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Chapitre 2

Espaces vectoriels

Dans tout ce chapitre, la lettre K désigne R ou C.

2.1 Structure d’espaces vectoriels

Soit E un ensemble. Une loi de composition interne dans £ est une application de £ x £
dans £.
Une loi de composition externe sur E est une application de K x E dans E.
Exemple 2.1.1 1) L’addition des entiers est une loi de composition interne dans N.
2) La multiplication d’un polynéme par un réel est une loi de composition externe sur
3) Soit E = R®. L’application notée - de R x R® dans R* définie par

T QT
e Yy — ay
Z az

est une loi de composition externe sur R?.

Définition 2.1.1 On appelle espace vectoriel sur K (ou K-espace vectoriel) un ensemble
non vide E muni de deux lois :
o Une loi de composition interne, notée +, telle que :
i) + est associative : Vu,v,w € E u+ (v+w) = (u+v)+w
ii) E posséde un élément neutre Op pour + : Vv € E v+ 0p=0p+v ="

i) Tout élément de E admet un symétrique : ¥ v € E 3 weFE vtw=w+v=0g

21
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22 CHAPITRE 2. ESPACES VECTORIELS

w) + est commutative : Vo,w € E v+w=w +v.
e Une loi de composition externe, notée -, telle que :
i)Vo,FEKYveE (a+p8)-v=a-v+8-v
i) VaeKVYovwel a-v+w)=a-v+a-w
w) Va,BeK Yoe E a-(8-v) = (af)-v
w)VveFE 1l-v=u.

L’espace vectoriel E muni de ces deuz lows est noté (E, +,-) ou simplement E lorsqu’il n'y a
pas de confusion. Le symétrique w d’un élément v de E pour + est noté —uv.

Remarque 2.1.1 1) Les éléments de F s’appellent des vecteurs et ceuzx de K s’appellent
des scalaires.

2) Lorsqu’il n’y a pas de confusion, l’élément neutre Og est noté simplement (.

Exemple 2.1.2 1) L’ensemble des fonctions de R dans R, noté F(R,R), est un R-espace
vectoriel pour les deux lois : ’

— La loi interne définie par (f + g)(z) = f(z) +g(z) : f.g € F(R,R).
— La loi externe définie par (o - f)(z) = af(z) : o eR, f e F(R,R).

2) Pour tout entier positif n, le produit K™ est un K-espace vectoriel pour les deuz lois :

— La loi interne définie par

a by ay + by

ag by an + by N
+ ) == ) a;, b; € K

an by, Gy + by,

— La lov externe définie par

a aay
Qs aay

Q- = aeK a; €K
G Qdy

3) L’ensemble des polynémes K[X| est un K-espace vectoriel pour les deuz lois :
— La lov interne définie par :

(P +Q)(X) = P(X) +Q(X) P,Q € K[X]

l A8 ) 31k cilaiia Page 5
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2.2. SOUS-ESPACES VECTORIELS 23
— La lov externe définie par :
(@-P)(X)=aP(X) acK, Pc K[X]
Les propriétés suivantes se déduisent de la définition d’un K-espace vectoriel E :
l)VeaeKVvel (a-v=0pa=0 ou v= Op)
2)Va.BeK VveE (a-B)-v=a -v— B v. En particulier (=1) v = —u.
) VaeK VoweE a-(v—w)=a -v—a-w.
Soit £ un K-espace vectoriel et (v, ..., Un) une famille finie d’éléments de E. Une combi-
naison linéaire des éléments de cette famille est tout élément v de E de la forme
n
(R s WO B il 6 8 Gy RGNS e S P Za,- “v; OU O, Q. ..,0, € K.
i=1
Exemple 2.1.3
2 ]
1) Dans R® le vecteur 0 est une combinaison linéaire des deux vecteurs 0 et
il 0
0
0 |. En effet
1
2 1 0
0 = 2F O + 0
1 0 1

2) Dans R[X|, un polynome de degré wférieur ou égal 6 un entier n est une combinaison
linéaire des éléments de la famille (1, X, X2, ..., X™).

2.2 Sous-espaces vectoriels

Définition 2.2.1 Soit (E, +,-) un K-espace vectoriel. Une partie F de E est un S0us-espace
vectoriel de E si

e ' est non wvide,

o (F +, ) est un K-espace vectoriel.

Page 6
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24 CHAPITRE 2. ESPACES VECTORIELS

Théoreme 2.2.1 Soit E un K-espace vectoriel. Une partie F' de E est un sous-espace
vectoriel de E si et seulement s1 :

e I est non vide,
e F est stable pour la loi + : Vo,w € F v+ w € F,
o [ est stable pour laloi- :Va e K VveEF a-veEF.

Démonstration.

e =) Par hypothése F est non vide. Soit o € K v, w € F. Comme F' est un K-espace
vectorielonav+w € Feta-veEF.

e <=) Pour montrer I'implication inverse, les seuls points & vérifier sont les points 71) et
#1) de la loi interne + (voir Définition 2.1. L).
Prenons a = 0 et v € F, alors a-v = 0 € F et donc F possede un élément neutre
pour la loi +.
Soit v € F, par définition de E il existe w € E tel que v +w = w +v = 0p, donc
w=-—-v=(-1)-veF.
Comme F est non vide, (F, +, -) est un K-espace vectoriel et donc " est un sous-espace
vectoriel de F. Fo

On peut résumer ce théoreme sous la forme suivante :

Coorollaire 2.2.1 Soit E un K-espace vectoriel. Une partie F' de E est un sous-espace
vectoriel de E si et seulement st :

e I est non vide,

eVa,BeKVoweF a-v+pB-weF.

Remarque 2.2.1 Soit E un K-espace vectoriel et soit F un sous-espace vectoriel de E.
Alors Op =0p etYv € F ona —v € F.

Exemple 2.2.1 1) Soit E un K-espace vectoriel, le singleton {Op} et E sont des sous-
espaces vectoriels de .

x

— est un sous-espace vectoriel de R®.

0

2) L’ensemble F

i , 1o ; .
3) L’ensemble F' = { ( . ) } n'est pas un sous-espace vectoriel de R2.

/

/) L’ensemble des fonctions continues de R dans R est un sous-espace vectoriel de F(R, R).

4 aal) 4 b il
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2.2. SOUS-ESPACES VECTORIELS 25

5) L’esnemble des polynomes de K[X| de degré inférieur ou égal a un entier n est un
sous-espace vectoriel de K[X].

Remarque 2.2.2 Si F el G sont deuz sous-espaces vectoriels d'un K-espace vectoriel £
alors F NG est un sous-espace vectoriel de E.

Soit E un K-espace vectoriel et V une partie finie de E. En utilisant le dernier théoreme,
on montre que I’ensemble des combinaisons linéaires des éléments de V' est un sous-espace
vectoriel de F.

Définition 2.2.2 Soit E un K-espace vectoriel et V' une partie finie de . On appelle sous-
espace vectoriel engendré par V. Uensemble des combinaisons linéaires des éléments de V.
On le note Vect(V).

Remarque 2.2.3 1) SiV = {vy,...,v,} alors

Vect(V) = {a; -v1 4+ +Qn-tp taq,...,0, €K}

2) Soit V.= {v1,...,vp} et W = {wy,...,w,} deuz parties de E. Alors Vect(V) =
Vect(W) si et seulement si V C Vect(W) et W C Vect(V).

1 :
oxemple 2.2.2 1) Dans R?, soitvy = | 0 | etwa= 1| 1 |, alors
0 1
Vect(vy,v2) = {a-ui+B-v2 :a,8€R}
Q 0
- gt fob e 0 € R
0 B
o
= 08 ‘o, B€eR
B8

2) Dans K[X], soit V la famalle (1, X, X?). Alors
Veer(V) = {ao + a1 X + a2 X? :ap, 01,02 € K}.
Soit E un K-espace vectoriel et soit F et G deux sous-espaces vectoriels de E. L’ensemble

{(veEE /FueF v, €G :v=uv+u}
= {’Ul + vy /"()1 € Fuy € G}

F+d

It

est un sous-espace vectoriel de E. On I'appelle somme de F' et G.

A ) (5 b cilpiia Page 8
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CHAPITRE 2. ESPACES VECTORIELS
Remarque 2.2.4 Ona FC F+G etGC F+G.

Exemple 2.2.3 1) Soit E=R2. Soit F = {( 2 ) ‘T E R} etG = {( %
Alors

{(2)+(8) mwer}={(5) over}-w

F+G

z
Yy
o 0
2) Soit E = R3. Soit F = Jé] ca,BER ) et G = % cx,y €ER 3. Alors
0 Y
o o
F+G= B8+ =z o, BT,y ER ) = ¥
Y

co,7,y €ER Y =R
Yy

Définition 2.2.3 La somme de deur sous-espaces vectoriels F' et G est une somme directe

51 tout élément de F'+ G se décompose d’une facon unique comme somme d’un élément de
F et d’un élément de G. Dans ce cas on écrit ' ® G au liew de F + G.

Théoreme 2.2.2 Soit F' et G deux sous-espaces vectoriels d'un K-espace vectoriel E. La
somme F + G est directe si et seulement si F NG = {0}.

Démonstration.

=) Soit v € FNG, alors v = v+ 0 = 0 + v est une écriture de v comme somme
d’éléments de F et G. Comme la sommnie est directe on a nécessairement v = 0.

<=) Soit v € F'+G, montrons qu’il se décompose d’une maniére unique comme somme
d’un élément de F' et d’un élément de ¢G. Supposons que

V=v; + vy =w +wy avec v, w; € F vy, wy € G
Alors v1 — wy = wy — vy est un élément de F' N G. Comme F NG = {0} on a
v — Wy = Wy — vy = 0 et par suite v; = w; et vy = ws.

&

Lorsque la somme de deux sous-espaces vectoriels F' et (G est directe et F + G = £, on
dit que F et G sont supplémentaires.

1 0
Exemple 2.2.4 1) Dans R3 soitv; = | 0 et vy = 2 |. Montrons que la somme
0 2
Vect(v;) + Vect(vs) est directe. D’apreés le théoréme 2.2

.2, c’est équivaul @ montrer que

4 pal) (3 b cilsita
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2.3. FAMILLES LIBRES, LIEES 27
Vect(v;) N Vect( uz = {0}. Soit v € Vect(vy) N Vect(vy) alors il existe o, B € R tels que
- a
= 1| 0 206 ) Donc a= =0 etv=0. La somme Vect(v;) + Vect(vy) est
0 2(
donc directe.
0
2) Soit E=R?, F a,BeER ) et G = 2 z,y € R p. Alors F + G
Y

n'est pas directe car 1 € FNG.
0

3) Soit P(R,R) (respectivement Z(R,R)) Uensemble des fonctions paires (respectivement
impaires) de R dans R. Alors

F(R,R) = P(R,R) & Z(R, R).

En effet, soit f un élément de F(R,R), alors la fonction fi définie par f]' o) =
/(:\+f(— est une fonction paire et la fonction fo définie par fo(xz) = L=2)=fzn) oo
une fmuz‘zon impaire. La relation

f(x) = filz) + foz) VZ ER

implique que
F(R,R) =PR,R) +Z(R,R).

Comme P(R,R)NZ(R,R) = {0} la somme est directe et les deuz sous-espaces vectoriels
P(R,R) et Z(R,R) sont supplémentaires.

2.3 Familles libres, liées
Soit E un K-espace vectoriel et soit (vy,...,v,) une famille d’éléments de £.

Définition 2.3.1 La famille (vy,...,vp) est dite libre si
Yag,...,ap €K og-v t+ayVpttoyyp=0p=a =a==q ="

On dira aussi que les vecteurs vy, . .., v, sont linéairement indépendants.

Définition 2.3.2 La famille (v, ...,v,) est dite liée si elle n'est pas libre, c’est a dire si
3 a0 €K ap-vitog-vp+ o u=0p et Jic {1,...,p} a; #0.

On dira aussi que les vecteurs vy, ..., v, sont linéairement dépendants.

| A8 ) (5 b iyt Page 10
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Remarque 2.3.1 Soit E' un K-espace vectoriel, alors la famille (0g) est liée.

1 1 2
Exemple 2.3.1 1) Soitvy=| 2 | ,090=| 1 et vy = 1
0 1 -1

Soit oy, o, a3 € R tels que ovy + v + asvs = 0. Cette relation nous conduit ¢ la
résolution du systéme linéaire swivant :

(a5] + ay + 2(_}3 = Q)
2(!1 + ¥y - Q3 = 0
&y = Q3 = 0
0
qur admet l'unique solution | O |. Donc les vecteurs vy, vs et vy sont linéairement
0

indépendants dans R®.
2) Soit fy, fa et f3 trois fonctions de R dans R définies comme suit :
Vz €R : fi(z) =cos’(z), falz) = cos(2z), fs(z)=1

La relation cos(2z) = 2cos®(z) — 1 implique que la famille (f1, fo, f3) est une famille
liée dans le R-espace vectoriel F(R,R).

Proposition 2.3.1 Soit F un K-espace vectoriel.

i) Soit v un vecteur de E. La famille (v) est libre si et seulement si v # 0p.
i) Une famille contenue dans une famille libre est libre.

i) Une famille qui contient une famille liée est lide. En particulier toute famille qui
contient Op est liée.

Théoreme 2.3.1 Soit E un K-espace vectoriel et soit p > 2 un entier. Une famille (vy,. .., v,)
d’éléments de E est liée si et seulement si l'un de ses vecteurs. soit v, est combinaison
linéarre des éléments de la famille (v, ..., vy, Vg1, .. JUp )
Démonstration. =) Supposons que la famille (v1,...,0,) est lide, il existe des scalaires
oy, . .-, p non tous nuls tels que

Qv +ag U+t v, = 0.

Soit 7 tel que «; # 0 alors

= (X — 9 — i — ¥4 —Qy
Ay 2 O P gy S e S B e O e E
v ; oy Y (&5

i)

,U?‘, = p-

A8 ) 31k cilaiia Page 11
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2.4. FAMILLES GENERATRICES, BASES ET DIMENSION 29
Le vecteur v; est donc une combinaison linéaire des éléments de la famille (vy, ..., 01, Vi1, .., Up).

<) Supposons qu'un vecteur v; s’écrit

Uii= @y U] & o 0= Wy Qg 2 Vg ok o Ol Uy
alors
Oy =0y —F =oom @y 2 V=) — Ui Q) - Uigqi ok oo U =0p
Ceci implique que la famille (vy,...,v,) est une famille liée. &

Remarque 2.3.2 Pour tout vecteur v et tout scalaire ., la famille (v, av) est liée.

1 1 5
Exemple 2.3.2 1) Soitv; = 0 =11 ) etvs=1| 3 |. Onawvy=2uv;+3w
—1 1 1

et donc la famalle (v, vy, v3) est liée.

2) Considérons les polynomes Py(X) = 1+ X, Py(X) = —1+2X +3X? Py(X) = X + X2
On a Py(X) + Pa(X) — 3P3(X) = 0, ce qui implique que la famille (Py, Ps, P3) est liée.

2.4 Familles génératrices, Bases et dimension d’un espace vecto-
riel

Définition 2.4.1 Soit E un K-espace vectoriel. On dit que E est de dimension finie s’il
existe une famille finie V = (vy,...,vy,) d’éléments de E telle que E = Vect(V). Dans ce
cas on dit gue la famille V est une famille génératrice de E ou que E est engendré par V.

Exemple 2.4.1 1) Soit E=C?¢, = ( (l) ) et eg = ( (1) > La famille (e;,ez) engendre

(1.2 21
E car pour tout élément v = eFonav==z-e + 2y es.
22

2) Pour un entier n € N*, le K-espace vectoriel K" est de dimension finie. Il est engendré
par la famille (ey, ez, ..., €,) OU

e;=| 1 (1 dans la ieme position)

3) L’ensemble des polynomes K[X|] n'est pas de dimension finie.

A8 ) 31k cilaiia Page 12
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Définition 2.4.2 Soit E un K-espace vectoriel de dimension finie. On appelle base de E
toute famille d’éléments de E qui est libre et génératrice.

Théoreme 2.4.1 Soit E un K-espace vectoriel de dimension finie. Alors toutes les bases
de E ont le méme cardinal.

Définition 2.4.3 Soit E un K-espace vectoriel de dimension finie. Le cardinal de l'une des
bases de E s’appelle la dimension de E. La dimension d'un sous-espace vectoriel de E est

sa dimension en tant que K-espace vectoriel.

Remarque 2.4.1 Par convention la dimension du sous-espace vectoriel {0} est égal a 0.

1 0 0
Exemple 2.4.2 1) Soit E = C3,e; = 0 ],e = 1 et ez = 0 ). La famille
0 0 1
(e1,€9,€3) est une base de C.
2) Pour tout entier n € N*, la famulle (e, eq, ..., e,) ot
0
ei= 11 (1 dans la iéme position)

0

est une base du K-espace vectoriel K. On l'appelle base canonique de K™. Aiwnsi la
dimension de K" est n.

3) Dans K[X] considérons le sous-espace vectoriel F = Vect(1, X, X?). La famille (1, X, X?)
est libre alors elle constitue une base de F'. Donc la dimension de F' est 3. En général,
pour un entier n, la famille (1,X,..., X™) est une base du sous-espace vectoriel de
K[X] formé des polynémes de degré inférieur ou égal a n.

Proposition 2.4.1 Soit E un K-espace vectoriel de dimension finie n et B = (ey,....¢e,)
une base de E. Alors tout vecteur de E s’écrit d’'une maniére unique comme combinaison
linéaire des éléments de B.

Démonstration. Soit v un vecteur de F. Puisque BB est une base de £, elle est génératrice. Il
existe donc ay, ag,...,on € Ktelsquev = Y | oye;. Supposons qu'il existe 81, Bz, ..., 0, €
K tels que v s’écrit aussi v = )", Bie;. Par soustraction, on obtient la relation Y . (c; —
Bi)e; = 0. Comme B est libre on a nécessairement a; = 3; pour 1 < i < n. &

Théoreme 2.4.2 Soit E un K-espace vectoriel de dimension finie n. Alors

| A8 ) 31k cilaiia Page 13
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1) Toute farmulle libre a n éléments est une base de E.

© 2) Toute famaille génératrice a n éléments est une base de E.

7 1+ 5

Exemple 2.4.3 1) Dans C*, soitvy = | 0 | ,upo=| 1—14 etvy=| 3—¢ |. La
0 0 1

famille (vq,va,v3) est libre et comme elle est a trois éléments, elle forme une base de

e

Remarque 2.4.2 Soit £ un K-espace vectoriel et F' et G deux sous-espaces vectoriels de
E. Si F' et G admettent une base commune alors F' = G.

Théoreme 2.4.3 (Théoréme de la base incomplete) Soit E un K-espace vectoriel de
dimension finie n et soit p un entier vérifiant 1 < p < n. Soil (vy,...,v,) une famaille libre
de E, alors il existe vyy1, . . ., Un des éléments de E tels que la famille (vy, ..., Vp, Vpy1, - - VUn)
est une base de . Autrement dit toute famille libre de E est contenue dans une base de E.

Théoreme 2.4.4 Soit E un K-espace vectoriel de dimension finie n et soit F un sous-espace
vectoriel de E. Alors

1) dim(F) < dim(£),

2) Si dim(F') = dim(F) alors £ = F.

Démonstration.
1) Soit B une base de F. La famille B est libre dans F. Par le théoreme da la base
incompléte, elle est. contenue dans une base de E. Donc dim(F) < dim(F).

2) Soit B une base de F. Alors B est une famille libre de E qui contient n éléments. Elle
est donc une base de £. D’ou F = F. &

Théoreme 2.4.5 Soit E un K-espace vectoriel de dimension finie et soient F' et G deux
sous-espaces vectoriels de E. Si la somme F + G est directe alors

dim(F + G) = dim(F) + dim(G).

Théoreme 2.4.6 Soit E un K-espace vectoriel de dimension finie. Soit F' et G deuw sous-
espaces vectoriels de E2. Alors

dim(F + G) = dim(F) + dim(G) — dim(F N G).
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Corollaire 2.4.1 Soit E un K-espace vectoriel de dimension finie et soient F et G deuz
sous-espaces vectoriels de E. Alors F' et G sont supplémentaires si et seulement si et
dim(E) = dim(F) + dim(G) et F NG = {0g}.

1 0

1
Exemple 2.4.4 Soit E=R®* F=Vect | 1 | et G= Vect 0 |, 1 . Alors
1 o L

E=F&®G. Eneffet, FNG = {0z} et dim(F) +dim(G) =1+2=3.

En dimension 2 et 3, nous avons une caractérisation de l'indépendance linéaire par les
déteminants.

1) Soit £ un K-espace vectoriel de dimension 2 et B = (e, e5) une base de £. Alors

i) Un vecteur v = ae; + bey est linéairement indépendant si et seulement si a # 0 ou

b # 0.
ii) Deux vecteurs v; = aey + bey et vy = ce; + des sont linéairement indépendants si
Sl e
et seulement si b d ‘ == )

2) Soit F un K-espace vectoriel de dimension 3 et B = (ey, ey, €3) une base de E. Alors

i) Un vecteur v = ae; + bey + cez est linéairement indépendant si et seulement si
a#0oubs#0oucs#0.

ii) Deux vecteurs vy = aye; + ases + azes et vy = bye; + byey + bses sont lindairement,
indépendants si et seulement si

ay by
ag b

1
“ ?5¢0m1 £0.
)3

as

ay bl
ar 1By ’ # 0 ou

iii) Trois vecteurs vy = aje;+ases+azes, va = bye;+byes+bses et vz = cre; +coes-tcaes
sont linéairement indépendants si et seulement si

| ay b] Cy
a9 1)2 Co 7& 0.
az by c3

o 2 ) ; s
Exemple 2.4.5 1) Les vecteurs v; = ( ; ) et vy = ( ; ) de C? sont linéairement
indépendants parceque

’fii:3¢o
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7 1 2
- 2) Dans R®, les vecteurs vy = 1 et vy = 2 sont linéairement indépendants
—1 1
parceque
[ 1 2| 140
i
2 -8 0
3) Dans R, les vecteurs vy = 0 Vg = 1 et vy = 1 sont linéairement
-1 0 -5
indépendants parceque
| 2 -8 0 ;
|0 1 1 [=-2+#0
|-1 0 -5

2.5 Calcul pratique de la dimension d’un sous-espace vectoriel

Définition 2.5.1 Soit £ un K-espace vectoriel de dimension finie. On appelle rang d’une
famille V = (vy,...,v,) d’éléments de E, qu’on note rg(V), la dimension du sous-espace
vectoriel Vect()V).

1 0 1
Exemple 2.5.1 Soit £ =R3, v, = Qo= 1 et v3 = 1 ]. Onawvy=v +1vy
0 0 0

—

donc Vect(vy, ve, v3) = Vect(vy, ve). De plus (v1,vs) est libre donc rg(vy, ve) = 2.

Proposition 2.5.1 Soit E un K-espace vectoriel de dimension finie n et (vy,...,v,) une
famille d’éléments de E. Alors on a :

1) rg(vy, ..., v,) < min(n,p),
2) rg(v1,...,up) =p <> (v1,...,0p) est bibre.
Soit F un K-espace vectoriel de dimension finie n et soit B = (ey, ..., e,) une base de E.

Un vecteur v de E s’écrit d’une manieére unique comme combinaison linéaire des vecteurs e;

n
=

V= 2 aze; (@, ,0,) € KT
=1

(8]
%) S .
Le vecteur . € K™ s’appelle vecteur des coordonnées de v dans B.

(67
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Exemple 2.5.2 Considérons le R-espace vectoriel Ry[X] muni de sa base B = (1, X, X?).
' 1

Soit P =1— X + 2X2, alors le vecteur | —1 est le vecteur des coordonnées de P dans

2

Remarque 2.5.1 Si B = K" est muni de sa base canonique B alors tout vecteur v de F
comncide avec le vecteur de ses coordonnées dans B.

Soit maintenant V' = (vy,...,v,) une famille finie de vecteurs de E. La matrice de V
dans B est la matrice, & n lignes et a p colonnes, dont la 7°™¢ colonne est le vecteur des
coordonnées du vecteur v;. Pour j = 1,...,p, le vecteur v; s’écrit

n
7 . ’ N n
U = E aije; (0.0 ,0m5) €K
i=1

Alors la matrice de V' dans B, notée Mat‘,g, est donnée par :

Q. Qg2 o Qip

Qg1 Qg -+ Qgy
Matg = :

Qp1 Qpy - an

Exemple 2.5.3 Soit E = Ry[X] et B= (1, X, X?) sa base canonique. Soit V = (Py, Py) ot
Po=1-X—-X?2etP,=24X —3X2 Alors
L 2

Maty = [ =1 1
-1 -3

Théoreme 2.5.1 Soit F un K-espace vectoriel de dimension finie n. Soit B une base de F
et soit V = (vy,...,u,) une famille de vecteurs de E. Soit S le systéme linéaire homogéne
correspondant a la matrice de V' dans B. Alors le rang de V' est égal a n — q ol q est le
nombre des variables indépendantes de S.

Exemple 2.5.4 Dans R® muni de sa base canonique B, soit

1 1 0 1 0
2 1 1 0 i}
v = 1 Susi= N2 IRt =" L = 1 etvs=1] 2
—1 0 —1 -3 )
-1 1! -2 1 1
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La matrice des coordonnées de la famille V = (v, va,v3,v4,v5) dans B est

1 1 0 1 0

2 1L 1 0 1
Maty =] 1 2 -1 1 2
-1 0 -1 =3 5
-1 1 -2 1 1

Le nombre de variables indépendantes est 2 (voir Exemple 1.2.5). Donc le rang de la famille
(vy, V9,03, Vg, Us) est 3.

Remarque 2.5.2 Soit E un K-espace vectoriel de dimension finie n et soit B une base de
E. Soit V une famille finie de vecteurs de E.

1) Si on connait une base By de Vect(V') alors le rang de la famille V' est égal au cardinal de
Bi.

2) 81V est formée de n éléments alors V' est libre si le déterminant de Maty est non nul.
Dans ce cas 'V est aussi une base de E.

Exercice 1

Soit (K, +, -) un K-espace vectoriel. Démontrer les propriétés suivantes :
1)

2) YVve E (-1)-v=-—v.

) Va,BeK YveE (a—fB)-v=a-v-0-v.

) VaeK YVo,weF a-(v-—w)=a-v—a-w.

YVaoe K Vve E (e-v=0r« a=0k ou v=_0g).

Exercice 2
Dans les cas suivants, F-est-t-il un sous-espace vectoriel de E7?

1)E;M%mF;{(I>cR2;m+y=u.

Y

2) E est le R-espace vectoriel des suites réelles et F est formé des suites réelles croissantes.

3) E est I'ensemble des fonctions de R dans R et F' est I'ensemble des solutions de
I’équation différentielle

L Ay dy
(E) E‘LTZ_.,‘(LH+by—O a,beR.

Exercice 3
Montrer que
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1) I’ensemble K,,[X] des polynomes de degré inférieur ou égal a n € N* est un sous-espace
vectoriel de K[X].

2) I'ensemble des solutions du systeme

2 — y + z 4+ 2w = 0
(S)g 3z — 2y + 32 — w = 0
x + w = 0

est un sous-espace vectoriel de R4,
Exercice 4

1) Soit P une matrice carrée d’ordre n & coeflicients dans R. Pour 2 = 1.--n, soit C; le
vecteur correspondant a la ¢*™° colonne de P. Montrer, en utilisant la définition, que

la famille (Cy, Cy,...,C,) de R™ est libre si et seulement si P est inversible.
1 2 7
2) Soit vy = | =1 |,oo=| =4 | ,u3=| —11
2 2 10

Les vecteurs vy, vy, v3, de R?, sont-t-ils linéairement indépendants sur R?
Exercice 5

1) Montrer que la famille (1, X, X?) est une famille libre de K[X].

2) Soit n. € N. Montrer que les éléments 1, X, ..., X" sont linéairement indépendants.

3) Soit a € K, montrer que la famille (1, X — a, (X — a)?,...,(X — a)") est une famille
libre de K[X].

Exercice 6

. 1 x .(
1) Soit vy = < 9 ) , Vg = < 2 > . Montrer que (v1,vs) est une base de R?.

2) Soit n € N, montrer que K,,[X] est de dimension finie et calculer sa dimension.

3) Soit a € K, Montrer que (1, X —a,(X —a)?, ..., (X — a)™) est une base de K,[X].

Exercice 7
Donner une base de I’ensemble des solutions du systéeme

2t — y + 2 + 2w = 0
(8)¢ 3z — 2y + 32 — w = 0
& + w = 0
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Exercice 8
Soit F = K,[X],n > 2 et soit a,b € K avec a # b. Soit ;

E,={P€FE : Pla)=0}et B,={P€E : P(b)=0}.

1) Déterminer o, # € K tels que : 1 = a(X —a) + (X —b).
2) Montrer que E = F, + E;.
3) La somme est-elle directe?

Exercice 9

Soit £ un K-espace vectoriel de dimension finie et soit £ et G deux sous-espaces vectoriels
supplémentaires de F.

1) Montrer que si By est une base de F' et B; est une base de G alors la famille B = B; UB;
est une base de E.

2) En déduire que dim(£) = dim(F') + dim(G).

Exercice 10
Calculer la dimension du sous-espace vectoriel de R® engendré par

1 2 14
Uy = -] , Ug = —4 3 UB = —22
2 ) 20
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