) return vrai; // enlever un élément

File defiler(File f) {

/* pré-condition : file non vide !'*/

/M valeur/en téte de file if (est_vide(£f)) {
ete (File £f) { printf ("Erreur: file vide '\n");
file non vide ! */ exit(-1);
_vide (£)) { }
£ ("Erreur: file vide !'\n"); f.tete++;
e -1); return f£;

}
(f.tab) [f. tete+1];

Vv ° ° o0 1

esentation Contfigué d'une File
tableau simple avec decalage)

= Décaler les éléments de la file apres chaque suppression

= [nconvénient : décalage fres coUlteux si la file contient plusieurs
d'éléments

Représentation Contigué d'une File

(oar tableau simple avec décalage)

)

e GG Y

Représentation Contigué d'une File
(bar tableau simple avec décalage)

Représentation Contigué d'une File
ar tableau circulaire)

» Gerer le tableau de maniere

circulaire :suivant de I'élément a la
posifion i est ['élément a la position (i+1)
modulo MAX FILE

Convention : file autorisée a contenir
MAX FILE-1 €léments

= [nitialisation : tete € queue € 0

n—

quene

-1

File Contigue Circulaire

IE\II‘\MV‘\II‘\\

R tete
EnfilEl_'_l_ o P 2 a4—
| quene '
- L :
. tete
JE T o I :
o n-2 1

:léi"llm'“-h-j;-r-.'.... TR _2

quene

Représentation d'une File Contigué
zutaire(1)

OF 28 SR AR5 G A S

33 Realisation d'une File Contigué
Circulaire (2)

OF PR SRS 6 78 8 9

Realisation d'une File Contigué Circulaire

/* fichier "TCfile.c" */
#include "Tfile.h"
// Définition des fonctions gérant la file

initialiser une nouvelle file

file non wvide ! */

ntf ("Erreur:
A(-1);

file vide '\n");

(f.tab) [(f.tete+l) $ MAX FILE];

// ajout d'un élément

File enfiler (File £, Element e) {

if (f.tete == (f.queue+l) % MAX FILE) {
printf ("Erreur
exit(-1);

}
f.queue=(f.queue+l) % MAX FILE;
(£.tab) [f.queue] = e;

return £;

}

file pleine '\n");

// enlever un élément
File defiler (File f) {
/* pré-condition
if (est_vide(f)) {
printf ("Erreur: file vide '\n");
exit(-1);
}
f.tete=(f.tete+l) % MAX FILE;
return £;

}

file non wvide !'*/

File chainéee

/* File chainée en C */

// type des éléments
typedef int element;

// type Cellule
typedef struct cellule {
element wvaleur;

struct cellule *suivant;
} Cellule;

// type File
typedef struct {
Cellule *tete;
Cellule *queue;

} File;

Complexité

Les opérations sur les files sont toutes en O(1)

' Ceci est valable pour les deux représentations : file contigué circulaire et

file chadinee

Applications d'une File

~ Exemples .
Gestion des travaux d’'impression d’'une

imprimante :

= Cas d'une imprimante en réseau, ou les taches d'impressions arrivent
aléatoirement de n'importe quel ordinateur connecté. Les tGches sont
placéesdans une file d'attente, ce qui permet de les traiter selon leur ordre
d'arrivée

Ordonnanceur (dans les systemes
d’'exploitation) :

Maintenir une file de processus en attente d'un temps machine ;

=\Rarcours « en largeur » d’un arbre (voir arbres)

Cours
Structures de
donnees

Arbres (Trees)

Pr F.Omary
2019-2020

Objectifs

» Efudier des structures non
linéaires
Arbres binaires
» Arbres binaires de recherche
®» Arbres maximiers ou Tas
= Arbres equilibrés

Contenu

= |niroduction
= Terminologie

» Arbres binaires

» Arbres binaires de recherche
» Arbres maximiers ou Tas

= Arbres équilibrés

Arbres (Trees)
Introduction

Notion d'Arbre (Tree)

Les arbres sont les structures de données les plus
importantes en informatique

Ce sont'des structures non linéaires qui permettent
d’obtenir des algorithmes plus performants que

lorsqqu’on utilise des structures de donneées lineaires
telles que les listes et les tableaux

®» \{|s permeitent une organisation naturelle des
nnées

Notion d'Arbre (Tree)
Exemples

» Organisation des fichiers dans les systemes
d'exploitation ;

= Organisation des informations dans un systeme de bases
de donnees ;

= Repfésentation de la structure syntaxique des
pregrammes sources dans les compilateurs ;

= Représentation d'une table de matieres ;

Représentation d'un arbre généalogique ;

Arbres (Trees)
Terminologie

Terminologie (1)

» Un arbre est un ensemble d'éléments appelés nceuds (ou sommets),
lies par une relation (dite de "parenté") induisant une structure
hiérarchique parmi ces noeuds.

» Un nceud, comme tout elément d'une liste, peut étre de n'importe
quel type.

Terminologie (1) (suite)

D'une maniere plus formelle, une structure
d'arbre de type de base T est :

=» soit la structure vide ;

» soit un noeud de type T, appelé racine, associé a un nombre fini de structures
d'arbre disjointes du type de base T appelées sous arbres

= C'est une definition récursive ; la recursivité est
ung propriete des arbres et des algorithmes
qui les manipulent

ne liste est un cas partficulier des arbres
arbre dégénéré), ou tout noeud a au plus un
us arbre

llustration & Exemple

» Pour illustrer une structure
d'arbre, on modeélise le
plus souvent un nceud
par une information
Inscrite dans un cercle et
les liens par des traits.

» Par convention, on ° ° ° G

essine les arbres avec la
acine en haut et les
branches dirigees vers le
as.

Terminologie (2)

= La terminologie utilisée dans les structures
d'arbres est empruntée :

= qux arbres généalogiques :
= Pere;
= Fils ;

Frere ;

» Descendant;
' L)

et a la botanique :
» Feuille ;

=» Branche ;

Terminologie (3)

= Fils (ou enfants) :

IO. Qn%m Jomca Q.coq_oqm uo_:ﬁm <3c: m:mmj__o mm<w1cm__w3m3
vide d'auires noceuds ; ce sont ses fils (ses enfants).

> AR R RS TSR ook s 1 ¢f3.le nosud T

N\

lqommscn_mn_.csqg@mc*c?o*c:.qwm*csmmc_.cssomco_
: aocm:omca n .omm* mmcﬂmBmi m_sz esf'fils de p. P

Deux nceuds ayant le méme pere.
» Les noeuds 2, 6 et 7 sont des freres.

Racine :
= Le seul noeud sans pere.
» 5 est la racine de I'arbre précédent.

Terminologie (4)

Feuilles (ou noceuds terminaux, ou nceuds externes) :
» Ce sont des noeuds sans fils.
= Par exemple, 4, 2, 6 et 7.

Lw Noeud interne :
= Un noevud qui n'est pas terminal.
= Par exemple, 1, 3 et 5.

Degre d'un noeud:
» nombre de fils de ce noeud.

" RUSERIPnIESEIRIEES Sy A Ridadsutyn 3 o oo

= \Pegré d'un arbre (ou arité) :

m_%wmqo_:o_ o_mm&o_mm:omco_mo_m_dqgm.c:Qq_oqmn_mo_mo&:mﬂo_:

Sur 'exemple, I'arbre est un arbre 3-aire.

Terminologie (5)

= Taille d'un arbre :
= |[e nombre total des noeuds de l'arbre.
= Surl'exemple, I'arbre est de taille 7.

» Chemin:

= YasyiiR R LRRUANS URAIRLS Do, et R BLGYR) = Pere(nT) pour Tsisk:

-» __Q longueur d'un chemin est égale au nombre de :8co_m qu'il contient moins
= Sur I'eéxemple, le chemin qui mene du nceud 5 au noceud 6 est de longueur 2.

=» Branche:

= Un chemin qui commence a la racine et se termine a une feville.
»/ Par exemple, les chemins (5, 1, 4), (5, 3, 2), (5, 3, 6) et (5, 3, 7).

» Ancétre:
= Un noeud A est un ancétre d'un nceud B s'il existe un chemin de A vers B.
= Par exemple, les ancétres de 2sont 2,3 et 5

Descendant :
= Un noceud A est un descendant d'un nceud B s'il existe un chemin de B vers A.
= Sur l'exemple, 5 admet les 7 nceuds de I'arbre comme descendants.

Terminologie (6)

» Sous arbre :

= Un sous arbre d'un arbre A est constitué de tous les
descendants d'un noeud quelconque de A.

» Les ensembles de noeuds {3, 2, 6, 7} et {2} forment deux sous
arbres de I'exemple précédent.

= Hauteur (ou profondeur, ou niveau) d'un noeud :
= Longueur du chemin qui relie la racine a ce nceud.

» La racine est elle méme de hauteur 0, ses fils sont de hauteur
1, et les auires noeuds de hauteur superieure a 1.

auteur d'un arbre :

l_u_cmma_:n_m_uqﬂo:amcqn_mm:omco_mo_m__o:gm m_w%_uom.m :o:
vide, c'est-a-dire h(A) = Max{h(x) ; x noeud de A}

» |L'arbre de I'exemple est de profondeur 2.
= Par convention, un arbre vide a une hauteur de -1.

Terminologie (7)

= Arbre dégeénéré ou filiforme :

= Un arbre dont chaque noeud a au plus au fils

Terminologie (7)

» Arbre ordonné :

= Un arbre ou la position respective des sous arbres reflete une relation
d'ordre. En d'autres termes, si un nceud a k fils, il existe un 1er fis, un 2eme
fils, ..., et un keme fils.

= Les deux arbres de la figure qui suit sont différents si on les regarde
comme des arbres ordonnés, mais identiques si on les regarde comme de
imples arbres.

(A (A,

Terminologie (8)

= Arbre binaire :
= Un arbre ou chaque noeud a au plus deux fils.

= Quand un nceud de cet arbre a un seul fils, on précise s'il s'agit

du fils gauche ou du fils droit.

» Larfigure qui suit montre un exemple d'arbre binaire dans
léquel les noeuds contiennent des caracteres.

Terminologie (9)

= Arbre binaire complet :

= Arbre binaire dont chaque niveau est rempli.

$ N

Terminologie (10)

= Arbre binaire parfait (ou presque complet) :

= Arbre binaire dont chaque niveau est rempli sauf
éventuellement le dernier

= Dans ce cas les noeuds terminaux (feuilles) sont groupés
le plus a gauche possible.

Terminologie (11)

» Facteur d'équilibre d'un nceud d'un arbre

binaire :
» Hauteur du sous arbre partant du fils gauche

du nceud moins la hauteur du sous arbre
partant de son fils droit.

» Arhra hinAira Aarriililknra NQC sens QQM
h¢

a_.c.mscmcn_~
vilibre est

Arpres Binaires
(Binary Trees)

Definition

=» Un arbre binaire A est:

» 5oit vide (A=()ou A =9),

» 50it de la forme A = <r, A1, A2>, c-O-d composé :

» d'un nceud r appelé racine contenant un élément

» ot de deux arbres binaires disjoints A1 et A2, appelés
respectivement sous arbre gauche (ou fils gauche) et sous
arbre droit (ou fils droit).

Exemple d'arbore binaire

niveau 0 ---—-—-————c—meeee—-

niveau1 ---———-————--

hauteur
=3

niveau 2 --- .

niveau 3 ----——---——---

Type Abstrait Arbre_Binaire

Type Arbre Binaire
Utilise Noeud, Elément, Booléen
Opérations
arbre vide : - Arbre Binaire
est vide : Arbre Binaire > Booléen
cons : Noeud x Arbre Binaire x bHUHmImemHHm.wvaUHmlebmHHm
racine : Arbre Binaire - Noeud
gauch : Arbre Binaire > Arbre Binaire
droite : Arbre Binaire -> Arbre Binaire
cortenu : Noeud - Elément
Préconditions
acine (A) est-défini-ssi est vide(A) = faux
gauche (A) est-défini-ssi est vide(A) = faux
droite (A) est-défini-ssi est vide(A) = faux
iomes
Soit, r : Neeud, Al, A2 : Arbre Binaire
racine (<r, Al, A2>) =r

Al
A2

gauche (<r, Al, A2>)
droite (<r, Al, A2>)

Opérations sur un Arbre
Binaire (1)

arbre vide : - Arbre Binaire
» opéeration d'initialisation; crée un arbre binaire vide.

est vide : Arbre Binaire - Booléen
®» feste si un arbre binaire est vide ou non.

ns : Noeud x PHUHmeHbm“._.Hm X PHUHme“._.bmHHm -
HUHmIWWmeHm

» cons(r,G,D) construit un arbre binaire dont le sous arbre
gauche est G et le sous arbre droit est D, et r est le noeud
racine qui contient une donnée de type Element.

racine : Arbre Binaire - Noeud

= si A est un arbre binaire non vide alors racine (A) refourne
le nceud racine de A, sinon un message d'erreur.

Opérations sur un Arbre
Binaire (2)

® gauche : Arbre Binaire => Arbre Binaire

® 5| A est un arbre binaire non vide alors gauche () retourne le sous arbre
gauche de A, sinon un message d'erreur.

®» droite : Arbre Binaire - Arbre Binaire

®» si A est un arbre binaire non vide alors droite (&) retourne le sous arbre
droit de A, sinon un message d'erreur.

®» contenu : Noeud -2 Elément

» permet d'associer d chague noeud d'un arbre binaire une information de
type Elément.

Opérations Auxiliaires

Extension Type Arbre Binaire
Utilise Entier, Booléen
Opérations
taille : Arbre Binaire -> Entier
hauteur : Arbre Binaire = Entier
feuille : PHUHmeHbmHHm.W.wOOHmmU

pd

Préconditions

iomes

Soit, r : Noeud, Al, A2 : Arbre Binaire

taille (arbre vide) = 0

taille(<r, Al, A2>) =1 + taille(Al) + taille(A2)
hauteur (arbre vide) = -1

si hauteur (Al) > hauteur (A2) alors hauteur (<r, Al, A2>)
sinon hauteur(<r, Al, A2>) = 1 + hauteur (A2)

si est vide(A) = faux et est vide(gauche(A)) = vrai
et est vide(droit(A)) = vrai
alors feuille(A) = vrai

sinon feuille(A) = faux

l+hauteur (Al)

Parcours d'arbre binaire

= Un parcours d'arbre permet d'accéder a chaque noeud de l'arbre :

= Un traitement (test, affichage, comptage, etc.), dépendant de I'application
considérée, est effectué sur I'information portée par chaque nceud

= Chaque parcours de I'arbre définit un ordre sur les noeuds

On distingye :

» les pdrcours de gauche a droite (le fils gauche d'un noeud précede le fils
droif) ;

= |es parcours de droite a gauche (le fils droit d'un nceud précede le fils

ne considerera que les parcours de gauche a droite

distingue aussi deux catégories de parcours d'arbres :
es parcours en profondeur ;
S parcours en :E.Qms..

Parcours en profondeur

=» Soit un arbre binaire A = <r, A1, A2>

= On définit trois parcours en profondeur de cet arbre :
» le parcours préfixe ;
= |e parcours infixe ou symétrique ;

» |e parcours postfixe ou suffixe.

PArcours en profondeur
PArcours ,m@n_xm

En abrégé RGD (Racine, Gauche, Droit)

Consiste a effectuer dans l'ordre :
» |e traitement de la racine r;
» Le parcours préfixe du sous arbre gauche Al ;

» le parcours préfixe du sous arbre droit A2.

L'orgre correspondant s'appelle I'ordre préfixe

Parcours en profondeur

Parcours infixe ou symeéetrigue
= En abrégé GRD (Gauche, Racine, Droit)

» Consiste a effectuer dans l'ordre :
» |e parcours infixe du sous arbre gauche Al ;
» |e traitement de la racine r;

» |e parcours infixe du sous arbre droit A2.

» |[‘ordre correspondant s'appelle I'ordre infixe

Parcours en profondeur
OArcours Postfixe ou suffixe

= En abrégé GDR (Gauche, Droit, Racine)

» Consiste a effectuer dans l'ordre :
» | parcours postfixe du sous arbre gauche Al ;

»/ Le parcours postfixe du sous arbre droit A2 ;

» |e traitement de la racine r.

L'ordre correspondant s'appelle I'ordre suffixe

Exemple de Parcours en profondeur
(affichage du contenu des noceuds)

e\parcours préfixe affiche les nceuds dans l'ordre : 1, 2, 4, 5, 3,6, 8, 9, 12, 13, 7, 10, 11
& parcours infixe affiche les neeuds dans 'ordre : 4, 2, 5, 1, 8, 6, 12, 9, 13, 3, 10, 7, 11
Le\parcours postfixe affiche les nceuds dans l'ordre : 4, 5, 2, 8, 12, 13, 9, 6, 10, 11, 7, 3, 1

,

Parcours en largeur

=» On explore les noeuds :
= niveau par niveau,
= de gauche a droite,

= en commenc¢ant par la racine.

» Exemple :

= Le parcours en largeur de I'arbre de la figure précédente
affiche la séquence d'entiers suivante : 1, 2, 3, 4, 5, 6, 7,
89 10, 11,12, 13

Representations d'un arbre
binaire

= Représentation par tableau (par contiguité)

= Représentation par pointeurs (par chainage)

Représentation contigué d'un

arbre binaire
= On caractérise un arbre binaire par :

» sa taille (nombre de nceuds) ;
= saracine (indice de son emplacement dans le tableau de nceuds)

=» yn tableav de nceuds.

= Chdque ncoeud contient trois données :

= /une information de type Elément ;

deux entiers (indices dans le tableau désignant respectivement
I'emplacement des fils gauche et droit du nceud).

Représentation contigué d'un
arbre binaire

$define NB MAX NOEUDS 15

typedef int Element;

typedef struct noeud {

Element wval;

int fg;

int £d;

} Noeud;

typedef Noeud TabN[Nb MAX NOEUDS] ;

typedef struct arbre {
int nb noeuds;

int racine;

TabN les noeuds;

} Arbre Binaire

ole de Representation contigué

(Ca)
(o (%g)
() () (1D
(e <
<« <«
0] 2 0 123 4 5 6 7 891011 12 13 14
5 < val dlajg|b|c fimje|] k
= @ B
2 £ g
n_un_a A4l 12 [aal-1]7]8 1
rs
= S 1 O [5|-11-1110] |-1]-1]3]-1 1

—

re representation contigué d'un arbre

Ire

Repose sur I'ordre hiérarchique (numérotation des
noeuds niveau par niveau et de gauche a droite)

On rappelle que pour stocker un arbre binaire de
hauteur h, il faut un tableau de 2"*1-1 élements

On organise le tableau de la fagon suivante :
= Le noeud racine a pour indice 0 (en langage C) ;

=» Soit le noeud d’indice i dans le tableau, son fils gauche a
pour indice 2i +1, et son fils droit a pour indice 2(i+1).

Représentation idéale pour les arbres binaires
parfaits. En effet, elle ne gaspille pas d'espace.

Autre représentation contigué d'un
arore binaire (Exemples)

[

0 1 2 3 456789 10 11 12 13 14 15 16 17 18
Lafoleld] Jxfif Jel | | | [m[[| [fle]

=S =]
S| —
o N
oW
=
~ |
— |\
Pl |

0O 1 2 3 4 S 6 7 8 9 10 11 12 13 14

lal [of [[Jaf I I [[| | [r]

Représentation chainée d'un
arre binaire

» Chaque noeud a trois champs :

» val (I'élément stocké dans le noeud) ;
= fg (pointeur sur fils gauche) ;
» fd (pointeur sur fils droit).

= U arbre est désigné par un pointeur sur sa
racine

Un arbre vide est représenté par le pointeur
NULL

resentation chainéee en C d'un arbre

typedef int Element;
typedef struct noeud *Pnoeud;
typedef struct noeud {

Element wval;

ypedef Noeud *Arbre Binaire;

xemple de Représentation chainee
N arbre binaire

()
(o ()
O OO
(<) ©
OO
Ale P> e | g | &
\ /_V
gk
Ve
d| e K _
/
/s1el N m
¥ R

Réalisation chainée d'un arbre binaire

Arbre Binaire arbre vide() {
return NULL;

}

Booleen est vide (Arbre Binaire A) ({
return A == NULL ;

}

Pnoeud nouveau noeud (Element e) ({

// faire une allocation mémoire et placer 1'élément e

// en cas d'erreur d'allocation, le pointeur renvoyé est
NULL

Pnoeud p = (Pnoeud) malloc(sizeof (Noeud)) ;
if (p !'= NULL) {

p->val = e;

p->fg = NULL;

NULL;

9
4
Hh
Q.
I

return (p);

}

>alisation chainée d'un arbre binaire

#ﬂvumlmwbmwum cons (Noeud *r,
Arbre Binaire G,
Arbre Binaire D) {

r->fg = G ;
r->fd = D ;
return r ;

A est non wvide !

Arbre vide '\n");

Arbre Binaire gauche (Arbre Binaire A) {
// précondition : A est non vide !
if (estvide(AdA)) {
printf ("Erreur
exit(-1);
}
return A->fg ; /* ou bien (*A).fg; */
}

Arbre vide '\n");

Arbre Binaire droite(Arbre Binaire A) {
// précondition A est non vide !
if (estvide(A)) {
printf ("Erreur
exit(-1);
}
return A->fd ; /* ou bien (*A) .fd; */
}

Arbre vide '\n");

Element contenu (Noeud n) ({
return n.val;

}

Exemples d'Applications d'Arbre
Binaire

» Recherche dans un ensemble de valeurs :
®» | es arbres binaires de recherche ;

» Tri d'un ensemble de valeurs :
» | e/parcours GRD d’un arbre binaire de recherche ;
» n algorithme de tri efficace utilisant une structure de fas;

= Représentation d’une expression arithmétique :
» Un parcours GDR pour avoir une notation postfixée ;

Méthodes de compression :
» | e codage de Huffman utilisant des arbres binaires ;

l_.oo 3 ﬁmmm_03a_30m c___mQZ o_mw QcQQ:mmm %Qﬁ\ chQ*mSQ:mm\
ou C ue hceud 303 euvllle a exacrement quatre ;

Arbres de Recherche Equilibrés
Exemples (3)

»|[es B arbres :

= Arbres de recherche équilibrés qui sont concus pour étre efficaces sur
d'énormes masses de données stockéees sur mémoires secondaires :

= Chaque nceud permet de stocker plusieurs clés ;

» Généralement, la taille d'un nceud est optimisée pour coincider avec la
taille d'un bloc (ou page) du périphérique, en vue d'économiser les
colUleux acces d'entées sorlies.

Arbres Binaires de
Recherche

(Binary Search Trees)

Pr F.Omary
2019-2020

Notion d'Arbre binaire de
recherche

» C'est un arbre binaire particulier :

= Permet d'obtenir un algorithme de recherche proche
dans l'esprit de la recherche dichotomique ;

= Pour lequel les opérations d'ajout et de suppression d'un
élément sont aussi efficaces.

=» Cet arbre utilise lI'existence d'une relation d'ordre sur
les éléments, représentée par une fonction clé, a
valeur entiere.

Arbre binaire de recherche
Deéefinition

= Un arbre binaire de recherche (binary search tree en anglais), en
abrégé ABR, est un arbre binaire tel que pour tout nceud :

» Jes clés de tous les noeuds du sous-arbre gauche sont inférieures ou égales a la
Ié du nceud,

les clés de tous les noeuds du sous-arbre droit sont supérieures a la clé du
nceud.

Chaque nceud d'un arbre binaire de recherche désigne un élément
qui est caractérisé par une clé (prise dans un ensemble totalement
ordonné) et des informations associées a cette clé.

Dans toute illustration d'un arbre binaire de recherche, seules les clés
sont représentées. On supposera aussi que toute clé identifie de
maniere unique un élément.

Arbre binaire de recherche
Exemple

= | 'arbre de la figure
svivante est un arbre
binaire de recherche

= Cet arbre représente
'ensemble : Q)
E={a, d e gl q t}

muni de I'ordre alphabétique

Arbre binaire de recherche

Remargue
= Plusieurs représentations possibles Q)
d’'un méme ensemble par un arbre /
binaire de recherche (3

= En effet, la structure précise de
re binaire de recherche est (a) (i)
terminée :

= par I'algorithme d’insertion utilisé,

= et par I'ordre d’arrivée des éléments.

Exemple : (9)

= |'arbre binaire de recherche de la
figure qui suit représente aussi

E={a, d e gl qt}

Opérations sur les arbres binaires
de recherche

= Le type abstrait arbre binaire de recherche, noté
Arbre Rech, est décrit de la méme maniere que le type

Arbre_Binai re

On reprend les opérations de base des arbres binaires,
excepté le fait que dans des arbres binaires de
recherche, on suppose l'existence de l'opération clé sur
le type abstrait Element

= On définit, en tenant compte du critere d'ordre, les
opérations spécifiques de ce type d'arbre concernant :

» |a recherche d'un élément dans I'arbre ;
» ['insertion d'un élément dans I'arbre ;

= |a suppression d'un élément de I'arbre.

Recherche d'un élement

=» Principe de l'algorithme :

= On compare la clé de I'élément cherché a la clé de la
racine de l'arbre ;

= Sjla clé est supérieure a la clé de la racine, on effectue
une recherche dans le fils droit ;

» Sila clé estinférieure a la clé de la racine, on effectue
une recherche dans le fils gauche ;

» Larecherche s'arréte quand on ne peut plus continuer
(échec) ou quand la clé de I'élément cherché est égale
a la clé de la racine d'un sous arbre (succes).

Recherche d'un element
Exemple

= |a figure suivante
illustre la
recherche de
I'élément de clé
dans un arbre
inaire de

recherche.

Les fleches
indiquent le
chemin de la
recherche

Recherche d'un element
Spécification

Extension Type Arbre Rech
Utilise Elément, Booléen
Opérations
Rechercher : Elément x Arbre Rech
iomes
Soit, x : Elément, r : Neud, G, D

Rechercher (x, arbre vide) = faux
si clé(x) = clé(contenu(r))
alors Rechercher (x, <r, G, D>)
si clé(x) < clé(contenu(r))
(flors Rechercher (x, <r, G, D>) =

si clé(x) > clé(contenu(r))
[?lors Rechercher (x, <r, G, D>)

- Booléen

: Arbre Rech

vrai

Rechercher (x,

Rechercher (x,

Recherche d'un élément
Réalisation en C

Booleen Rechercher (Arbre Rech A, Element e) {
if (est vide(A) == vrai)
return faux; // e n'est pas dans l'arbre
else {
if (e == A->val)
return vrai; // e est dans l'arbre
else if (e < A->val)
// on poursuit la recherche dans le SAG

du
// noeud courant
return Rechercher (A->fg , e);
else
b // on poursuit la recherche dans le SAD

// noeud courant
return Rechercher (A->fd , e);

Recherche d'un element
Autre Spécification

Extension Type Arbre Rech
Utilise Elément
Opérations
Rechercher : Elément x Arbre_Rech.-) Arbre Rech
Axiomes
Soit, x : Elément, r : Neeud, G, D : Arbre Rech

Rechercher (x, arbre vide) = arbre vide
si clé(x) = clé(contenu(r))
alors Rechercher(x, <r, G, D>) = <r, G, D>)
si clé(x) < clé(contenu(r))
alors Rechercher(x, <r, G, D>) = Rechercher(x, G)
si clé(x) > clé(contenu(r))

alors Rechercher (x, <r, G, D>) = Rechercher(x, D)

Ajout d'un élément

= La technique d'ajout spécifiée ici est dite "ajout en feuille", car
tout nouvel élément se voit placé sur une feuille de I'arbre

= [e principe est simple :

» sil'arbre initial est vide, le résultat est formé d'un arbre binaire de
recherche réduit a sa racine, celle-ci contenant le nouvel élément ;

= sinon, I'ajout se fait (récursivement) dans le fils gauche ou le fils droit,
suivant que I'élément a ajouter est de clé inférieure ou supérieure a
celle de la racine.

=» Remarque:

= sj|'élément a ajouter est déja dans I'arbre, I'hypothése d'unicité des
éléments pour certaines applications fait qu'on ne réalise pas I'ajout

Ajout d'un éleément
Exemple
®» | es figures suivantes illustrent I'ajout successif

dee,i,q,t d, g, qetldans un arbre binaire
de recherche, initialement vide

° Coeos oy i,

b

Ajout "en feuille" d'un élement
Spécification

Extension Type Arbre Rech
Utilise Elément
Opérations
jouter feuille : Elément x Arbre Rech > Arbre Rech
}zomes
Soit, x : Elément, r : Neud, G, D : Arbre Rech

Ajouter feuille(x, arbre vide) = <x, arbre vide,
arbre vide>

si clé(x) £ clé(contenu(r))
alors

Ajouter feuille(x, <r, G, D>) = <r,
Ajouter feuille(x, G), D>

sinon

Ajouter feuille(x, <r, G, D>) = <r, G,
Ajouter feuille(x, D)>

Ajout "en feuille" d'un élement
Realisation

fonction Ajouter feuille(x : Elément, A : Arbre Rech)
Arbre Réch A -

si est _vide(A) alors
Pnoeud r = nouveau noeud (x)

est vide(r) alors <erreur>

etourner cons(r, arbre vide(), arbre vide())

non

si x > contenu(racine(A)) alors

retourner cons (A, gauche(A), Ajouter feuille(x, droite(a)))
sinon

Si x< contenu(racine(A) alors

retourner cons (A, Ajouter feuille(x, gauche(A)) ,droite(Ad))
fsi

fsi

fsi

ffonction

Ajout "en feuille" d'un élement
Reéalisation en C

Arbre Rech Ajouter feuille(Element x, Arbre Rech A) {
if (est_vide(a)) {
Pnoeud r = nouveau_noeud (x) ;
(r == NULL) {
printf ("Erreur : Pas assez de mémoire !'\n");

exit(-1);

}

return cons(r, arbre vide(), arbre vide());
}
else
if (x > contenu(racine(AdA)))
return cons (A, gauche(A), Ajouter feuille(x, droite(A)));
else
if (x < contenu (racine(A))// pas d’ajout lorsque x=contenu (A)

return cons (A, Ajouter feuille(x, gauche(A)), droite(d));

Suppression d'un élément

= La suppression est délicate :

= || faut réorganiser I'arbre pour qu'il vérifie la propriété d'un arbre
binaire de recherche

=/ La suppression commence par la recherche du noceud qui
porte I'élément a supprimer. Ensuite, il y a trois cas a
considérer, selon le nombre de fils du noeud a supprimer :

= sile noeud est sans fils (une feuille), la suppression est immédiate

’

= sijle noeud a un seulfils, on le remplace par ce fils ;

= sjle noeud a deux fils (cas général), on choisit de remplacer ce
noeud, soit par le plus grand élément de son sous arbre gauche
(son prédécesseur), soit par le plus petit élément de son sous
arbre droit (son successeur).

Suppression d'un élément

Exemple |
» | a figure qui suit illustre la suppression de la
feuille qui porte la clé 13

Suppression d'un élément
Exemple 2

= La figure qui suit illustre la suppression du
noeud qui porte la clé 16

= Ce nceud n'a qu'un seul fils ; le sous arbre de
racine portant la clé 18

= Ce sous arbre devient fils gauche du noeud
qui porte la clé 20

Suppression d'un élément
Exemple 3

= La figure qui suit illustre le cas d'un nceud a deux fils.

» Laclé 15 a supprimer se trouve a la racine de I'arbre. La racine
a/deux fils ; on choisit de remplacer sa cle par la cle de son
redecesseur.

=/ Ainsi, Ig ¢clé 14 est mise a la racine de I'arbre. On est alors
ramene a la suppression du nceud du predecesseur.

Comme le prédécesseur est le noeud le plus a droite du sous
arbre gauche, il n'a pas de fils droit, donc il a zero ou un fils, et
sa suppression est couverte par les deux premiers cas.

Suppression d'un élément
Cas genéral

= On choisit ici de remplacer le noeud a supprimer par son
prédécesseur (le nceud le plus a droite de son sous arbre gauche)

soin de deux opérations supplémentaires :

e opération Max qui retourne I'élément de clé maximale dans un
arbre binaire de recherche ;

une opération SupprimerMax qui retourne I'arbre privé de son plus
grand élément.

2 Suppression d'un élément: Spécificatior

Extension Type Arbre Rech
Utilise Elément

Opérations

Max : Arbre Rech > Elément

SupprimerMax : Arbre Rech = Arbre Rech

Supprimer : Elément x Arbre Rech - Arbre Rech
Pré-conditions

Max (A) est défini ssi est_vide(A) = faux

SupprimerMax (A) est défini ssi est _vide(A) = faux
Axiomes

Soit, : Elément, r : Neud, G, D : Arbre Rech

si est vide(D) = vrai alors Max(<r, G, D>) =r

singh Max (<r, G, D>) = Max(D)

si/est vide (D) = vrai alors SupprimerMax(<r, G, D>) = G

sinon SupprimerMax(<r, G, D>) = <r, G, SupprimerMax (D)>

Supprimer (x, arbre vide) = arbre vide

si clé(x) = clé(contenu(r)) et est vide(D) = vrai

alors Supprimer(x, <r, G, D>) =G

sinon si clé(x) = clé(contenu(r)) et est vide(G) = vrai

alors Supprimer(x, <r, arbre vide, D>) =D
sinon si clé(x) = clé(contenu(r))
alors Supprimer (x, <r, G, D>) = <Max(G) ,h SupprimerMax(G),6 D>

si clé(x) < clé(contenu(r))

alors Supprimer (x, <r, G, D>) <r, Supprimer(x, G), D>
si clé(x) > clé(contenu(r))

alors Supprimer (x, <r, G, D>) = <r, G, Supprimer(x, D)>

Suppression d'un élément
Réalisation

fonction Max (A : Arbre Rech) : Pnoeud

(* A doit étre non vide ! *)
si est vide(droite(A))
alors retourner A

sinon retourner Max(droite(A))
fsi
ffonction

fonction SupprimerMax (A :_Arbre Rech)
(* A doit étre non vide ! *)
si est vide(droite(A))
alors
retourner gauche (3)
sinon
retourner cons (A, gauche(3d),
fsi
ffonction

: Arbre Rech

SupprimerMax (droite (A)))

Suppression d'un élément
Realisation (suite)

fonction Supprimer(x : Elément, A : Arbre Rech) : Arbre Rech
si est_vide (A) alors retourner A (* ou <erreur> ¥*)
sinon

si x > contenu(racine(A)) alors

retourner cons (A, gauche (A), Supprimer (x ,droite(3)))
sinon

si x < contenu(racine(A)) alors

retourner cons (A, Supprimer (x, gauche(Z)), droite(a))

sinon // x= contenu (racine (A))
si est _vide(droite (A)) alors retourner gauche (A)
sinon
si est vide (gauche (A)) alors retourner droite(A)
sinon // ni droite (A) est vide ni gauche (3)
retourner cons (Max(gauche (A)), SupprimerMax (gauche (A)), droite(2))
fsi
fsi
fsi
fsi
fsi

ffonction

Arbre Binaire de Recherche
Complexité des Opérations

= On montre que, les opérations de
recherche, insertion et suppression dans un
arbre binaire de recherche contenant n
éléments sont :

= en moyenne en O(log,(n));

= dans le pire des cas en O(h) ;

ou h désigne la hauteur de I'arbre

= SiI'arbre est dégénéré, sa hauteur étant n-1,
ces trois opérations sont en O(n)

= SiI'arbre est équilibré, les opérations sont en
O(log,(n)) (d'ou leur intérét...)

Arbres Maximiers
ou Tas (Heaps)

Notion d'Arbre Maximier (ou
Tas)

Appelé aussi monceau (Heap en anglais)

Fs un arbre binaire arfcut if] qg *a clé dﬁ It:h(:tque noeud
esf superieurée ou egal auX cles’de tous ses fils

L'élément maximum de l'arbre se trouve donc a la racine

Un tas est un arbre binaire partiellement ordonné :
» Les noeuds sur chaque branche sont ordonnés sur celle-ci ;
» Ceux d'un méme niveau ne le sont pas nécessairement.

R SRR SR R R R R e

lmler resp ar inimie

Arbre Maximier (ou Tas)
Exemple

©
(15, Q@
O OB OO
L ® @

\

Type Abstrait Tas

Type Tas
Utilise Booléen, Elément

Opérations
tas_vide : > Tas
est vide : Tas - Booléen
max : Tas - Elément

r : Tas x Elément - Tas
rimerMax : Tas > Tas

partient : Tas x Elément - Booléen

Pféconditions

max (T) est défini ssi est vide(T) = faux

supprimerMax (T) est défini ssi est vide(T) = faux

ajouter(T,e) est défini ssi appartient(T,e) = faux
Axiomes

Soit, T, Tl : Tas, e : Elément

faux

si est_vide(T) = vrai alors appartient(T,e)

appartient (T,max(T)) = vrai

si appartient(T,e) = vrai alors max(T) 2 e

Opérations sur un Tas

® tas vide : > Tas
» Opération d'initialisation; crée un tas vide

® est vide : Tas > Booléen
» V¢rifie si un tas est vide ou non

® max : Tas > Elément
®» Retourne le plus grand élément d'un tas

®» ajouter : Tas x Elément > Tas
» Ajoute un element dans un tas

® supprimerMax : Tas > Tas
» Supprime le plus grand élément d'un tas

® appartient : Tas x Elément -> Booléen
» Vérifie si un élément appartient ou non a un tas

Représentation d'un Tas

» || existe une représentation compacte pour les arbres
binaires parfaits, et donc pour les tas :

= Lareprésentation par tableau, basée sur la numérotation des
noeuds niveau par niveau et de gauche a droite

= Les numéros d'un noceud sont donc les indices dans un
tableau. En outre, ce tableau s'organise de la fagon suivante

» |e noeud racine a pourindice 0 ;

» soit le noeud d’indice i dans le tableau, son fils gauche a pour
indice 2i +1, et son fils droit a pour indice 2(i+1) ;

= siun noeud a unindicei# 0, alors son pére a pour indice

[(i—1)/2]

= On déduit de cette organisation, ou n désigne le nombre
d'éléments du tas, que :

= yn noeud d'indice i est une feuille si 2i+1 2 n

= yun noeud d'indice i a un fis droit si 2(i+1) <n

Repréesentation d'un Tas
Exemple

tas avec sa numérotation hiérarchique Représentation du tas par un tableau

Representation en C d'un
Tas

#define MAX ELEMENTS 200 // taille
maximum du tas

typedef int Element // un élément est
un int

typedef struct {

int taille; // nombre d'éléments dans le
tas

Element tableau[MAX]; // les éléments
du tas

} Tas;

Opérations sur un Tas

»Trois opérations
fondamentales :

» Ajout d'un élément ;
» Suppression du maximum ;
»Recherche du maximum.

Opération d'Ajout

» Principe :

» Créer un nouveau nceud contenant la clé du nouvel
élément:

= |nsérer cette clé le plus a gauche possible sur le dernier
niveau du tas (ou si le dernier niveau est plein, a I'extréme
gauche d'un nouveau niveau). La nouvelle clé est insérée
dans la premiére case non utilisée du tableau ;

= Faire "remonter cette nouvelle clé" a sa place en la
permutant avec la clé de son pére, tant qu'elle est plus
grande que celle de son pere.

Opération d'Ajout
Exemple (1)

= Supposons qu'on veuille insérer la valeur 21 dans le tas représenté ci-
dessous :

® On place la valeur 21 juste a droite de la derniére feuille,

m c'est-a-dire dans la case d'indice 10 dans le tableau.

Opération d'Ajout
Exemple (2)

= On compare 21, la nouvelle donnée insérée, avec la donnée contenue

dans le nceud pere, autrement dit on compare la donnée de la case
d'indice 10 du tableau avec la donnée de la case d'indice = 4.

» Puisque 21 est plus grand que 5, on les échange.

0 1 2 3 < 5 G i bl 9 10

Opération d'Ajout
Exemple (R)

» | e nouvel arbre
binaire obtenu n'est
pas un fas :

valeur 21 du noeud d'indice 4
est plus grande que la valeur 15
de son noeud pere (d'indice = 1)

= Echanger les contenus des
nceuds d'indices respectifs 1 et 4

10

23 | 15 |

b

[=1]

Opération d'Ajout
Exemple (4)

» Puisque 21 est plus
petit que 23 :

» |'gpération d'ajout est terminée

On a bien obtenu un tas.

3|21 7 |n2|isfe|1t]a]s]2]s

Opération d'Ajout
Pseudo-code

fonction ajouter(Tas t, Elément e) : Tas
début

i1 <« t.taille

t.taille « i+l

t. tableau[i] <« e

tant que ((i > 0) et

faire(t:{.tableau[i] > t.tableaul (i-1) div 2]))

21 échanger (t. tableaul[i], t.tableau[(i-1) div

i<« (i-1l) div 2
}
retourner (t)
fin

Opération d'Ajout

p Complexite
La complexite de I'op%ra ion dtajout est en

O(h), ou h est la hauteur du tas :

= On ne fait que remonter un chemin ascendant d'une feville vers la racine (en
s'arrétant éventuellement avant).

= Lg’hauteur d'un tas de taille n est précisément égale a Uogz(n)J

et donc I'ajout demande un temps O(log(n)).

Opération de Suppression du
Maximum

= Principe :

= Remplacer la clé du nceud racine par la clé du nceud situé
le plus a droite du dernier niveau du tas. Ce dernier nceud

est alors supprimé ;

= Réorganiser I'arbre, pour qu'il respecte la définition du tas,
en faisant descendre la clé de I'élément de la racine a sa

bonne place en permutant avec le plus grand des fils.

Opération de Suppression du
Maximum (Exemple) (1)

= Supposons qu'on désire supprimer la valeur

23 contenue dans la racine du tas illustré

par la figure suivante :

Opération de Suppression du
Maximum (Exemple) (2)

=» On commence alors par remplacer le contenu du
nceud racine par celui du dernier nceud du tas :

= Ce dernier noeud est alors supprimé ;
» Ceci est illustré par la figure suivante :

Opération de Suppression du
Maximum (Exemple) (3)

» |'arbre obtenu est parfait mais n'est pas un tas :

» |a clé contenue dans la racine a une valeur plus pelite que
les valeurs des cles de ses fils ;

» Celte clé de valeur 2 est alors échangée avec la plus
grande cle de ses fils, a savoir 15 ;

= ['arbre obtenu est représenté par la figure suivante :

Opération de Suppression du

Maximun | 0

Encore une fois, cet arbre
n'est pas un tas. On le
réorganise pour qu'il
respecte la définition du tas

m Le dernier arbre obtenu est
bien un tas ; il est illustré par
Ia figure suivante :

Opération de Suppression du
Maximum (Pseudo-code) (1)

= Une version qui utilise la procédure Entasser

= La procédure Entasser :

= permet de faire descendre la valeur en t[i] de maniere
que l'arbre de racine en i devienne un tas ;

» suppose que les sous arbres de racines en 2i+1 (fils
gauche du nceud en i) et en 2i+2 (fils droit du nceud en i)
sont des tas.

Opération de Suppression du
Maximum (Pseudo-code) (2)

prgfédure Entasser (Tableau t[0 .. n-1], Entier
1

début
si ((2i+2 == n) ou (t[2i+1l] 2 t[2i+2])) alors
k € 2i+1
sinon
k € 2i+2
fsi
si t[i] < t[k] alors
échanger (t[i], t[k])
si k< ((n div 2)- 1) alors
Entasser(t, k)
fsi
fsi
fin

Opération de Suppression du
Maximum (Pseudo-code) (3)

fonction supprimerMax (t : tas) : tas
(* le tas t est supposé non vide !! ¥*)
début

t.taille ¢« t.taille -1
t.tableau[0] <« t.tableau[t.taille]
Entasser(t, 0)

retourner (t)

fin

Opération de Suppression
du Maximum (Complexité)

= La complexité de la suppression est la méme que
celle de l'insertion, c-a-d O(log(n)) :

» En effet, on ne fait que suivre un chemin descendant
depuis la racine.

Opération de Recherche du
Maximum
(Pseudo-code & Complexité)

= ['opération de recherche du maximum est
immediate dans les tas

» Ell7pfrend un temps constant O(1)

//éonction Max (t : tas) : Elément

(* le tas t est supposé non vide !! *)
début

retourner (t.tableau[0])

fin

Exemples d'Applications des Tas

= Files de priorités (Priority queues) :
= Les tas sont frequemment utilisés pour implémenter des files de priorités.

» A ['opposé des files standard, une file de priorités détruit I'élément de plus
haute (ou plus basse) priorité.

La signification de la "priorité" d'un élément dépend de I'application

= A tout instant, on peut insérer un élément de priorité arbitraire dans une file de
priorités. Si I'application souhaite la destruction de I'élément de plus haute
priorité, on ulilise un arbre maximier.

= Tri par tas (Heapsort):

= Les opérations sur les tas permettent de résoudre un probleme de ftri a I'aide
d’un algorithme appelé tri par tas (heapsort).

» Cet algorithme a la méme complexité temporelle, O(n log(n)), que le ftri
rapide (quicksort). Mais, en pratique, une bonne implémentation de ce
dernier le bat d'un petit facteur constant.

Algorithme du Tri par Tas
(Principe)

» Supposons qu'on veut trier, en ordre croissant, un tableau
T de n éléments.

= Principe:

= |'algorithme du tri par tas commence, en utilisant la fonction
ConstruireTas, par construire un tas dans le tableau a trier T ;

= Ensuite, il prend I'élément maximal du tas, qui se trouve en T[0],
I'échange avec T[n-1], et rétablit la propriété de tas, en utilisant
I'appel de fonction Entasser(T,0) pour le nouveau tableau a n-1
éléments (la case T[n-1] n'est pas considérée) ;

= L'algorithme de tri par tas répete ce processus pour le tas de
taille n-1 jusqu'a la taille 2.

Algorithme du Tri par Tas
(Pseudo-code) (1)

fonction Tri par Tas(Tableau T[O0 .. n-1])
Tableau -

débu
T/& ConstruireTas (T)
our i € (n-1) a
Echanger (T[0], T[i])

n € n-1
Entasser (T,

pas -1 faire

1) Coagiriil
retourner (T) AN AT TG TINAD,

lez)1

fin

Algorithme du Tri par Tas
(Pseudo-code) (2)

fonction ConstruireTas (Tableau T[0 .. n-1]) : Tas

début

ur i € ((n div 2) - 1) a 0 par pas -1 faire
Entasser (T, i)

retourner (T)

Lo feillesg Soelr

¢ ! ?
HCSNASIANITI,

CICTHCTITY.

Exemple (1

ConstruireTas

» [llustration de I'action Construire
tableau d'entiers contenant 10 éléments

}GS sur un

9 10

14

donc des tas a un élement.

®» Remarquer que les nceuds qui portent les
valeurs 9, 10, 14, 8 et 7 sont biens des feuilles, et

ConstruireTas: Exemple (2)

Tri par Tas : Exemple (1)

®» | es figures qui suivent

illustrent I'action du ti R R ® s T
par tas apres ,...EZ(S G % f S G)}D
45 doe
(10)

construction du tas

» Chaque tas est
ontré au début
d'une itération de la ORONONE
boucle J 00

Tri par Tas . Exemple (2)
|

g @
(i) ()
® @ O

Lzie)lezier fierzl i reld

Algorithme du Tri par Tas
Complexité

= On montre que lI'appel a ConstruireTas prend un temps
O(n)

= Chacun des (n-1) appels a Entasser prend un temps
O(log(n))

= Par conséquent, l'algorithme du tri par tas s'exécute
en O(n log(n))

Intfroduction aux Arbres
de Recherche Equilibrés

= (Balanced Search Trees)

Notion d'Arbores
de Recherche Equilibrés

= |a définition des arbres équilibrés impose que la différence entre les
hauteurs des fils gauche et des fils droit de tout noeud ne peut
excéder 1

= || faut/donc maintenir I'équilibre de tous les noeuds au fur et a
re des opérations d'insertion ou de suppression d'un nceud

vand il peut y avoir un déséquilibre trop important entre les deux
ils d'un noeud, il faut recréer un équilibre par :

= des rotations d'arbres ou par éclatement de nceuds (cas des arbres B)

es algorithmes de rééquilibrage sont tres compliqués :

On cite entre autres, quelques exemples d'arbres équilibrés pour les quels les
opérations de recherche, d’insertion et de suppression sont en O(log(n))

Arbres de Recherche Equilibrés
Exemples (1)

»|es arbres AVL :

Introduits par Adelson-Velskii Landis Landis (d'ou le nom d'AVL) dans
les années 60 ;

Un arbre AVL est un arbre binaire de recherche stockant une
information supplémentaire pour chaque noeud : son facteur
d'équilibre ;

Le facteur d'équilibre représente la différence des hauteurs entre son
sous arbre gauche et son sous arbre droit ;

Au fur et a mesure que des noeuds sont insérés ou supprimeés, un
arbre AVL s'ajuste de lui-méme pour que tous ses facteurs
d'équilibres restenta 0, -1 ou 1.

Arbres de Recherche Equilibrés
Exemples (2)

» |es arbres rouges et noirs :

= Des arbres binaires de recherche qui se maintiennent
eux-mémes approximativement équilibrés en colorant

chaque nceud en rouge ou noir ;

= En conirélant cette information de couleur dans chaque
noeud, on garantit qu'aucun chemin ne peut éire deux
fois plus long qu'un autre, de sorte que I'arbre reste

équilibré.

Arbres de Recherche Equilibrés
Exemples (3)

» |es B arbres :

= Arbres de recherche équilibrés qui sont congus pour éfre
efficaces sur d'énormes masses de données stockées sur

mémoires secondaires ;

= Chaque nceud permet de stocker plusieurs clés ;

= Généralement, la taille d'un noeud est optimisée pour
coincider avec la taille d'un bloc (ou page) du périphérique,

en vue d'économiser les coiUteux acces d'entées sorlies.

Cours
Structures de
données

Arbres (Trees)

Pr F.Omary
2019-2020

Objectifs

» Etudier des siructures non
linéaires

Arbres binaires

» Arbres binaires de recherche
®» Arbres maximiers ou Tas

= Arbres équilibrés

Contenu

= |niroduction
= Terminologie

=» Arbres binaires

» Arbres binaires de recherche
» Arbres maximiers ou Tas

= Arbres équilibrés

Arbres (Trees)
Introduction

Notion d'Arbre (Tree)

Les arbres sont les structures de données les plus
imporiantes en informatique

Ce sont'des structures non linéaires qui permettent
d’obtenir des algorithmes plus performants que

lorsqu’on utilise des structures de données linéaires
telles que les listes et les tableaux

= \{|s permeitent une organisation naturelle des
nnées

Notion d'Arbre (Tree)
Exemples

=» Organisation des fichiers dans les systemes
d'exploitation ;

= Organisation des informations dans un systeme de bases
de donnees ;

= Repfésentation de la structure syntaxique des
prggrammes sources dans les compilateurs ;

= Représentation d'une table de matieres ;

Représentation d'un arbre généalogique ;

Arbres (Trees)
Terminologie

Terminologie (1)

» Un arbre est un ensemble d'élements appelés nceuds (ou sommets),
liés par une relation (dite de "parente") induisant une structure
hiérarchique parmi ces noeuds.

, comme ftout élément d'une liste, peut étre de n'importe
quel type.

Terminologie (1) (suite)

D'une maniere plus formelle, une structure
d'arbre de type de base T est :

» 50it la structure vide ;

» soif un noeud de type T, appelé racine, associé d un nombre fini de structures
d'arbre disjointes du type de base T appelées sous arbres

» C'est une définition récursive ; la récursivité est
ung propriete des arbres et des algorithmes
| les manipulent

ne liste est un cas particulier des arbres
arbre dégénéré), ou tout noeud a au plus un
us arbre

llustration & Exemple

» Pour illustrer une structure
d'arbre, on modélise le
plus souvent un nceud
par une information
Inscrite dans un cercle et
les lieris par des traits. o

=» Par convention, on o o ° o

essine les arbres avec la
acine en haut et les
branches dirigées vers le
as.

Terminologie (2}

= La terminologie utilisée dans les structures
d'arbres est empruntée :

= qux arbres généalogiques :

» Descendant;

- eee

et a la botanique :
» Feuille ;

» Branche ;

Terminologie (3)

= Fils (ou enfants) :

» CGG%e r}oeud d'un arbre pointe Vers un ensemtb e éventuellement
vide d'autres noeuds ; ce sont ses fils (ses enfants).

> AR RS TSI RIS ook s of3.le nooud 1

les nceuds d'un qrbre, s?uf un, ont un pere et un seul. Un noceud p
est/pere du nceud n si et seulement si n est'fils de p.

Deux nceuds ayant le méme pere.
» Les noeuds 2, 6 et 7 sont des freres.

Racine :
= Le seul nceud sans pere.
= 5 est la racine de I'arbre précédent.

Terminologie (4)

Feuilles (ou nceuds terminaux, ou nceuds externes) :
= Ce sont des noeuds sans fils.
= Par exemple, 4, 2, 6 et 7.

» Noeud interne :
= Un noeud qui n'est pas terminal.
= Par exemple, 1, 3 et 5.

Degre d'un noeud :
nombre de fils de ce noeud.

S RGOS TR TR 4o o ad A RN 3 ost de

gré d'un arbre (ou arité) :

Ir:Ilg»"%rand degré des noceuds de l'arbre. Un arbre de degré n est dit

Sur I'exemple, I'arbre est un arbre 3-aire.

Terminologie (5)

Taille d'un arbre :
=» Le nombre total des noceuds de l'arbre.
= Surl'exemple, I'arbre est de taille 7.

» Chemin:

= <i<k-
= VIR Ylie e CoRLMnT SRR Bl et R BLGY R = Pere(n+1) pour Tisk

- Ila longueur d'un chemin est égale au nombre de noeuds qu'il contient moins

» Sur I'eéxemple, le chemin qui méne du nceud 5 au noeud 6 est de longueur 2.

n chemin qui commence a la racine et se termine a une feuille.
»/ Par exemple, les chemins (5, 1, 4), (5, 3, 2), (5, 3, 6) et (5, 3, 7).

ncétre :
» Un noeud A est un ancétre d'un noeud B s'il existe un chemin de A vers B.
= Par exemple, les ancétres de 2 sont 2, 3 et 5

Descendant :
= Un noeud A est un descendant d'un noeud B s'il existe un chemin de B vers A.
» Sur I'exemple, 5 admet les 7 noceuds de I'arbre comme descendants.

Terminologie (6)

=» Sous arbre :

» Un sous arbre d'un arbre A est constitué de tous les
descendants d'un nceud quelconque de A.

» Les ensembles de noeuds {3, 2, 6, 7} et {2} forment deux sous
arbres de I'exemple précédent.

r (ou profondeur, ou niveau) d'un noeud :
= Longueur du chemin qui relie la racine a ce nceud.

» La racine est elle méme de hauteur 0, ses fils sont de hauteur
1, et les auires noeuds de hauteur superieure a 1.

auteur d'un arbre :

= Plus grande profondeur des noeuds de I'arbre supposé non
vide, c'est-a-dire h(A) = Max{h(x) ; x noeud de

= L'arbre de I'exemple est de profondeur 2.
= Par convention, un arbre vide a une hauteur de -1.

Terminologie (7)

= Arbre dégénéré ou filiforme :

= Un arbre dont chaque nceud a au plus au fils

Terminologie (7)

» Arbre ordonné :

= Un arbre ou la position respective des sous arbres refléte une relation
d'ordre. En d'autres termes, si un noeud a k fils, il existe un 1er fis, un 2eme
fils, ..., et un keme fils.

» Les' deux arbres de la figure qui suit sont différents si on les regarde
comme des arbres ordonnés, mais identiques si on les regarde comme de
imples arbres.

(A (A)

Terminologie (8)

» Arbre binaire :
= Un arbre ou chaque noeud a au plus deux fils.

= Quand un nceud de cet arbre a un seul fils, on précise s'il s'agit
du fils gauche ou du fils droit.

» Lar'figure qui suit montre un exemple d'arbre binaire dans
léquel les nceuds contiennent des caracteres.

Terminologie (9)

= Arbre binaire complet :

= Arbre binaire dont chaque niveau est rempli.

A A

Terminologie (10)

= Arbre binaire parfait (ou presque complet) :

= Arbre binaire dont chaque niveau est rempli sauf
eventuellement le dernier

ce cas les nceuds terminaux (feuilles) sont groupés
lus a gauche possible.

DA LA R

O OO

Terminologie (11)

= Facteur d'équilibre d'un noeud d'un arbre
binaire :
=» Hauteur du sous arbre partant du fils gauche

du nceud moins la hauteur du sous arbre
partant de son fils droit.

» Arhrn hinAira armiiililhra (au sens des
1

ue noeud,
ilibre est

Arbres Binaires
(Binary Trees)

Déefinition

= Un arbre binaire A esft :

» soit vide (A=()ou A =g),

= 50it de la forme A = <r, A1, A2>, c-O-d composeé :

» d'un noceud r appelé racine contenant un elément

» ot de deux arbres binaires disjoints A1 et A2, appelés
respectivement sous arbre gauche (ou fils gauche) et sous
arbre droit (ou fils droit).

Exemple d'arbre binaire

hauteur
=3

NIVeAU 0 —- -~ oo oo racine . ________________

niveau 1 --———————-—- B -—— .

hiveau? --- (e} - - ——— -

feuille fils gauche

dec

. fils droitde d
niveau 3 ---——--——--- B8 ----——— -

Type Abstrait Arbre_Binaire

racine
gauch
droi

acine
gauche
droite
iomes
Soit,

racine
gauche
droite

Type Arbre Binaire

Utilise Noeud, Elément, Booléen
Opérations
arbre vide : - Arbre Binaire
est_vide : Arbre Binaire - Booléen
cons Noeud x Arbre Binaire x Arbre Binaire > Arbre Binaire

Arbre Binaire -> Noeud

Arbre Binaire > Arbre Binaire
Arbre Binaire > Arbre Binaire
Noeud - Elément

onditions
(A) est-défini-ssi est vide(A) = faux
(A) est-défini-ssi est vide(A) = faux
(A) est-défini-ssi est vide(A) = faux

r : Neud, Al, A2 : Arbre Binaire
(<r, Al, A2>) =r
(<r, Al, A2>) = Al
(<x, Al, A2>) = A2

Opérations sur un Arbre
Binaire (1)

arbre vide : - Arbre Binaire

» opéeration d'initialisation; crée un arbre binaire vide.

ns : Noeud x Arbre_Binaire X Arbre_Binaire ->
rbre_Binaire

» cons(r,G,D) construit un arbre binaire dont le sous arbre
gauche est G et le sous arbre droit est D, et r est le nceud
racine qui contient une donnée de type Eleément.

racine : Arbre Binaire = Noeud

= si A est un arbre binaire non vide alors racine (A) retourne
le nceud racine de A, sinon un message d'erreur.

Opérations sur un Arbre
Binaire (2)

® gauche : Arbre Binaire - Arbre Binaire

= S| A est un arbre binaire non vide alors gauche (A) retourne le sous arbre
gauche de 2, sinon un message d'erreur.

®» dr¥oite : Arbre Binaire -> Arbre Binaire

®» 5| A est un arbre binaire non vide alors droite (&) retourne le sous arbre
droit de 2, sinon un message d'erreur.

®» contenu : Noeud - Elément

» permet d’'associer & chague noeud d'un arbre binaire une information de
type Elément.

Opérations Auxiliaires

Extension Type Arbre Binaire
Utilise Entier, Booléen
Opérations
taille : Arbre Binaire - Entier
hauteur : Arbre Binaire - Entier

feuille : Arbre_Binaire-% Booléen

Noeud, Al, A2 : Arbre Binaire

taille (arbre vide) = 0

taille(<r, Al, A2>) =1 + taille(Al) + taille(A2)
hauteur (arbre vide) = -1

si hauteur (Al) > hauteur (A2) alors hauteur (<r, Al, A2>)
sinon hauteur (<r, Al, A2>) = 1 + hauteur (A2)

si est vide(A) = faux et est vide(gauche(A)) = vrai
et est vide(droit(A)) = vrai
alors feuille(A) = vrai

sinon feuille(A) = faux

l+hauteur (Al)

Parcours d'arbre binaire

= Un parcours d'arbre permet d'accéder a chaque nceud de l'arbre :

= Un traitement (test, affichage, comptage, etc.), dépendant de I'application
considérée, est effectué sur I'information portée par chaque nceud

= Chaque parcours de I'arbre définit un ordre sur les noeuds
On distingyue :

= Les pdrcours de gauche a droite (le fils gauche d'un nceud précede le fils
droif) ;

= |es parcours de droite a gauche (le fils droit d'un nceud précede le fils

ne considerera que les parcours de gauche a droite

distingue aussi deux catégories de parcours d'arbres :
es parcours en profondeur ;
S parcours en Iargeur.

Parcours en profondeur

=» Soit un arbre binaire A =<r, A1, A2>

= On définit trois parcours en profondeur de cet arbre :
» Le parcours préfixe ;
= |e parcours infixe ou symétrique ;

» |e parcours postfixe ou suffixe.

Parcours en profondeur
Parcours préfixe

En abrégé RGD (Racine, Gauche, Droit)

Consiste a effectuer dans l'ordre :
» |e traitement de la racine r;
» Le parcours préfixe du sous arbre gauche Al ;

= le parcours préfixe du sous arbre droit A2.

L'ordre correspondant s'appelle I'ordre préfixe

Parcours en profondeur

Parcours infixe ou symeftrigue
= En abrégé GRD (Gauche, Racine, Droit)

» Consiste a effectuer dans l'ordre :
» |e parcours infixe du sous arbre gauche Al ;
» |e traitement de la racine r:;

» |e parcours infixe du sous arbre droit A2.

= |['ofdre correspondant s'appelle I'ordre infixe

Parcours en profondeur
paArcours postfixe ou suffixe

= En abrégé GDR (Gauche, Droit, Racine)

» Consiste a effectuer dans l'ordre :
» | parcours postfixe du sous arbre gauche Al ;
»/ Le parcours postfixe du sous arbre droit A2 ;

» |e fraitement de la racine r.

L'ordre correspondant s'appelle I'ordre suffixe

Exemple de Parcours en profondeur
(affichage du contenu des nceuds)

rcours préfixe affiche les nceuds dans l'ordre : 1, 2, 4, 5, 3,6, 8, 9, 12, 13, 7, 10, 11
arcours infixe affiche les nceuds dans l'ordre : 4, 2, 5, 1, 8, 6, 12, 9, 13, 3, 10, 7, 11
rcours postfixe affiche les nceuds dans l'ordre : 4, 5, 2, 8, 12, 13, 9, 6, 10, 11, 7, 3, 1

Parcours en largeur

= On explore les noeuds :
= niveau par niveavu,
= de gauche a droite,

= en commenc¢ant par la racine.

=» Exemple:

= Le parcours en largeur de l'arbre de la figure précédente
affiche la séquence d'entiers suivante : 1, 2, 3, 4, 5, 6, 7,
89 10, 11,12, 13

Représentations d'un arbre
binaire

= Représentation par tableauv (par contiguité)

= Représentation par pointeurs (par chainage)

Représentation contigué d'un

arbre binaire
= On caractérise un arbre binaire par:

» sa taille (hombre de nceuds) ;

= saracine (indice de son emplacement dans le tableau de nceuds)

=» yn tableauv de noeuds.

= Chaque noeud contient trois données :

ne information de type Elément ;

deux entiers (indices dans le tableau désignant respectivement
I'emplacement des fils gauche et droit du nceud).

Représentation contigué d'un
arbre binaire

#define NB_MAX NOEUDS 15
typedef int Element;
typedef struct noeud {
Element val;

int fg;

int £d;

} Noeud;

typedef Noeud TabN[Nb MAX NOEUDS] ;
typedef struct arbre ({
int nb_noeuds;

int racine;

TabN les noeuds;

} Arbre Binaire

ole de Représentation contigué

<«
<« .
(a3 O ED.
() @«
< <«
0] 2 0 1 23 4 56 7 89 10 11 12 13 14
& 5 val djajg|b|c fimie| | K
- O O
8 5 8 1411 12] [-1]1]7]8 1
z g 2 o] |14 1] -
= 8 fd 951|110 |-1|-1]3[1] |-

—

re représentation contigué d'un arbre

Repose sur l'ordre hi.érarchi?ue (numérotgtion des
noeuds niveau par niveau ef de gauche a droite)

On rappelle que pour stocker un arbre binaire de
hauteur h, il faut un tableau de 2h*1-1 elements

On organise le tableau de la fagon suivante :
= Le noeud racine a pourindice 0 (en langage C) ;

» Soit le noeud d’indice i dans le tableau, son fils gauche a
pour indice 2i +1, et son fils droit a pour indice 2[i+1).

Représentation idéale pour les arbres binaires
parfaits. En effet, elle ne gaspille pas d'espace.

Autre représentation contigué d'un

/Grbre binaire (Exemples)

(=)
(o) (o)
0 1 2 3 456 7 8 9 10 11 12 13 14 15 16 17 18
(a3 (< (D Talolclal <[Tel] T [Im[T T Itlo]
(o) ()
<« <
° 0 1 2 3 45 6 7
° ﬁa ‘ albilcld{h|k]|I]|f

O 1 2 3 4 7 8 9 10 11 12 13 14

Dal (o] [T Tal TT T [T [Tr]

Repréesentation chainée d'un
arbre binaire

» Chaque noeud a trois champs :

= val (I'élément stocké dans le noeud) ;
» fg (pointeur sur fils gauche) ;

ointeur sur fils droit).

= Un arbre est désigné par un pointeur sur sa
racine

Un arbre vide est représenté par le pointeur
NULL

resentation chainée en C d'un arbre

int Element;

struct noeud *Pnoeud;
struct noeud {

val;

fg;

fd;

ypedef Noeud *Arbre Binaire;

xemple de Représentation chainée
n arbre binaire

Réalisation chainée d'un arbre binaire

Arbre Binaire arbre vide() {
return NULL;

}

Booleen est vide (Arbre Binaire A) ({
return A == NULL ;

}

Pnoeud nouveau noeud (Element e) {

// faire une allocation mémoire et placer 1'élément e

// en cas d'erreur d'allocation, le pointeur renvoyé est
NULL

Pnoeud p = (Pnoeud) malloc(sizeof (Noeud)) ;
if (p !'= NULL) {

p—>val = e;

p—->fg = NULL;

p->fd = NULL;

}

return (p);

}

Arbre_Binaire cons (Noeud *r,
Arbre Binaire G,
Arbre Binaire D)

r->fg = G ;
r->fd = D ;
return r ;

}

oeud racine(Arbre Binaire A) {

// précondition : A est non vide !
if (estvide(dA)) {

printf ("Erreur : Arbre vide !'\n");
exit (1) ;

adlisation chainée d'un arbre binaire

Arbre Binaire gauche (Arbre Binaire A) {
// précondition : A est non vide !

if (estvide(dA)) {

printf ("Erreur : Arbre vide !'\n");

exit(-1);

}

return A->fg ; /* ou bien (*A).fg; */
}

Arbre Binaire droite(Arbre Binaire A) {
// précondition : A est non vide !

if (estvide(dA)) {

printf ("Erreur : Arbre vide !'\n");

exit(-1);

}

return A->fd ; /* ou bien (*Aa) .£fd; */
}

Element contenu (Noeud n) {
return n.val;

}

Exemples d'Applications d'Arbre
Binaire

» Recherche dans un ensemble de valeurs :
®» | es arbres binaires de recherche ;

= Tri d’'un ensemble de valeurs :
» | e/parcours GRD d'un arbre binaire de recherche ;
= Un algorithme de tri efficace ufilisant une structure de fas ;

= Représentation d’une expression arithmétique :
» Un parcours GDR pour avoir une notation postfixée ;

Méthodes de compression :
®» | e codage de Huffman utilisant des arbres binaires ;

» | g compression d'images utilisant des quadtrees (arbres quaternaires,
ou c%c: ve nceud nongfeeUIlfe a exac?e%enf quaf‘e H[s? <

Arbres de Recherche Equilibrés
Exemples (3)

»|es B arbres :

= Arbres de recherche équilibrés qui sont congus pour étre efficaces sur
d'énormes masses de données stockées sur mémoires secondaires ;

= Chaque nceud permet de stocker plusieurs clés ;

énéralement, la taille d'un nceud est optimisée pour coincider avec la
taille d'un bloc (ou page) du périphérique, en vue d'économiser les
colUteux acces d'entées sorties.

Arpbres Binaires de
Recherche

(Binary Search Trees)

Pr F.Omary
2019-2020

Notion d'Arbre binaire de
recherche

» C'est un arbre binaire particulier :

= Permet d'obtenir un algorithme de recherche proche
dans l'esprit de la recherche dichotomique ;

= Pour lequel les opérations d'ajout et de suppression d'un
élément sont aussi efficaces.

» Cet arbre utilise I'existence d'une relation d'ordre sur
les éléments, représentée par une fonction clé, a
valeur entiere.

Arbre binaire de recherche
Definition

= Un arbre binaire de recherche (binary search tree en anglais), en
abrégé ABR, est un arbre binaire tel que pour tout noeud :

= Jes clés de tous les noeuds du sous-arbre gauche sont inférieures ou égales a la
Ié du nceud,

les clés de tous les noeuds du sous-arbre droit sont supérieures a la clé du
noeud.

Chaque nceud d'un arbre binaire de recherche désigne un élément
qui est caractérisé par une clé (prise dans un ensemble totalement
ordonné) et des informations associées a cette clé.

= Dans toute illustration d'un arbre binaire de recherche, seules les clés
sont représentées. On supposera aussi que toute clé identifie de
maniere unique un élément.

Arbre binaire de recherche
Exemple

= | 'arbre de la figure
svivante est un arbre
binaire de recherche

» Cet arbre représente

‘'ensemble : @
E={a,d e g.il q 1}

muni de I'ordre alphabétique

Arbre binaire de recherche
Remarque

= Plusieurs représentations possibles @)
d’'un méme ensemble par un arbre \
_umscmqmawqmn:manw

» En effet, la structure précise de
I'aybre binaire de recherche est
terminée :

= par I'algorithme d’insertion utilisé,

= ef par I'ordre d’arrivée des éléments.

Exemple :

=» |’'arbre binaire de recherche de la
figure qui suit représente aussi

E={a d e g.il q, 1}

Opérations sur les arbres binaires
de recherche

= Le type abstrait arbre binaire de recherche, noté
Arbre Rech, est décrit de la méme maniere que le type

wﬁoﬂmlwwbmm_.ﬂm

On reprend les opérations de base des arbres binaires,
excepté le fait que dans des arbres binaires de
recherche, on suppose l'existence de I'opération clé sur
le type abstrait ELement

= On définit, en tenant compte du critere d'ordre, les
opérations spécifiques de ce type d'arbre concernant :

» |arecherche d'un élément dans I'arbre ;
» ['insertion d'un élément dans I'arbre ;

= |a suppression d'un élément de I'arbre.

Recherche d'un élement

= Principe de l'algorithme :

= On compare la clé de I'élément cherché a la clé de la
racine de l'arbre ;

= Sjla clé est supérieure a la clé de la racine, on effectue
une recherche dans le fils droit ;

» Sila clé estinférieure ala clé de la racine, on effectue
une recherche dans le fils gauche ;

= Larecherche s'arréte quand on ne peut plus continuer
(échec) ou quand la clé de I'élément cherché est égale
a la clé de la racine d'un sous arbre (succes).

Recherche d'un element
Exemple

= |a figure suivante
illustre la
recherche de
I'element de clé
dans un arbre
inaire de

recherche.

» Les fleches
indiquent le
chemin de la
recherche

Recherche d'un element
Spécification

Extension Type Arbre Rech
Utilise Elément, Booléen
Opérations
Rechercher : Elément x Arbre Rech - Booléen

lomes
Soit, x Elément, r : Neud, G, D : Arbre Rech
Rechercher (x, arbre vide) = faux
si clé(x) = clé(contenu(r))
alors Rechercher(x, <r, G, D>) = vrai
si clé(x) < clé(contenu(r))
alors Rechercher (x, <r, G, D>) = Rechercher (x,

G)

si clé(x) > clé(contenu(r))

alors Rechercher (x, <r, G, D>)

D)

Rechercher (x,

Recherche d'un élement
Réalisation en C

Booleen Rechercher (Arbre Rech A, Element e) {

if (est vide(A) == vrai)

return faux; // e n'est pas dans l'arbre
else {

if (e == A->val)

return vrai; // e est dans l'arbre
else if (e < A->val)
// on poursuit la recherche dans le SAG

du
// noeud courant
return Rechercher (A->fg , e);
else
e // on poursuit la recherche dans le SAD

// noeud courant
return Rechercher (A->fd , e);

Recherche d'un element
Autre Spécification

Extension Type Arbre Rech
Utilise Elément
Opérations
Rechercher : Elément x PHUHmemOU.nw Arbre Rech
Axiomes
Soit, x : Elément, r : Neeud, G, D : Arbre Rech

Rechercher (x, arbre vide) = arbre vide
si clé(x) = clé(contenu(r))
alors Rechercher (x, <r, G, D>)

<r, G, D>)

si clé(x) < clé(contenu(r))

alors Rechercher (x, <r, G, D>) = Rechercher (x, G)
si clé(x) > clé(contenu(r))

alors Rechercher(x, <r, G, D>) = Rechercher (x, D)

Ajout d'un élément

= Latechnique d'ajout spécifiée ici est dite "ajout en feuille", car
tout nouvel élément se voit placé sur une feuille de I'arbre

» le principe est simple :

» si|I'arbre initial est vide, le résultat est formé d'un arbre binaire de
recherche réduit a sa racine, celle-ci contenant le nouvel élément ;

= sinon, I'ajout se fait (récursivement) dans le fils gauche ou le fils droit,
suivant que I'élément a ajouter est de clé inférieure ou supérieure a
celle de la racine.

=» Remarque :

7 o\

= sjl'élément a ajouter est déja dans I'arbre, I'hypothése d'unicité des
éléments pour certaines applications fait qu'on ne réalise pas I'ajout

Ajout d'un élément
Exemple
®» | es figures suivantes illustrent I'ajout successif

dee,i,q,t d, g, qetldans un arbre binaire
de recherche, initialement vide

Ajout "en feuille" d'un élement
Spécification

Extension Type Arbre Rech
Utilise Elément
Opérations
jouter feuille : Elément x Arbre Rech -> Arbre Rech
iomes
Soit, x : Elément, r : Neeud, G, D : Arbre Rech

Ajouter feuille(x, arbre vide) = <x, arbre vide,
arbre vide>

si clé(x) £ clé(contenu(r))
alors

Ajouter feuille(x, <r, G, D>) = <r,
Ajouter feuille(x, G), D>

sinon

Ajouter feuille(x, <r, G, D>) = <r, G,
Ajouter Ffeuille(x, D)>

Ajout "en feuille" d'un élement
Realisation

fonction Ajouter feuille(x : Elément, A : Arbre Rech)
Arbre Reéech I -

si est vide(A) alors
Pnoeud r = nouveau noeud (x)

est vide(r) alors <erreur>

etourner cons(r, arbre vide(), arbre vide())

non

si x > contenu(racine(A)) alors

retourner cons (A, gauche(A), Ajouter feuille(x, droite(a)))
sinon

Si x< contenu(racine(A) alors

retourner cons (A, Ajouter feuille(x, gauche(A)) ,droite(ad))
fsi

fsi

fsi

ffonction

Ajout "en feuille" d'un élement
Realisation en C

Arbre Rech Ajouter feuille (Element x, Arbre Rech A) ({
if (est_vide(a)) {
Pnoeud r = nouveau_noeud (x) ;
(r == NULL) {
printf ("Erreur : Pas assez de mémoire !\n");
exit(-1);
}
return cons(r, arbre vide(), arbre vide())
}
else
if (x > contenu(racine(A)))
return cons (A, gauche (A), Ajouter feuille(x, droite(ad)));
else
if (x < contenu (racine(A))// pas d’ajout lorsque x=contenu (A)

return cons (A, Ajouter feuille(x, gauche(A)), droite(d));

Suppression d'un élement

» La suppression est délicate :

= || faut réorganiser I'arbre pour qu'il vérifie la propriété d'un arbre
binaire de recherche

»/La suppression commence par la recherche du nceud qui
porte I'élément a supprimer. Ensvite, il y a trois cas a
considérer, selon le nombre de fils du noeud a supprimer :

= sjle noeud est sans fils (une feuille), la suppression est immédiate
= sile noeud a un seul fils, on le remplace par ce fils ;

= sjle noeud a deux fils (cas général), on choisit de remplacer ce
noeud, soit par le plus grand élément de son sous arbre gauche
(son prédécesseur), soit par le plus petit élément de son sous
arbre droit (son successeur).

Suppression d'un élément

Exemple 1
» La figure qui suit illustre la suppression de la
feville qui porte la clé 13

Suppression d'un élément
Exemple 2

= La figure qui suit illustre la suppression du
noeud qui porte la clé 16

®» Ce noceud n'a qu'un seul fils ; le sous arbre de
racine portant la clé 18

= Ce sous arbre devient fils gauche du nceud
qui porte la clé 20

Suppression d'un élément
Exemple 3

= La figure qui suit illustre le cas d'un noceud a deux fils.

» Lag clé 15 a supprimer se frouve a la racine de I'arbre. La racine
a/deux fils ; on choisit de remplacer sa cle par la cle de son
redecesseur.

»/ Ainsi, Ig clé 14 est mise a la racine de I'arbre. On est alors
ramene a la suppression du noeud du predecesseur.

Comme le w&ammmmmmcq est le nceud le plus a droite du sous
arbre gauche, il n'a pas de fils droit, donc il a zero ou un fils, et
sa suppression est couverte par les deux premiers cas.

Suppression d'un élément
Cas genéral

= On choisit ici de remplacer le noeud a supprimer par son
prédécesseur (le noeud le plus a droite de son sous arbre gauche)

= On a bésoin de deux opérations supplémentaires :

= yne opération Max qui retourne I'élément de clé maximale dans un
arbre binaire de recherche ;

une opération SupprimerMax qui retourne I'arbre privé de son plus
grand élément.

23 Suppression d'un élement: Spécificatior

kxtension Type Arbre Rech
Utilise Elément

Opérations
Max : Arbre Rech - Elément
SupprimerMax : Arbre Rech - Arbre Rech
Supprimer : Elément x Arbre Rech - Arbre Rech
Pré-conditions
Max (A) est défini ssi est_vide(A) = faux
SupprimerMax (A) est défini ssi est_vide(A) = faux
Axiomes
Soit, ¥ : Elément, r : Neud, G, D : Arbre Rech
si est vide(D) = vrai alors Max(<r, G, D>) = r
singn Max(<r, G, D>) = Max (D)
si/est vide (D) = vrai alors SupprimerMax(<r, G, D>) = G
sinon SupprimerMax(<r, G, D>) = <r, G, SupprimerMax (D)>
Supprimer (x, arbre vide) = arbre vide
si clé(x) = clé(contenu(r)) et est vide(D) = vrai
alors Supprimer(x, <r, G, D>) = G
sinon si clé(x) = clé(contenu(r)) et est vide(G) = vrai
alors Supprimer(x, <r, arbre vide, D>) =D
sinon si clé(x) = clé(contenu(r))

alors Supprimer(x, <r, G, D>) = <Max(G) ,SupprimerMax(G), D>
si clé(x) < clé(contenu(r))

alors Supprimer (x, <r, G, D>) <r, Supprimer (x, G), D>
si clé(x) > clé(contenu(r))

alors Supprimer(x, <r, G, D>) = <r, G, Supprimer(x, D)>

Suppression d'un élément
Réalisation

fonction Max (A : Arbre Rech) : Pnoeud

(* A doit étre non vide ! ¥*)
si est_vide(droite(A))
alors retourner A

sinon retourner Max(droite(A))
fsi
ffonction

fonction SupprimerMax (A Arbre Rech)
(* A doit étre non vide ! ¥*)
si est_vide(droite(A))
alors

retourner gauche (A)

sinon

retourner cons (A, gauche (A) , SupprimerMax (droite(a)))
fsi
ffonction

PHUHmemow

Suppression d'un élément
Realisation (suite)

fonction Supprimer(x : Elément, A : Arbre Rech) : Arbre Rech
si est vide(A) alors retourner A (* ou <erreur> *)
sinon

si x > contenu(racine(A)) alors

retourner cons (A, gauche(A), Supprimer (x ,droite(A)))
sinon

si x < contenu(racine(A)) alors

retourner cons (A, Supprimer (x, gauche(A)), droite(a))

sinon // x= contenu (racine(3))
si est _vide(droite(A)) alors retourner gauche(A)
sinon
si est vide(gauche(A)) alors retourner droite(A)
sinon // ni droite (A) est vide ni gauche (A)
retourner cons (Max(gauche (A)), SupprimerMax (gauche (A)), droite(A))
fsi
fsi
fsi
fsi
fsi

ffonction

Arbre Binaire de Recherche
Complexité des Opérations

= On montre que, les opérations de
recherche, insertion et suppression dans un
arbre binaire de recherche contenant n
éléments sont :

= en moyenne en O(log,(n));

» dans le pire des cas en O(h) ;

ou h désigne la hauteur de I'arbre

= SiI'arbre est dégénéré, sa hauteur étant n-1,
ces trois opérations sont en O(n)

= Si I'arbre est équilibré, les opérations sont en
O(log,(n)) (d'ou leur intérét...)

Arbres Maximiers
ou Tas (Heaps)

Notion d'Arbre Maximier (ou
Tas)

Appelé aussi monceau (Heap en anglais)

Qw.& un arbre binaire Q:Q: *m_ qye lg cléd _osoo_cm noeud
est superieuré ou m@Q_ auXx cles'de tous ses Tils

L'élement maximum de l'arbre se frouve donc a la racine

Rappel

» Pour ¢: Q:omm E:m:m arfait, tous les =_<mc x sont entierement
remplis saut.eveniuellement le der _mqm ans ow_oom euilles
U dernhier niveau sonfregroupees le plu$ a gauche possible

Un tas est un arbre binaire partiellement ordonné :
= Les noeuds sur chaque branche sont ordonnés sur celle-ci ;
= Ceux d'un méme niveau ne le sont pas nécessairement.

IAle: SO S PR e

Arbre Maximier (ou Tas)
Exemple

Type Abstrait Tas

Type Tas

Utilise Booléen, Elément

Opérations
tas_vide : > Tas
est _vide : Tas = Booléen
max : Tas - Elément

r : Tas x Elément = Tas

rimerMax : Tas = Tas

partient : Tas x Elément - Booléen

Préconditions

max (T) est défini ssi est vide(T) = faux

supprimerMax (T) est défini ssi est vide(T) = faux

ajouter (T,e) est défini ssi appartient(T,e) = faux
Axiomes

Soit, T, Tl : Tas, e : Elément

si est vide(T) = vrai alors appartient(T,e) = faux

appartient (T,max(T)) = vrai

si appartient(T,e) = vrai alors max(T) 2 e

Opérations sur un Tas

™ tas vide : = Tas
» Opération d'initialisation; crée un tas vide

®» est vide : Tas > Booléen
» Vérifie si un tas est vide ou non

®» max : Tas - Elément
®» Refourne le plus grand élément d'un tas

®» ajouter : Tas x Elément > Tas
» Ajoute un élément dans un tas

®» supprimerMax : Tas > Tas
» Supprime le plus grand élément d'un tas

® appartient : Tas x Elément - Booléen
» Vérifie si un élément appartient ou non a un tas

Représentation d'un Tas

» || existe une représentation compacte pour les arbres
binaires parfaits, et donc pour les tas :

= La représentation par tableau, basée sur la numérotation des
noeuds niveau par niveau et de gauche a droite

» Les numéros d'un nceud sont donc les indices dans un
tableau. En outre, ce tableau s'organise de la fagon suivante

= |e noeud racine a pourindice 0 ;

= soit le noeud d’indice i dans le tableau, son fils gauche a pour
indice 2i +1, et son fils droit a pour indice 2(i+1) ;

= sjun noeud a unindice i # 0, alors son pére a pour indice

|G—1)/2 |

= On déduit de cette organisation, ou n désigne le nombre
d'éléments du tas, que :

=» yn noeud d'indice i est une feuille si 2i+1 2 n

= un nceud d'indice i a un fis droit si 2(i+1) <n

Représentation d'un Tas
Exemple

e
—
=1
w
1SN
]

tas avec sa numérotation hiérarchique Représentation du tas par un tableau

Représentation en C d'un
Tas

#define MAX ELEMENTS 200 // taille
maximum du tas

typedef int Element // un élément est
un int

typedef struct {

int taille; // nombre d'éléments dans le
tas

Element tableau[MAX]; // les éléments
du tas

} Tas;

Opérations sur un Tas

»Trois opérations
fondamentales :

» Ajout d'un élément ;

»Suppression du maximum ;
»Recherche du maximum.

Opération d'Ajout

® Principe :

» Créer un nouveau nceud contenant la clé du nouvel
élément :

= |nsérer cefte clé le plus a gauche possible sur le dernier
niveau du tas (ou si le dernier niveau est plein, a I'extréme
gauche d'un nouveau niveau). La nouvelle clé est insérée
dans la premiere case non utilisée du tableau ;

by

= Faire "remonter cette nouvelle clé" a sa place en la
permutant avec la clé de son pere, tant qu'elle est plus
grande que celle de son peére.

Opération d'Ajout
Exemple (1)
= Supposons qu'on veuille insérer la valeur 21 dans le tas représenté ci-

dessous :
= On place la valeur 21 juste a droite de la derniere feuille,

m c'est-a-dire dans la case d'indice 10 dans le tableau.

i}

o)
=1
Vs

~1

-

b
by |
o

o

Opération d'Ajout
Exemple (2)

= On compare 21, la nouvelle donnée insérée, avec la donnée contenue

dans le nceud pére, autrement dit on compare la donnée de la case
d'indice 10 du tableau avec la donnée de la case d'indice = 4.

» Puisque 21 est plus grand que 5, on les échange.

Q
—_
Rl
w
o
]
=
-1
ye
]
[u—y
=)

Opération d'Ajout

Exemple (R)

®» e nouvel arbre
binaire obtenu n'est
pas un tas :

- valeur 21 du nceud d'indice 4
est plus grande que la valeur 15
de son nceud pere (d'indice = 1)

» Echanger les contenus des
noeuds d'indices respectifs 1 et 4

0

23

te

o1

Opération d'Ajout
Exemple (4)

» Puisque 21 est plus
petit que 23:

3
» L'gpération d'ajout est terminée @

On a bien obtenu un tas.

Opération d'Ajout
Pseudo-code

fonction ajouter(Tas t, Elément e) : Tas
début

i« t.taille

t.taille « i+l

t. tableau[i] <« e

tant que ((i > 0) et

mNWHMnﬁnmvhmmcH&H > t.tableau[(i-1) div 2]))

21 échanger (t. tableaul[i], t.tableaul (i-1) div

i « (i-1) div 2
}

retourner (t)
fin

Opération d'Ajout

, Complexité
_.Qnoq:n_mx:mn_m _.onwamuo: Qﬁa_.o.: mﬂm:

O(h), ou h est la hauteur du tas :

= On ne fait que remonter un chemin ascendant d'une feuille vers la racine (en
s'arrétant éventuellement avant).

= Lg’hauteur d'un tas de taille n est précisément égale a _._omN@v._

et donc 'ajout demande un temps O(log(n)).

Opération de Suppression du
Maximum

= Principe :

= Remplacer la clé du nceud racine par la clé du nceud situé
le plus a droite du dernier niveau du tas. Ce dernier nceud

est alors supprimé ;

= Réorganiser I'arbre, pour qu'il respecte la définition du tas,
en faisant descendre la clé de I'élément de la racine a sa

bonne place en permutant avec le plus grand des fils.

Opération de Suppression du
Maximum (Exemple) (1)

V 4

®» Supposons qu'on desire supprimer la valeur
23 contenue dans la racine du tas illustré
par la figure suivante :

Opération de Suppression du
Maximum (Exemple) (2)

®» On commence alors par remplacer le contenu du
nceud racine par celui du dernier noeud du tas :

= Ce dernier nceud est alors supprimé ;
» Ceci estillustré par la figure suivante :

Opération de Suppression du
Maximum (Exemple) (3)

» |'arbre obtenu est parfait mais n'est pas un tas :

= |a clé contenue dans la racine a une valeur plus petite que
les valeurs des cles de ses fils ;

=» Celte clé de valeur 2 est alors échangée avec la plus
grande cle de ses fils, a savoir 15 ;

= |'arbre obtenu est représenté par la figure suivante :

46 Opération de Suppression du

Maximun | 0

Encore une fois, cet arbre
n'est pas un tas. On le
réorganise pour qu'il
respecte la définition du tas

m Le dernier arbre obtenu est
bien un tas ; il est illustré par
la figure suivante :

Opération de Suppression du
Maximum (Pseudo-code) (1)

= Une version qui utilise la procédure Entasser

= La procédure Entasser :

= permet de faire descendre la valeur en t[i] de maniere
que l'arbre de racine en i devienne un tas ;

» suppose que les sous arbres de racines en 2i+1 (fils
gauche du nceud en i) et en 2i+2 (fils droit du nceud en i)
sont des tas.

Opération de Suppression du
Maximum (Pseudo-code) (2}

wWMWmQaHm Entasser (Tableau t[0 .. n-1], Entier
début
si ((2i+2 == n) ou (t[2i+1l] 2 t[2i+2])) alors
k € 2i+1
sinon
k € 2i+2
fsi

si t[i] < t[k] alors
échanger (t[i], t[k])
si k< ((n div 2)- 1) alors
Entasser (t, k)
fsi
fsi
fin

Opération de Suppression du
Maximum (Pseudo-code) (3)

fonction supprimerMax (t : tas) : tas
(* le tas t est supposé non vide !! *)
début

t.taille « t.taille -1
t.tableau[0] « t.tableau[t.taille]
Entasser (t, 0)

retourner (t)

fin

Opération de Suppression
du Maximum (Complexité)

= La complexité de la suppression est la méme que
celle de l'insertion, c-a-d O(log(n)) :

» En effet, on ne fait que suivre un chemin descendant
depuis la racine.

Opération de Recherche du
Maximum
(Pseudo-code & Complexité)

= ['opération de recherche du maximum est
immediate dans les tas

» m=W§m=Q un temps constant O(1)

fonction Max (t : tas) : Elément
(* le tas t est supposé non vide !! *)
début

retourner (t.tableau[0])
fin

Exemples d'Applications des Tas

= Files de priorités (Priority queues) :
» Les tas sont frequemment ulilisés pour implémenter des files de priorités.

= A 'opposé des files standard, une file de priorités détruit I'élément de plus
haute (ou plus basse) priorité.

La signification de la "priorité" d'un élément dépend de I'application

= A tout instant, on peut insérer un élément de priorité arbitraire dans une file de
priorités. Si I'application souhaite la destruction de I'élément de plus haute
priorité, on utilise un arbre maximier.

= Tri par tas (Heapsort):

= Les opérations sur les tas permettent de résoudre un probleme de tri a I'aide
d’un algorithme appelé tri par tas (heapsort).

» Cet algorithme a la méme complexité temporelle, O(n log(n)), que le tri
rapide (quicksort). Mais, en pratique, une bonne implémentation de ce
dernier le bat d'un petit facteur constant.

Algorithme du Tri par Tas
(Principe)

» Supposons qu'on veut trier, en ordre croissant, un tableau
T de n éléments.

= Principe :

» |'algorithme du tri par tas commence, en utilisant la fonction
ConstruireTas, par construire un tas dans le tableau a trier T ;

= Ensuite, il prend I'élément maximal du tas, qui se trouve en T[0],
I'échange avec T[n-1], et rétablit la propriété de tas, en utilisant
I'appel de fonction Entasser(T,0) pour le nouveau tableau a n-1
éléments (la case T[n-1] n'est pas considérée) ;

= L'algorithme de tri par tas répete ce processus pour le tas de
taille n-1 jusqu'a la taille 2.

Algorithme du Tri par Tas
(Pseudo-code) (1)

fonction Tri par Tas(Tableau T[O0 .. n-1])
Tableau -

débu
T/€ ConstruireTas (T)
our i € (n-1) a
Echanger (T[0], TI[i])

n € n-1
Entasser (T,

pas -1 faire

i) _ e)
Consiruire Ias Prod Ui unINAS

retourner (T) AT unNADlcausds
fin

rAassSer Sert-avaranuricnaiaernadcila

I} \\ \ \
PLOPIICICNACNASNIOULN AT CNA A ACITICNCIIN

Algorithme du Tri par Tas
(Pseudo-code) (2}

fonction ConstruireTas (Tableau T[0 .. n-1]) : Tas

début

pgur i € ((n div 2) - 1) a 0 par pas -1 faire
Entasser (T, i)

retourner (T)

Leg iailles Sejeir

WESNAS AT

ConstruireTas
Exemple (1

» [llustration de I'actlion Oosm*ac.-mrm suUr un
tableau d'entiers contenant 10 éléments

T 4 | 3 2 16 9 10 14 8 7

®» Remarquer que les nceuds qui portent les
valeurs 9, 10, 14, 8 et 7 sont biens des feuilles, et
donc des tas a un élément.

ConstruireTas: Exemple (2}

Tri par Tas : Exemple (1)

» | es figures qui suivent
illustrent I'action du ftri
par tas apres

Tri par Tas : Exemple (2)

|
() () @

1 ® @ o
0000 ©000
olcle OICIo

o 1 2 3 4 5 6 7 8 9

Yableamn il e

Algorithme du Tri par Tas
Complexité

= On montre que I'appel a ConstruireTas prend un temps
O(n)

= Chacun des (n-1) appels a Entasser prend un temps
O(log(n))

= Par conséquent, l'algorithme du tri par tas s'exécute
en O(n log(n))

INnfroduction aux Arbres
de Recherche Equilibres

= (Balanced Search Trees)

Notion d'Arbores
de Recherche Equilibrés

= |a définition des arbres équilibrés impose que la différence entre les
hauteurs des fils gauche et des fils droit de tout noeud ne peut
excéder 1

= || faut/donc maintenir I'équilibre de tous les noeuds au fur et a
re des opérations d'insertion ou de suppression d'vn nceud

vand il peut y avoir un déséquilibre trop important entre les deux
ils d'un noeud, il faut recréer un équilibre par :

= des rolations d'arbres ou par éclatement de noeuds (cas des arbres B)

es algorithmes de rééquilibrage sont tres compliqués :

On cite entre autres, quelques exemples d'arbres équilibrés pour les quels les
opérations de recherche, d’insertion et de suppression sont en O(log(n))

Arbres de Recherche Equilibrés
Exemples (1)

»|es arbres AVL :

= [ntroduits par Adelson-Velskii Landis Landis (d'ou le nom d'AVL) dans
les années 60 ;

= Un arbre AVL est un arbre binaire de recherche stockant une
information supplémentaire pour chaque noeud : son facteur
d'équilibre ;

» |e facteur d'équilibre représente la différence des hauteurs entre son
sous arbre gauche et son sous arbre droit ;

» Au fur et a mesure que des nceuds sont insérés ou supprimeés, un
arbre AVL s'ajuste de lui-méme pour que tous ses facteurs
d'équilibres restent a 0, -1 ou 1.

Arbres de Recherche Equilibrés
Exemples (2)

= Les arbres rouges ef noirs :

= Des arbres binaires de recherche qui se maintiennent
eux-mémes approximativement équilibrés en colorant

chaque nceud en rouge ou noir ;

= En contrélant cette information de couleur dans chaque
noeud, on garantit qu’aucun chemin ne peut éire deux
fois plus long qu'un autre, de sorte que I'arbre reste

eéquilibré.

Arbres de Recherche Equilibrés
Exemples (3)

» |es B arbres :

= Arbres de recherche équilibrés qui sont congus pour étre
efficaces sur d'énormes masses de données stockées sur

mémoires secondaires ;

» Chaque noceud permet de stocker plusieurs clés ;

» Généralement, la taille d'un nceud est optimisée pour
coincider avec la taille d'un bloc (ou page) du périphérique,

en vue d'économiser les colteux acces d'entées sorlies.

Les Structures de Donnees

Les arbres AVL

Pr F.Omary
2019-2020

Intfroduction

= Pourquoil

®» | es arbres equilibrés rendent les recherches plus efficaces

= Trouver comment maintenir un arbre relativement equilibré

au fur et a mesure des insertions (et suppression)

=» Solution :

® | es arbres AVL (Adelson-Velskii et Landis) : pour tout
sommet, les hauteurs des sous- arbres gauche et

droit difféerent d’au plus 1.

= RMQ : un arbre AVL N'EST PAS un arbre équilibré

Exemple d'arbre AVL

reambule : Rotation droite

A A

Rotation droite autour de S1, notée rd(S1)

reambule : Rotation gauche

Insertion dans un arbre AVL

®» | e principe de l'insertion dans un arbre AVL
est le suivant :

X insérer le nouveau noeud au bon endroit

u fur et a mesure de la remontée dans l'arbre (du
noeud pere du nceud insére a la racine), réequilibrer
I'arbre en effectuant les rotations appropriees

Choix des rotations

» Notations

» Soient N le noeud courant, Ng son fils gauche et Nd sont fils droit.

» Soient Ngg le fils gauche de Ng et Ngd le fils droit de Ng
Soient Ndg le fils gauche de Nd et Ndd le fils droit de Nd

= Soift h(x) la hauteur de I'arbre de racine le noeud x.

» Algorithme

» Sj |h(Ng)-h(Nd)| <= 1, ne rien faire

= Sinon

» Sij h(Ng)-h(Nd) =2 cas (1)
» Sih(Ngg) > h(Ngd) Alors rd(N) cas (1a)
» Sinon rg(Ng) puis rd(N) cas (1b)

= Sinon (h(Ng)-h(Nd) =-2) cas (2)
» Si h(Ndd) > h(Ndg) Alors rg(N) cas (2a)
» Sinon rd(Nd) puis rg(N) cas (2b)

» Fsi

» [sj

Exemple d'ajout : 49

Exemple d'ajout : 46

Graphes

Objectifs

* Etudier une nouvelle structure de données
non linéaire, plus générale, ou chaque
élément peut posséder plusieurs
prédécesseurs et plusieurs successeurs :

— Terminologie

— Type Abstrait de Données Graphe
— Représentation et implémentation
— Parcours d’un graphe

Notion de Graphes

Les graphes sont I'une des structures de données les plus utilisées en
informatique :
— Les algorithmes permettant de les manipuler constituent les fondements de
I'informatique
-1l exi;te des centaines de problemes informatiques qui sont définis en termes de
graphes

Les graphes servent généralement a modéliser des probléemes en termes de
relations ou de connexions entre des objets

Les objets sont représentés par des sommets
Les relations ou connexions sont représentées par des arcs reliant les sommets

Les graphes peuvent étre orientés (les arcs vont d’un sommet a 'autre dans un
sens précis) ou non orientés (les arcs n’ont pas de sens)

Exemples

Dans une carte de liaisons aériennes, les villes sont des sommets
du graphe et I'existence d’une liaison aérienne entre deux villes
est la relation du graphe

Dans le graphe du flot de contréle d’un programme, les boites
(instructions ou tests) sont les sommets, et les fleches indiquent
les enchainements possibles entre celles-ci

Dans une entreprise ol certaines taches doivent étre exécutées
avant d’autres, on peut schématiser 'ordonnancement des
taches par un graphe ol les sommets sont les taches et ou il
existe un arc entre deux tiches t; et t; seulement si t; doit étre
terminée juste avant d’exécuter t;

Graphe Orienté (Définitions)

Un graphe orienté G est un couple (S,A), ou :

— S est un ensemble fini d’éléments appelés sommets (vertex
en anglais, au pluriel vertices)

— A est un ensemble fini de paires (ordonnées) de sommets,
appelées arcs (arc en anglais)

On écrit G = (S,A) pour représenter le graphe
Un graphe orienté est dit complet si quels que soient

deux sommets distincts, il existe un arc les reliant dans
un sens ou dans l'autre

Graphe Orienté (Exemple 1)

Soient § ={1,2,3,4,5,6} et
A={(1;2),(1;3),(2;3),(3;1),(3;4),(4;3),(5;6),(6;5),(6,6)}
(S, A) est un graphe orienté qui peut étre représenté
par :

ol > /O

'\l_,f"“ [N [\'.

.\“ \\ J/ | |
i\\ ll"".‘ ‘.-"f N ".‘

T T \

ROS) O

e e L/

Graphe Orienté (Exemple 2)

* Soit le graphe orienté G=(S,A) ou
-S5={1,2,3,4,5,6,7,8,9} et
— A={(1,4);(2,3);(2,8);(3,6);(3,7);(4,3);(5,2);(7,1);(8,3);(8,8)}

i}
G 3
- '
- \L}
e ™,
4 AN 8 o
™ -

LI

Graphe Orienté (Terminologie) (1)

* Soit G=(S, A) un graphe orienté. Si X = (a,b)€A,
on dit que :
— g est adjacenta b
— g est un prédécesseur de b.
— b est un successeur de a.
— a est l'origine de 'arc X.
— b est I'extrémité de I'arc X.
— X est incident au sommet a et au sommet b.
— De plus, si a = b, on dit que X est une boucle.

Graphe Orienté (Terminologie) (2)

* On appelle chemin d’un graphe orienté G une suite (finie) d’arcs
de G telle que I'extrémité d’un arc est toujours confondue avec
I'origine du suivant.

* Lorigine du premier arc de la suite est appelé origine du chemin.

* Lextrémité du dernier arc de la suite est appelé extrémité du
chemin

* Lalongueur d’'un chemin est le nombre d’arcs qui le composent

* Un chemin est dit simple si tous les arcs qui le composent sont
différents.

* Un chemin est dit élémentaire si tous les sommets qui le
composent sont différents.

* On appelle circuit tout chemin dont l'origine et I'extrémité sont
confondues.

Exemple

* Enreprenant 'exemple 1, on a:
—{(1,3);(3,1);(1,2)} est un chemin simple non élémentaire d’origine
1 et d’extrémité 2.

—{(1,2);(2,3);(3,4)} est un chemin simple et élémentaire. Ce chemin
est de longueur 3

—{(2,3);(3,4);(4,3);(3,1);(1,2)} est un circuit simple et non
élémentaire

— {(6,6); T *
yl" i — \J "u
Vi .
2 o 'd &
e — \%/

Graphe Orienté (Terminologie) (3)

* Soient u et vdeux sommets d’un graphe orienté. On dit
que :
— v est un descendant de u s’il existe un chemin allantuav
— v est un ascendant de u s’il existe un chemin allant v a u.

— Un sommet v tel qu’il n’existe aucun chemin de u a v dans G est
dit inaccessible (ou non atteignable) a partir de u.

— Un sommet est dit isolé s’il n’est accessible par aucun autre
sommet du graphe

* |l est a noter que les sommets d’un circuit sont tous
ascendants et descendants les uns des autres

Exemple

* Enreprenant 'exemple 2 :
— On considere le chemin {(5,2);(2,8);(8,3);(3,6)}.
— Le sommet 6 est descendant du sommet 5 mais l'inverse
n’est pas vrai.
Le sommet 5 est ascendant du sommet 6
Le sommet 2 est inaccessible depuis le sommet 3.
Le sommet 9 est isolé du reste du graphe

-

< 3
—— N [
L-— “\\b{ °

o

r—

1

Graphe Non Orienté (Définitions)

Un graphe (simple) non orienté G est un couple (S,A), ou

— S est un ensemble fini de sommets.

— A est un ensemble fini de paires (non ordonnées) de sommets
de S, appelées arétes (edge en anglais)

On écrit G = (S,A) pour représenter le graphe
Un graphe non orienté est dit complet si quels que

soient deux sommets distincts, il existe une aréte les
reliant

Graphe Non Orienté (Exemple 1)
* Soient $={1,2,3,4,5,6} et
A={(1;2),(1;3),(2;3),(3;4),(5;6)}

* (S, A) est un graphe non orienté qui peut étre
représenté par :

Graphe Non Orienté (Exemple 2)

m Soit le graphe non orienté G=(S,A) ou
S ={123456789) ct
= A={(LA)(1,7)5(2,3)5(2,5)3(2,8);3,:4);:3,6); (3,7)3(3,8)3(8,8) }

Graphe Non Orienté (Définitions)

* Soit G = (S, A) un graphe non orienté.
— Si X ={a,b}eA, on dit que a et b sont voisins.

— On appelle chaine de G une suite (finie) d’arétes de G telle
gue 2 arétes consécutives dans la suite ont un sommet
commun.

— Un cycle est une chaine dont 'origine et I'extrémité sont
confondues.

— Une chaine est dite élémentaire si elle ne contient pas
plusieurs fois le méme sommet

— La longueur d’une chaine est le nombre d’arétes qui la
composent.

Graphe Connexe/Fortement Connexe

* Un graphe non orienté G= (S, A) est dit
connexe si et seulement si, pour toute paire
de sommets distincts {x,y} de S, il existe une
chaine entre les sommets x et y.

* Un graphe orienté G= (S, A) est dit fortement
connexe si et seulement si, pour toute paire
de sommets distincts {x,y} de S, il existe un
chemin de xa y et un chemin de y a x.

Notion de Graphe Valué

* Dans de nombreuses applications, il est naturel d’associer une
valeur (on dit aussi un colt ou un poids) aux arcs ou aux
arétes du graphe.

* Un graphe valué (ou pondéré), orienté (resp. non orienté) est
un triplet (S,A,C) ol S est un ensemble fini de sommets, A un
ensemble fini d’arcs (resp. d’arétes) et C une fonction de A a
valeurs réelles appelée fonction colit

* Ainsi, on pourra traiter des problémes tels que la recherche
du plus court chemin entre deux sommets d’un graphe

Exemples de Graphes Valués

* Exemple de graphe orienté valué :

Distance et Diameétre

* La distance entre deux sommets d’un graphe
est la plus petite longueur des chaines, ou des
chemins, reliant ces deux sommets.

* Le diametre d’un graphe est la plus longue
des distances entre deux sommets.

10

Notion de Degré

Dans un graphe orienté, si X=(u, v) est un arc, on dit que X est incident a u
vers I'extérieur. Le nombre d’arcs ayant leur extrémité initiale en u, se
note d°*(u) et s’appelle le demi-degré extérieur de u. c’est le nombre de
successeurs de u.

On définit de méme les notions d’arc incident vers I'intérieur et de demi-
degré intérieur qui est noté d°(u). le nombre de prédécesseurs de u.

Dans un graphe orienté (resp. non orienté), on appelle degré d’un
sommet, et on note d°(u), le nombre d’arcs (resp. d’arétes) dont u est une
extrémité.

Dans le cas d’un graphe orienté, on a d°(u) = d°*(u) + d°(u), pour tout
sommet u. C’est le nombre de sommets adjacents a u.

Un sommet de degré 1 (resp. 0) est dit sommet pendant (resp. isolé)

Un graphe est dit régulier si les degrés de tous ses sommets sont égaux

Exemple

* Dans le graphe suivant :
* d°*(x)=3,d*(x) =2 etd(x)=5

N

11

Sous-Graphe et Graphe partiel

* Soit G=(5,A) un graphe. Le sous-graphe de G engendré par S’
(un sous-ensemble de S) est le graphe G’ dont les sommets
sont les éléments de S’ et dont les arcs (resp. les arétes) sont
les arcs (resp. les arétes) de G ayant leurs deux extrémités
dans §’. Autrement dit, on ignore les sommets de S\S” ainsi
que les arcs ayant au moins une extrémité dans S\S".

* Soit G=(S,A) un graphe. Le graphe partiel de G engendré par
A’ (un sous-ensemble de A) est le graphe G’ =(5,A’) dont les
sommets sont les éléments de S et dont les arcs (resp. les
arétes) sont ceux de A’. Autrement dit, on élimine de G les
arcs (resp. arétes) de A\A".

Exemples

Un graphe G Un sous-graphe de G
(=2 =2
S —
o>—> ()
o (O—()
Un graphe partiel de G Un sous-graphe partiel de G

12

Composantes Connexes d’un Graphe
Non Orienté

* On définit la relation :
v est accessible a partir de u si et seulement si il existe un chemin de
longueur k > 0 d'origine u et d'extrémité v.

* C'est une relation d’équivalence :

— elle est réflexive car k = 0 est admis; elle est symétrique car le graphe est
non orienté; elle est transitive, car on "concaténe" les chemins.

* Par définition, les composantes connexes d'un graphe non
orienté G sont les classes d'équivalence pour la relation: « étre
accessible a partir de ».

— D’une autre maniére, on appelle composante connexe un sous-graphe
connexe maximal.

Composantes Fortement Connexes
d’un Graphe Orienté

* Pour un graphe orienté, la relation "étre accessible a
partir de" est toujours réflexive et transitive, mais elle
n'est plus symétrique. On considére alors sa symétrisée :

v et u sont mutuellement accessibles si et seulement si il existe un chemin
(de longueur k > 0) d'origine u et d'extrémité v et un chemin (de longueur | > 0)

d'origine v et d'extrémité u.

* Par définition, les composantes fortement connexes
d'un graphe orienté sont les classes d'équivalence de G
pour la relation : « étre mutuellement accessibles ».

— D’une autre maniére, on appelle composante fortement
connexe un sous-graphe fortement connexe maximal.

13

Exemples

Le graphe suivant a trois composantes connexes :
{1,6}, {7} et {2,3,4,5}

m Le graphe suivant a trois composantes fortement
connexes : {1,7}, {2,3,5,6} et {4}

\

Point d’Articulation d’'un Graphe

* C’est un sommet d'un graphe, qui, si on le supprime,
déconnecte le graphe

* Dans le graphe suivant, les sommets 1, 7, 8 et 10
sont des points d’articulation

14

Pont d’'un Graphe

* C’est une aréte d'un graphe, qui, si on la supprime,
déconnecte le graphe

* Dans le graphe suivant, les arcs (1,2), (7,8), (8,9) et
(10,11) sont des ponts

Graphe Bi-Connexe

* Un graphe connexe sans point d’articulation est dit
bi-connexe

* Le graphe suivant n’est pas bi-connexe

15

Composantes Bi-Connexes

* Un graphe peut ne pas étre bi-connexe mais contenir
des composantes bi-connexes

* Dans une composante bi-connexe, il existe un circuit
entre deux sommets quelconques

@@f ® ©
@@ O

5NN

Notion d’Arbre

Un graphe non orienté ou tous les sommets sont
accessibles les uns des autres est dit connexe.

On appelle arbre un graphe non orienté connexe et sans
cycle.

16

Notion d’Arborescence

* Lorsqu’on oriente les arétes d’un arbre, le graphe
obtenu est appelé une arborescence.

* Dans une arborescence, on appelle racine un sommet
pour lequel tous les autres sommets sont accessibles (il
n’existe pas toujours de racine).

tip ty
[SN o U

- ~e
uy us 1 us
/ uz @2 / U @
/ 3 Tm g lin / T gl
Us 2 Us g
._,_._J‘ *~*
| els ‘ els
[10 eur
Arborescence sans racine ug est racine.

Notion de Forét

* Une forét est un graphe non orienté (resp.

orienté) dont chague composante connexe (resp.

fortement connexe) est un arbre (resp. une
arborescence).

» Exemple de forét (graphe acyclique) :

17

Type Abstrait Graphe

Parfois, le graphe est donné une fois pour toutes. Les opérations intéressantes
sont :

— test d’existence d’un arc (d’'une aréte entre deux sommets)
— test d’existence d’'un sommet parmi les successeurs d’un autre sommet

— énumération des successeurs d’'un sommet. Pour ce faire, il faut connaitre le demi-
degré extérieur de tout sommet et le ieme successeur d’'un sommet

Le plus souvent, le graphe est évolutif ; on veut donc lui appliquer les opérations :

— ajout et suppression d’'un sommet
— ajout et suppression d’un arc

Deux types abstraits :
— un pour les graphes orientés
— un autre pour les graphes non orientés

Ces deux types abstraits utilisent le type Sommet :

— pour distinguer les sommets d’un graphe, on les étiquette, soit par des chaines de
caractéres, soit par des numéros (ce qui va étre utilisé dans la suite)

Type Abstrait Sommet

Type Sommet {on étiquette un sommet par un numéro}
Utilise Entier
Opérations
créer : Entier = Sommet
modifier : Sommet x Entier = Sommet
numéro : Sommet = Entier
Axiomes
numéro (som(i)) = i, pour tout entier i

18

Spécification des graphes orientés
(Conventions)

Quand on ajoute un sommet, celui-ci est isolé (il

n'a aucun arc incident) ;

Quand on ajoute un arc, si les sommets adjacents
a cet arc n'appartiennent pas au graphe, on les

ajoute;

Quand on retire un arc, les sommets adjacents ne

sont pas retirés ;

Quand on retire un sommet, tous les arcs incidents

sont supprimes.

Type Abstrait Graphe (Orienté) (1)

Type Graphe {cas orienté}

Utilise Sommet, Entier, Booléen

Opérations
graphe vide : — Graphe
ajouter sommet : Sommet x
ajouter_arc : Sommet x
est_sommet : Sommet x
est_arc : Sommet x
d°+ : Sommet x
ieme_succ : Entier x
d°- : Sommet x
ieme pred : Entier x
supprimer sommet: Sommet x
supprimer_arc : Sommet x

Graphe
Sommet
Graphe
Sommet
Graphe
Sommet
Graphe
Sommet
Graphe
Sommet

L% OLoX L% L% |

Graphe

Graphe - Graphe
Booléen

Graphe — Booléen
Entier

Graphe - Sommet
Entier

Graphe - Sommet
Graphe

Graphe

19

Type Abstrait Graphe (Orienté) (2)

Préconditions
ajouter_sommet(s,g) est-défini-ssi est sommet(s,g) = faux
ajouter_arc(s,s’,g) est-défini-ssi s # s' ET est_arc(s,s’,g) = faux
d°*(s,g) est-défini-ssi est_sommet(s,g) = vrai

d° (s,g) est-défini-ssi est_sommet(s,g) = vrai

ieme_suc(i,s,g) est-défini-ssi est_sommet(s,g) = vrai
ET (i £ d°*(s,qg)) = vrai

supprimer_ sommet(s,g) est-défini-ssi est_sommet(s,g) = vrai

supprimer_arc(s,s'g) est-défini-ssi est_arc(s,s’,g) = vrai

Type Abstrait Graphe (Orienté) (3)

Axiomes {pour est sommet}
est_sommet (s,graphe_vide()) = faux

si s = s’ alors est_sommet(s,ajouter sommet(s’,g)) = faux
si s # s' alors est_sommet(s,ajouter_ sommet(s’,g)) = vrai

si s = s’ OU s = s'’ alors est_sommet(s,ajouter_arc(s’,s’’,g)) = faux

si s # s' ET s # s’’ alors
est_sommet (s,ajouter_sommet(s’’,g)) = est_sommet(s,g)

Type Abstrait Graphe (Orienté) (4)
(Opérations Auxiliaires)

premsucc : Sommet x Graphe - Sommet
succsuivant : Sommet x Sommet x Graphe - Sommet
coudt : Sommet x Sommet x Graphe - Réel
ajouter arc valué :@ Sommet x Sommet x Réel x Graphe — Graphe
nb_sommets : Graphe - Entier

nb_arcs : Graphe - Entier

Représentations des Graphes

* Deux implémentations classiques :
— Par matrice d’adjacence
— Par liste d’adjacence

* D’autres implémentations efficaces pour
certains algorithmes :
— Matrice d’incidence
— Liste des arcs

21

Représentation par Matrice
d’Adjacence (1)

Correspond au cas ou I'ensemble de sommets du graphe n'évolue pas
On représente I'ensemble des arcs par un tableau de booléens

Le graphe est représenté par une matrice carrée de booléens, dite matrice
d'adjacence, de dimension n si le graphe a n sommets

Ul W N R o

olo|r|ole|o|e
o jo oo |- |- -
=lolololoe|o|w
o |jolo |- |w
olol~]|olr]|o|»
olole|o]e|e |n

Représentation par Matrice
d’Adjacence (2)

Dans le cas ou le graphe est non orienté, la matrice est symétrique
Dans le cas ou le graphe est valué, on utilise une matrice ou :

— l'élément d'indices i et j a pour valeur le poids de I'arc/aréte du sommet i au
sommet j, si cet arc/aréte existe,

— et sinon une valeur dont on sait qu'elle ne peut étre un poids: par exemple, le

plus grand entier utilisable si les poids sont des entiers bornés supérieurement.

0 1 2 3 4 5

of ol 2 ol 0] 0

1(0|-3) 0] 3|-5] 0
2(0l0)0jlol 0] O

7 3910 0] 0f-2] 0
4100 0] 1] 0Qf O
s{ojo) 70 0] 0

22

Représentation par Matrice
d’Adjacence (3)

Avantages :

— tester I'existence d'un arc (ou d'une aréte) entre deux sommets: on accéde
directement a I'élément de la matrice (en un temps constant).

— il est facile d'ajouter ou de retirer un arc ou une aréte
— il facile de parcourir tous les successeurs ou prédécesseurs d'un sommet.

Inconvénients :

— n tests quel que soit le nombre de successeurs de i. Il en est de méme du calcul de
d°* ou de d°-.

— une consultation compléte de la matrice requiert un temps d'ordre n?

— exige un espace mémoire de O(n?) si le graphe a n sommets, quel que soit le
nombre d'arcs ou d'arétes du graphe.

Pour remédier a cet inconvénient, on préfére souvent utiliser une
représentation appelée "par listes d'adjacence".

Cette représentation convient pour les petits graphes et lorsque I'accés aux
successeurs, et surtout aux prédécesseurs, est important

Implémentation en C d’'un Graphe par
Matrice d’Adjacence

#define N MAX 20
typedef struct {
int g[N_MAX] [N MAX];
int n;
} GrapheM;

23

Représentation par Liste d’Adjacence
(1)

C’est un tableau de listes chainées :
— La dimension du tableau est de n (nombre de sommets)

— Chaque sommet du tableau contient une liste chainée de
sommets qui lui sont adjacents (liste de ses successeurs)

® [H>-H
() (1) g N S ERE S EW
2
/
[T
g BN
0==0 ‘[z V

Représentation par Liste d’/Adjacence
(2)
Avantages :

— I'espace mémoire utilisé est, pour un graphe orienté avec n sommets et m arcs, en
O(n+m).

— dans le cas d'un graphe non orienté avec m arétes, I'espace mémoire est en
O(n+2m).

— pour faire un traitement sur les successeurs d'un sommet s, le nombre de sommets
parcourus est exactement le nombre de successeurs de s, soit d°*(s).

Inconvénients :

— exige, dans le pire de cas, un temps d'ordre n pour tester s'il existe un arc (resp. une
aréte) entre un sommet donné x et un sommet y (cas ou la liste d'adjacence est de
longueur n-1 et ol y est en fin de liste) ou pour I'ajout d'un arc ou d'une aréte (avec
test de non répétition).

— ne permet pas de calculer facilement les opérations relatives aux prédécesseurs (d*
et ieme_pred).

Représentation convenable pour les grands graphes :

— utilisation de moins d’espace mémoire et parcours rapide des successeurs d’un
sommet

24

Graphes

(suite)

Implémentation en C d’'un Graphe par
Liste d’Adjacence

#define N MAX 20
typedef struct cellule {
int sommet;
struct cellule* suiv;
} Cellule;
typedef Cellule* Liste;

typedef struct {
Liste a[N_MAX];
int n;

} GraphelL;

Matrices vs Listes d’Adjacences de
Graphes Orientés et Non Orientés

oo S

s
/
;

@ © & °
A B C D E F IM N P R T ZI A B C D E F
Alo 17 o o 1 0O M|© 1 0O ©C O O Al6 2 © 0 5 O
B|1 0O 0 O 1 1 N]jO O O O 0 1 B|l2 0o 0o O 3 4
c|lo O 0O 0o o0 o P|1 O O O O O clo o 0o 0O 0 O
Dfo o o 0o O 1 Rlo o o o o o pjlo o o o o 3
E| 1 1 o o0 o o TjO O O O O 1 E|5 3 0 0O 0 O
Flo 1 o 1 o o Zzlo o 1 1 ©0 o© Flo 4 o 3 o0 o
(a) Adjacency matrix of an (b) Adjacency matrix of a (c) Adjacency matrix of an
undirected graph. directed graph. undirected weighted graph.
(VD (VD)
@& ® 2 S
.."B o @) B OFENBG
© & > ® @4~ @/\J_@)
Al—B —E ™M N nM (N, 2)
B |[——A ——E—F N z N (Z. 5)
c P M P (M, 8)
D f——F R R
El=—aA—B T z T (Z, 4)
F |—=—B——D Z P —= R 4 (P, 8)— (R, 6)
(a) Adjacency list of an (b) Adjacency list of a (c) Adjacency list of a

undirected graph. directed graph. directed weighted graph.

Parcours d’un Graphe

Parcours de tous les sommets :
— visiter chaque sommet du graphe une seule fois
— appliqguer un méme traitement en chaque sommet

Parcours a partir d’'un sommet s :

— Parcours en profondeur d’abord (Depth First Search)

* le principe consiste a descendre le plus "profondément” dans le graphe
a partir de s, en prenant toujours a “gauche”, avant de revenir pour
prendre une autre direction

— Parcours en largeur d’abord (Breadth First Search)

* |e principe consiste a visiter les sommets situés a une distance 1 de s,
puis ceux situés a une distance 2 de s, etc...

* d’une autre manieére, lorsqu’un sommet x est atteint, tous ses
successeurs y sont visités avant de visiter les autres descendants de x.

Parcours d’un Graphe (Exemple)
o ©
-0 0
OwS. ~
()

* Parcours a partir du sommet 1:
— Parcours en profondeur:1,2,5,6,8,3,7,4
— Parcoursenlargeur:1,2,3,4,5,6,7,8

26

Parcours en Profondeur (Exemple)

* les numéros correspondants aux sommets
donnant l'ordre dans lequel les sommets sont
visités.

Parcours en Largeur (Exemple)

* La numérotation indiquée correspond a un ordre
de visite lors d’'un parcours en largeur

/

N
l

N <Y
WS

e
d

h
5

27

Comment implémenter les deux
parcours dans un graphe ?

Le type de parcours est fonction du TAD utilisé pour stocker les sommets a
traiter :

— Pile = Parcours en profondeur
— File = Parcours en largeur

Parcours en profondeur
— Algorithme récursif : I'utilisation de la pile est implicite (appels récursifs)
— Algorithme itératif : I'utilisation de la pile est explicite

Parcours en largeur
— Algorithme itératif : I'utilisation de la file est explicite

Dans tous les cas il faut un mécanisme pour éviter de boucler indéfiniment :

— Marquer les noeuds
— Lister les noeud traités

Algorithme de Parcours en Profondeur

(1)

Algorithme parcoursProfondeur (g : Graphe)
Entrée : un graphe

Variables locales
atteint : tableau[Sommet] de booléens
(* atteint[x] <=> le sommet x a été atteint *)
X : Sommet
Début
pour tout sommet x de g faire
atteint[x] € faux
fpour
pour tout sommet x de g faire
si non atteint[x] alors RechercheProf (x)
fpour
Fin

28

Algorithme de Parcours en Profondeur

(2)

Algorithme RechercheProf (x : Sommet)
Entrée : un sommet d’un graphe
(* Etant donnée un sommet x non atteint, cet
algorithme marque x, et tous les sommets y
descendants de x tels qu’il existe un chemin
[x,y] dont aucun sommet n’est marqué ¥*)

Variables locales :
y : Sommet

Début
atteint[x] € vrai
pour tout successeur y de x faire
si non atteint[y] alors RechercheProf (y)
fpour
Fin

Algorithme de Parcours en Profondeur
(Complexité)

* La phase d’initialisation du tableau atteint est
en O(n)

* Litération de l'algorithme principal est
réalisée exactement en n étapes, pour
chacune il y’a au moins un test réalisé :

— O(n+m), soit O(max(n,m)) dans le cas des listes
d’adjacences
— 0O(n?) dans le cas des matrices d’adjacences

29

Parcours en profondeur
(Ordre de Traitement-Numérotation)

* L'objet des parcours de graphes concerne des traitements que
I'on souhaite opérer sur les graphes :
— Les traitements s'opérent parfois sur les sommets visités. Il est alors
possible d’opérer un traitement avant ou apres la visite du sommet.

— Il'y’a donc soit un traitement en préOrdre ou ordre préfixé, soit en
postOrdre ou ordre postfixé. Ceci se traduit par une modification de la
procédure de recherche en profondeur.

Algorithme traitement en préOrdre(x : Sommet)
Variables locales :
y : Sommet
Début
atteint[x] € vrai
<traiter x>
pour tout successeur y de x faire
si non atteint[y] alors rechercheProf (y)
fpour
Fin

Parcours en profondeur
(Traitement en postOrdre)

Algorithme traitement en_ postOrdre(x : Sommet)
Variables locales :
y : Sommet
Début
atteint[x] € vrai
pour tout successeur y de x faire
si non atteint[y] alors rechercheProf (y)
<traiter x>
Fin

Exemple : Numérotation en préOrdre(rouge) et en postOrdre(vert) pour un parcours en profondeur

30

Mise en ceuvre en C du parcours en
profondeur (1)

#define N_MAX 20

typedef struct cellule {
int sommet;

struct cellule *suiv;

} Cellule

typedef cellule* Liste;

typedef struct {
Liste a[N MAX];
int n;

} GrapheL;

typedef int atteint[N_MAX];
/* variables globales déclarées:

Graphel g;
atteint m; */

Mise en ceuvre en C du parcours en
profondeur (2)

void parcoursProf (int x) {

Liste p;

m[x]=1;

p=g.al[x];

while (p!=NULL) {
if ('m[p->sommet]) parcoursProf (p->sommet) ;
p=p->suiv;

}

}

void main () {
int x;
for (x=1;x<g.n;x++) m[x]=0;
for (x=1;x<g.n;x++)
if('m[x]) parcoursProf (x) ;

}

31

Mise en ceuvre en C du parcours en
Largeur (1)

Principe de l'algorithme :
— Il repose sur la notion de file.

— Lors de la visite d’un sommet s, tous ses successeurs non encore
atteints vont étre rangés dans la file de maniére a conserver la priorité
liée aux distances depuis le sommet origine.

typedef struct {
Liste tete,queue;
} File;

void enfiler(int x,File* f);
int defiler (File* £f);
int fileVide (File* f);

Mise en ceuvre en C du parcours en
largeur (2)

void parcoursLarg(int x) {
Liste p;
initFileVide (&f) ;
enfiler (x,&f) ;

m[x]=vra?;) void main () {
while(!'filevide(£f)) { int x:
=defil £f); !
:=geatx??() for (x=1;x<g.n;x++) m[x]=0;
while (p!=NULL) { f?r(x=1;x<g.n;x++){
if (!m[p->sommet]) { if(!'m[x])
m[p->sommet]=vrai; parcourslarg(x) ;
enfiler (p->sommet, f) ; }
} }
pP=p->suiv;

}
}
}

32

Algorithme de Parcours en Largeur
(Complexité)

* |dentique a celle du parcours en profondeur :
— O(n+m) pour les listes d’adjacence
— O(n?) pour les matrices d’adjacence

Quelques Applications des Parcours

* Accessibilité :
— Pour connaitre les sommets accessibles depuis un sommet donné d'un graphe
(orienté ou non), il suffit de faire un parcours en profondeur a partir de ce
sommet, en marquant les sommets visités

* Composantes connexes :

— Pour déterminer les composantes connexes d’un graphe, il suffit d’appliquer
d’une maniére répétitive le parcours DFS ou BFS sur tous les sommets non
encore visités. |l est clair qu’'une composante connexe est constituée du sous
graphe dont les sommets sont visités par un seul appel a DFS ou BFS

* Graphe orienté sans circuit :

— Un graphe orienté comporte un circuit si et seulement si, lors du parcours des
sommets accessibles depuis un sommet, on retombe sur ce sommet. Pour
savoir si un graphe est sans circuit, il suffit donc d'adapter DFS ou BFS, en
maintenant une liste des sommets critiques (en cours de visite)

33

Algorithme du Parcours en Profondeur
Récursif

Algorithme parcoursEnProfondeurRecursif
(g : Graphe, s : Sommet)

Entrées : un graphe et un sommet

Début
si non estMarque(s) alors
marquer (s)
traiter(g,s)
pour chaque successeur s’ de s faire
parcoursEnProfondeurRecursif(g,s’)

fpour
fsi

Fin

Algorithme du Parcours en Largeur

Algorithme parcoursEnLargeurIteratif (g : Graphe, s : Sommet)
Entrées : un graphe et un sommet du graphe

Variables locales :

f : File<Sommet>

sCourant : Sommet

Début
£ € file()
f € enfiler(f,s)
tantque non estVide (f) faire
sCourant € obtenirElement (f)
f € defiler(f)
marquer (sCourant)
traiter (g,sCourant)
pour chaque successeur s’ de sCourant faire
si non estMarque(s’) alors
f € enfiler(f,s’)
fsi
fpour
ftantque
Fin

Graphes (Applications)

Algorithmes sur les graphes :

— Algorithmes résolvant les problemes modélisés par les graphes. Par exemple, les problémes liés a
I'optimisation des connexions et du routage. On peut citer les algorithmes de calcul des arbres de
recouvrement minimaux, la recherche des plus courts chemins, ...

Tri topologique :
— Il s’agit d’un tri linéaire des sommets dans un graphe orienté acyclique de telle sorte que tous les arcs vont
de gauche a droite. L'une de ses utilisations les plus courantes est de déterminer un ordre acceptable dans
I'accomplissement d’un certain nombre de taches dépendant les unes des autres

Coloration de graphes :

— On tente de donner une couleur aux sommets de fagon a ce qu’il n’y ait pas deux sommets de méme couleur
reliés par un arc. Parfois, on s’intéresse a déterminer le nombre minimum de couleurs réalisant ce but.

Problémes de cycles hamiltoniens :
— On travaille sur des cycles hamiltoniens, des chemins passant exactement une fois par tous les sommets d’un
graphe avant de revenir au sommet de départ. Le probleme du voyageur de commerce en est un cas
particulier, dans lequel on recherche le circuit hamiltonien de colt minimum.

Problémes de clique :
— On travaille sur des régions du graphe ou chaque sommet est connecté d’une fagon ou d’une autre a tous les
autres sommets. Ces régions s’appelent des cliques. On recherche une clique maximale dans un graphe, ou
une clique d’une certaine taille, ...

Parcours en Profondeur et Pile
(Exemple)

_|A B CDE F G|
AlG 1 1 0 0 0 0 Al>B—C
B[1 011100 BfA==C=>D=>E
cf1t 100000 Cl=A—=B
Do 1 0 0 0 1 1 DB ==F =G
Ef[0 1 0 0000 El—B
Flo 0 0 1 0 00 F D
Glo o o1 000 Gl—=D
F G

C DDDDD E

BBBBBBBBBBB
stack bottom —= A A A A A A AAAAAAA_

ABC DF G E

DFS visit order

Contents of the queue during a depth first search

35

Parcours en Largeur et File (Exemple)

A B C D E F G
Al0 1 1 0 0 0 0O A B—C
Bl1 0 1 1 1 0 0 B A G D e E
c|l1 1 0 0 0 0 O c A——B
DlOo 1 o 0 0 1 1 D B—F <)
Ef[o 1 0 0 0o 0 o E B
Flo o o 1 0o o o F D
clo o o 1 0 0 0O G D
queue
BFS visit order —y | ¥ front
A
Alec
B|CDE
c|pE
D|IEFG
E|lFa
F |G
G

Contents of the queue during a breadth first search. The vertices grouped
by the dotted ovals represent their distance from the start vertex.

36

