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1 charge électrique

1.1 définition et propriétés

Les expériences d’électrisation, par frottement, par contact ou par influence, sont connues
depuis I’Antiquité, notamment grace a I’étude de 'ambre ("elektron" en grec). Au niveau
microscopique, la charge électrique est une caractéristique que ’on peut attribuer a toute
particule élémentaire qui participe & l'interaction électromagnétique.

- Il existe deux types de charges électriques : positives et négatives, les interactions élec-
triques pouvant étre attractives ou répulsives.

- La charge électrique d’une espéce chimique observable & I’état libre est quantifiée :
avecn € Z et e = 1,6.10712C. Ceci est prouvé par I'expérience de Millikan (voir exercices
de mécanique).

- La charge électrique est invariante par changement de référentiel.

- La charge électrique d’un systéme isolé électriquement se conserve.

Remarques :

- il existe des particules non chargées.

- A toute particule chargée, correspond une antiparticule de charge opposée.

- Les quarks ont une charge inférieure a e en valeur absolue, mais ils ne sont pas observables
isolément.

1.2 description de la charge électrique a I’échelle macroscopique

Attribuer une charge électrique a chaque atome (ou ion) alors que l'on s’intéresse a une
quantité de matiére d’ordre macroscopique, revient a envisager une fonction de répartition
de la charge électrique qui est nulle pratiquement en tout point de ’espace, sauf en un
nombre fini (néanmoins extrémement important) de points, pour lesquels elle est multiple
de e.

Cette fonction présente donc un nombre considérable de discontinuités. Le probléme est
exactement le méme concernant la description de la masse vue en thermodynamique : celle-
ci est répartie de facon discréte au niveau microscopique, mais nous avons l'impression
d’une répartition continue (ou en tout cas présentant un nombre limité de discontinuités)
au niveau macroscopique. Il est donc impossible & traiter tel quel mathématiquement.

Si on considére un volume V contenant une charge totale ¢, on ne peut se contenter de
dire qu’il contient une charge q/V par unité de volume : la charge n’est pas nécessairement
répartie uniformément.

1.2.1 densité volumique de charges

I1 faut donc envisager de subdiviser 'espace en volumes élémentaires dr (échelle mésosco-
pique), petits a I’échelle macroscopique mais grands par rapport au volume d’une charge
élémentaire, donc contenant un grand nombre d’entités chargées.

Si dq = > q; est la charge contenue dans le volume d7r autour du point M, on peut alors
écrire



d
p(M) = ch est la densité volumique de charge au voisinage de M, exprimée en C.m™3.
T
Remarque : Plus d7 sera petit devant les dimensions du systéme, meilleure sera la pré-
cision. En revanche, il faut que dr reste grand devant les dimensions microscopiques afin
de ne pas laisser apparaitre ’aspect discret de la répartition de la matiére.

1.2.2 densité surfacique de charges

ds

RN

La répartition de matiére peut étre telle que 'une des dimensions soit négligeable devant
les deux autres. La charge dq portée par le volume mésoscopique dr situé autour du point
M peut toujours s’écrire : dqg = p(M )dr. Par ailleurs, d7 = e(M)dS ot ¢(M) est 'épaisseur
du volume au voisinage de M et dS sa section. On a alors dq = p(M)dr = p(M)e(M)dS.
Quand e(M) tend vers 0, le produit p(M)e(M) reste non nul.

dg = p(M) edS = o(M)dS |

o(M) est la densité surfacique de charge au point M, exprimée en C.m™2,

1.2.3 densité linéique de charges

Si deux des 3 dimensions sont négligeables par rapport a la troisiéme, on peut définir
comme précédemment une densité linéique de charge ou charge linéique

avec A\ = p(M)dS, densité linéique de charge, exprimée en C.m~!.

S

g

Remarque : la modélisation par une distribution volumique est toujours valable, au contraire
des disributions surfaciques et linéiques.

2 champ électrostatique

2.1 loi de Coulomb

S’inspirant de la loi de la gravitation énoncée par Newton, Coulomb monte une expérience
utilisant une balance de torsion qu’il a préalablement étudiée pour mesurer de facon trés
sensible la force d’interaction entre deux conducteurs chargés.



fil de torsion
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Un conducteur est solidaire d’une tige horizontale suspendue & un fil métallique fixé a son
extrémité supérieure. On introduit un deuxiéme conducteur a l'intérieur de la balance. Les
deux conducteurs initialement en contact sont électrisé par contact avec un troisiéme.

Ils acquiérent des charges de méme signe et se repoussent. La force exercée par 1 sur 2 est
donc dirigée suivant MMy et de M7 vers Ma.

Pour réduire la distance entre les deux conducteurs, il faut exercer une certaine torsion
sur le fil. L’angle de torsion du fil est proportionnel & la force entre les deux charges et
on constate expérimentalement qu’il est inversement proportionnel au carré de la distance
séparant les deux charges.

L’expression actuelle de la loi de Coulomb est la suivante :

Soient deux charges ponctuelles q; et g2, respectivement situées en deux points
M; et M, ; la force exercée par M; sur M, dans le vide s’écrit :

o
Foy— L g MiMy T
- 47‘(’60 M1M22 MlMQ -

avec = 9.10° SI permittivité diélectrique du vide.
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Remarque 1 : Dans un milieu isolant (diélectrique) caractérisé par sa permittivité rela-

—

1 q1q2 My Mo
47T€06r M1M22 M1M2
charges électriques sont écrantés par les molécules d’eau qui solvatent ’entité chargée.

C’est ce qui confére a 'eau son carctére dissociant.

tive ., elle devient : ?1_& = . Ainsi, pour l'eau g, ~ 80 car les

Remarque 2 : Cette expression n’est valable que dans le cadre de I’électrostatique, c’est-a-
dire pour deux charges fixes dans le référentiel d’étude. (Sinon, il faut travailler avec des
forces électromagnétiques. Cela reste néanmoins une bonne approximation si les vitesses
des particules sont faibles devant c.)

Remarque 3 : L’intensité des forces électrostatiques explique la neutralité de la matiére.

2.2 champ créé par une charge ponctuelle

Une charge ponctuelle q en O exerce sur une charge ponctuelle q’ placée en un point M
une force

s —
? 1 ¢ OM , ¢ OM
T Areg OM2OM 1 4dmeg OM3

Le rapport —- est indépendant de la charge q’. Il ne dépend que de q et des coordonnées

du point M. On peut donc considérer que la présence de la charge q au point O modifie les
propriétés de ’espace autour d’elle. La charge q crée un champ électrostatique, exprimé en
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Une charge ponctuelle q’ placée en un point M subira une force électrostatique ? =
q’E(M) de la part de q.

- Le champ f n’est pas défini au point ol se trouve la charge.

- Il présente une symétrie sphérique.

- ordres de grandeur : champ disruptif de l'air (provoquant l'ionisation de ses molécules) :
3.10% V/m; champ intraatomique : de I'ordre de 10'° V/m (obtenu & partir du potentiel
d’ionisation de I’atome).

2.3 champ créé par une distribution de charges ponctuelles

Soit une distribution de n charges ponctuelles q; placées aux points M;. Un charge ponc-
tuelle ' subit de la part de la distribution une force électrique égale a la somme des forces
dues & chacune des composantes de la distribution, soit :

? :q’Zﬁi(M)

La distribution crée donc en un point M de I’espace un champ électrostatique E(M ) = Z ﬁl(M ) |

On observe donc que le champ résultant de la distribution est la somme des champs créés
par chacune de ces composantes. Ce résultat constitue le théoréme de superposition
pour le champ électrique. Nous admettrons qu’il se généralise & une distribution quelconque
de charges.

Remarque : ce théoréme suppose la linéarité des effets électriques, qui est vérifiée ex-
périmentalement mais non démontrée.

exemple : champ créé par deux charges identiques

Soient deux charges Q fizées aux points M (-a,0,0) et Ma(+a,0,0). On place une troisieme
charge ¢ de méme signe et de masse m en 0(0,0,0) et on souhaite étudier la stabilité de
cette position d’équilibre.

Systéme : charge q

Référentiel : terrestre, supposé galiléen

- Le champ créé en O par les deux charges Q est nul puisque les contributions des deux
charges se compensent. O est donc bien une position d’équilibre.

- Supposons que la charge q soit écartée légérement de O suivant 'axe (Ox). D’aprés le

q 1 1 N
PFD, md = - :
R (x4 a)? (a—a:)Q)em
L . — . Qq 1 1 Qg T

En projection suivant ey, m¥ = 47760((x a2 — (a—2) = Tneod? — 25) -1+

T T
2= hd

=) +0(>))

Q
Tega’d



L’équilibre est donc stable : la charge q effectue de petites oscillations autour de O.

- Supposons que la Charge q 501‘5 ecartee l_gerement de O suivant 'axe (Oy). D’aprés
e, +aey e, —ae

le PFD, md = 24 (Y% v Yoy~ O

M0 (12 +a?)s (12 +a?):

2 2
En projection suivant e, mij = @ i - = Qg 73; (%)
4dmeg (y2 + a?)2 dmeg a a
. Qq
_ —0
4 27r50a3y

L’équilibre est donc instable suivant (Oy) et a fortiori globalement (la probabilité pour que
le charge soit exactement suivant (Ox) est nulle).

2.4 champ créé par une distribution "continue" de charges

Soit une distribution volumique de charge dans un volume V, caractérisée par une densité
volumique de charge p(M), M € V. L’élément de volume d7 en M porte une charge (quasi-
p(M)dr MP

dmey MP3’
utilisant le théoréme de superposition du champ électrique, on en déduit que le champ créé
en P par ’ensemble de la distribution a pour expression :

/// M)dr PM
Cdmey PM3

ponctuelle) p(M)dr et crée en P un champ élémentaire dﬁM(P) =

exercice 4

2.5 Lignes de champ

Une ligne de champ est tangente en chacun de ses points M au champ E(M ) et orientée
dans le sens du champ.

%
Son équation est |dM A ﬁ =

, L . ., .o dr dy dz
En coordonnées cartésiennes, cette relation s’écrit — = — = —.
E, E, E,
d d dz
En coordonnées cylindriques, cette relation s’écrit @ _ PEP _ —.
E, E, E,

r rdd rsinfd
En coordonnées cylindriques, cette relation s’écrit — = — = 7@.
E, Ey E,

Elle vérifie les propriétés suivantes :
1. Les lignes de champ électrostatique divergent a partir des charges positives et convergent
vers les charges négatives.
2. Lorsqu’il est défini, le champ électrostatique est nul au point d’intersection de deux
lignes de champ (deux lignes de champ ne peuvent donc se couper que si E(M ) = ﬁ ou
g(M ) est non défini, donc s’il y a une charge ponctuelle, une surface ou une ligne chargée
en M).
3. Les lignes de champ électrostatique d’une distribution

— partent a l'infini si la distribution est globalement positive

— proviennent de l'infini si la distribution est globalement négative

— n’aboutissent ni ne proviennent de l'infini si la distribution est globalement neutre



On peut observer la topographie d’un champ électrique en soumettant des grains de riz en
suspension dans la glycérine au champ électrique souhaité : les grains de riz se polarisent
sous l’action du champ électrique et s’orientent alors parallélement & celui-ci, matérialisant
ainsi les lignes de champ.

Observation d’une carte de champ :

- On constate que les symétries et invariances de la distribution de charges se retrouvent
dans les lignes de champ (ici, invariance par rotation autour de laxe portant les deux
charges et symétrie ou antisymétrie par rapport au plan médiateur des charges). On peut
donc simplifier les calculs du champ électrostatique grace a ses propriétés de symétrie.

- A grande distance de la distribution, les lignes de champ se rapprochent de celles du
champ créé par une seule charge, équivalente a la charge globale

- A proximité de chaque charge, la situation tend vers celle correspondant & cette charge
seule.

- Aucune ligne de champ électrostatique n’est une courbe fermée. exercice 5

3 Invariances et symétries

3.1 Invariances des distributions de charges

e Une distribution, illimitée dans la direction de 'axe A, est invariante par transla-
tion suivant A si, pour tout point M et son translaté M’ sa densité de charge vérifie

p(M) = p(M).
exemple : distribution invariante par translation suivant Oz, comme un fil de section rec-
tangulaire infini d’axe Oz

e Une distribution, est invariante par rotation autour d’un axe A si, pour tout point

M et M’ obtenu aprés rotation, sa densité de charge vérifie p(M) = p(M’).
exemple : distribution invariante par rotation autour d’un axe Oz

p(r,0,z) = p(r, 2)
e Une distribution a symétrie cylindrique est telle que
p(r,0,z) = p(r)

(invariance par rotation autour de Oz et invariance par translation suivant Oz, comme
pour un fil cylindrique infini d’axe Oz)

eUne distribution & symétrie sphérique est telle que

p(r,0,¢) = p(r)



(invariance par rotation autour de ?@ et invariance par rotation autour de Oz)

3.2 Plan de symétrie et plan d’antisymétrie

Une distribution est symétrique par rapport & un plan II si, pour tout point M, il existe
un symétrique M’, et si sa densité de charge vérifie

Une distribution est antisymétrique par rapport & un plan II* si, pour tout point M, il
existe un symétrique M’, et si sa densité de charge vérifie

p(M) = —p(M")

exercice 1

3.3 Conséquences pour le champ électrostatique

D’apres le principe de Curie, lorsque les causes d’un phénoméne possédent des éléments de
symétrie, ces éléments de symétrie se retrouvent dans les effets.

- Lorsqu’une distribution de charges présente un plan de symétrie II, ﬁ est transformé en
son symétrique par rapport au plan II.

E(Pz) = sym E(Pl)

Conséquence :

ﬁ(MeH)eH

- D’autre part, lorsqu’une distribution de charges présente un plan d’antisymétrie IT* est
transformé en son antisymétrique par rapport au plan II*.

On dit que le champ électrique est un vecteur polaire ou vecteur vrai, c’est-a-dire qu’il
présente les mémes éléments de symétrie que la distribution qui le crée.

p— — —_— —
E_(M) |_||_\]:|—J (M)+E (M)
T;’.\ll —
E (M)
M M?
L (M) EM) E (M
P P
q . . -
m



Conséquence :

E(M e IT*) LIT*

exercice 7

3.4 exemples de calculs de champ
3.4.1 champ dans le plan médiateur d’un segment uniformément chargé

Soit un segment uniformément chargé, entre les points (-a,0,0) et (a,0,0), de charge linéique
A. On souhaite calculer le champ électrique créé en un point M de son plan médiateur (Oyz).
A

dE,

Soit M le point considéré, défini par les coordonnées cylindriques d’axe (Ox) (r,0,0).

- Le plan défini par M et I’axe Ox est un plan de symétrie pour la distribution, de méme
que le plan (Oyz). Le champ en M est donc nécessairement dirigé suivant le vecteur er.

- Il suffit donc de calculer E, = L ffa . !
dmeg (r2 4 22)

3
2

1 @ r
E. =2 Ar————
4dmeg Jo (r2 + 22)2

—
Soit a angle (OM OA) ou A est un point du segment chargé.
1

T = rtan a donc dx = Tda.
Ccos® «v
1 Amax TQ%
E, =2 / A\ —LOS7 & gy
47T€() 0 3 1
cosd o
1 Amax
E, =2 / e
4dmeg Jo r
E, =2 si Xmaz
" 47‘(‘607“[ nal;

10



A a
r = 1
47T€07‘ (7'2 + a2)§

A

2mwegr
Remarque 2 : le champ n’est pas défini par cette expression en r=0, point de la distribution

linéique.

Remarque : si le fil est infini, a — oo et B, —

3.4.2 champ sur axe d’un disque uniformément chargé

Soit M un point de l’axe (Oz). Les plans contenant (Oz) sont des plans médiateurs pour

la distribution de charges donc E (M) est nécessairement suivant .

R 2
o z
E, = dfdp———
? 47750/0 /0 P p(p2+z2>%

R
g z
o dp— =
20 o pp(p2+zz>%
g z
E=—|-—Z |k
z 250[ (p2+22)%0
o 2|
Ezfsnz 1—7
*T0g 0 (=) (1%2+-z2)%)

Remarque : a la traversée de la surface contenant le disque chargé, la composante nor-
male du champ électrique est discontinue.

— — o —
E1 — By = —noi
€0

Ce résultat se généralise & toute surface chargée.

Remarque 2 : le champ n’est pas défini par cette expression en un point de la distribution
surfacique.

4 aspects énergétiques : circulation du champ électrostatique,
potentiel électrostatique

4.1 circulation d’un champ de vecteurs

La force exercée par une charge ponctuelle ¢ en O sur la charge ¢’ en M s’écrit

F=qEWM)

11



Le travail de ? sur un déplacement quelconque, en régime permanent, entre My et My
est
Mo Mo
Wi, (F)= [ F.dOM = ¢ / E(M).dOM
My My

Il est donc proportionnel & la circulation de ﬁ sur la portion de trajectoire considérée.

Par définition, on appelle circulation elementalre d’un champ de vecteurs X
le produit scalaire dC = Z (M) = X( M). dOM.
Soit une courbe orientée I', A et B deux pomts de I', on appelle curculatlon du champ de
vecteurs de A & B sur I, I'intégrale C4,p(A,I') = fA,MeF (M).d 7 (M), lorientation

%
de d I (M) étant donnée par celle de T

4.2 circulation du champ électrostatique

Dans le cas du champ électrostatique créé par une charge ponctuelle, en coordonnées

sphériques,
dr 1 1
2 ,r, dT‘ ?T‘ = / q 72 fd q RN —
dreg T 4meg T dmeg \Tr4 TB

/ E(M ) dOM /
TA

Remarque : Le principe de superposition permet de généraliser ce résultat & une distribu-

tion de charge quelconque.

La circulation de E est conservative, elle ne dépend pas du chemin suivi.
Conséquences :
- I1 découle immédiatement de ce qui précéde que pour un tel champ de vecteurs, la circula-

tion sur un contour fermé est nulle, pour tout contour fermé de son domaine de définition.
- Nous admettrons que pour un champ & circulation conservative A(M), on peut écrire :

A(M) = —gradV (M) < A(M).dl = —dV(M)

4.3 potentiel électrostatique

La circulation de E peut donc s’écrire

/B E(M).dOM = V(A) — V(B)
A

ot V(M) est une fonction appelée potentiel électrostatique, exprimée en V.

Remarque : les tensions sont des différences de potentiels électriques.

Dans le cas particulier de la charge ponctuelle

1 q
dmeg T

V(r) =

Le potentiel est défini & une constante prés (on choisit en général V(oco) = 0, ce qui est
possible pour une distribution réelle, d’extension nécessairement finie, mais pas pour une
distribution d’extension infinie) et il n’est pas défini au point ou se trouve la charge.

Le champ électrostatique est invariant de jauge, c’est-a-dire qu’il ne dépend pas du choix

12



de cette constante.

e Pour une distribution de charges discontinues, 'opérateur gradient étant linéaire,

I g
M) =
V(M) Z:47760 P,M

e Pour une distribution volumique d’extension finie

V(M):///D 47rleop(]f]3j7-

Vet ﬁ sont définis et continus dans tout ’espace.

e Pour une distribution surfacique d’extension finie

von - [ [ o er

V est défini et continu dans tout ’espace et ﬁ est défini dans tout I'espace mais subit une
discontinuité a la traversée de la surface de distribution.

e Pour une distribution linéique d’extension finie, pour tout point M hors du fil,

B 1 AP
VM) = /D47r60 PM

Vet ﬁ sont non définis sur la distribution.

Connaissant le potentiel, on peut en déduire le champ par
e

E = —gradV

(Inversement, un champ de vecteur a circulation conservative est un champ de gradient.)
exercices 2, 6, 12

4.4 exemple : potentiel créé par un circonférence uniformément chargée

Y dt = Rdo

Soit une circonférence de centre O et de rayon R portant, en tout point, une densité li-
néique de charge A. On souhaite connaitre le potentiel et le champ électrostatique créé par
la distribution en un point P de I’axe (Oz) de la circonférence.

13



- Pour une telle distribution, le plan de la circonférence est plan de symétrie ainsi que
tout plan passant par I’axe Oz. Calculons le champ électrostatique et le potentiel en un
point P de ’axe Oz : le champ est porté alors par 'axe Oz.

‘/(]\4)_/27r 1 ARdyp
0 47?60(R2+Z2)%

_Ar_ R
2¢q (R? —{—22)%

Le champ, porté par 'axe (Oz) d’aprés les considérations de symétrie, en découle facile-

ment :
ﬁ = —gradV

1% A Rz

donc B, = -2 = 22
one dz 20 (R2 + 22)%

Remarque : quand z— o0, on retrouve ’expression du champ créé par une charge ponc-
tuelle g=27 AR placée en O.

4.5 surfaces équipotentielles

Dans le cas général d’'un champ de scalaires quelconque, on appelle surface isoscalaire une
surface en tout point de laquelle un champ de scalaires est constant.

Dans le cas ot le champ de scalaires est le potentiel dont dérive un champ de vecteurs, les
surfaces isoscalaires prennent alors le nom de surfaces équipotentielles. L’équation d’une
surface équipotentielle s’obtient en écrivant

Les constantes d’intégration sont liées au point par lequel passe la surface équipotentielle
considérée.

- Imaginons un déplacement élémentaire ﬁ au voisinage d’'un point M appartenant a
une équipotentielle, tout en restant sur cette équipotentielle,

AV = 0= E.dOM =0

F 1dOM

Les lignes de champ, tangentes aux champ, sont normales aux surfaces équipo-
tentielles.

—
4V <0= E.dOM >0
Les lignes de champ sont orientées dans le sens des potentiels décroissants.
exercice 3

4.6 propriétés de symétrie

Le potentiel électrostatique respecte les symétries (plans, axes), mais, étant défini & une
constante additive prés, ne satisfait pas directement aux plans d’antisymétries de la dis-
tribution de charges. Cela est néanmoins possible sous réserve d’un choix ad hoc de la
constante, qui implique le choix d’une valeur nulle du potentiel en tout point du plan
d’antisymétrie.
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5 énergie potentielle électrostatique

5.1 énergie potentielle d’une charge placé dans un champ

Reprenons l'expression du travail de la force électrique exercée par une charge ponctuelle
q sur une charge ponctuelle q’ se déplagant de A en B suffisamment lentement pour rester
dans le cadre de I’électrostatique.

Was(F) = (V(A) - V(B))

Ce travail ne dépend pas de chemin suivi. Il peut étre considéré comme la variation d’une
fonction d’état Ep : WAB(?) = E,(A) — Ey(B)

est I’énergie potentielle que posséde la charge ¢’ du fait de sa position M dans le champ
scalaire V.

5.2 énergie potentielle d’interaction entre deux charges

Si un opérateur cherche & amener de maniére quasi-statique deux charges ponctuelles q et
q’, initialement & l'infini et au repos, & des positions finales M et M’ et au repos, il doit

fournir un travail :

!
Wop = fop/qdOM + o0 dOM

Comme le déplacement est quasi-statique, d’aprés le PFD sur chaque charge,

!/

(SWop - *fq//quM - fq/q/dOM
_— ——
SWop = — fy g dM M’

/
1
Wop = 7 d( )

dreg MM’
qq’ 1
W,, = A
P Areg (MM’)

L’énergie potentielle d’interaction entre deux charges g; et g2 est égale &

! L qiq
Epi, = 1Va(M1) = 2V1(M2) = 5 (a1Va(M1) + V1 (M) = 4reg Mi]\242

6 flux du champ électrostatique, théoréme de Gauss

Dans certains cas, le calcul du champ électrostatique peut étre beaucoup plus facile en
utilisant les propriétés du flux d’un champ newtonien.

6.1 vecteur élément de surface

Une surface élémentaire quasi-plane dS autour d’un point M posséde deux faces. Pour
distinguer ces deux faces, il est nécessaire d’orienter la surface. Pour cela, on associe a
cet élément de surface un vecteur unitaire W(M ), normal & la surface. Pour une surface
fermeée, il est toujours dirigé vers l'extérieur de la surface.

On appelle vecteur élément de surface le vecteur 5 = (M).dS

15



6.2 flux d’un champ de vecteur

Par définition, on appelle flux élémentaire d’'un champ de vecteurs Z(M) au point M la
quantité d® = Z(M)d?

Le flux du champ Z(M) a travers une surface X est donc @(Z, ¥) = [ Jures Z(M)d?
Si la surface est fermée, on écrit @(X, ¥) = $ires X(M)d?

6.3 flux du champ électrostatique

Calculons le flux sortant d’une surface sphérique de rayon r enfermant une charge ponc-
tuelle g en O :

1 1 1
@:fﬁ.mxtdszjé q?r.?rdsijfds g2 = &
S S

Aeg 2 deq 2 - dweg r2? €0

On admettra le théoréme de Gauss, qui généralise ce résultat :
Le flux du champ électrostatique sortant d’une surface fermée S est égal a la
charge totale ();,; enfermée dans cette surface divisée par ¢

o= f o ds = Gt
S €0

Conséquence : extrema du potentiel électrostatique

Imaginons qu’en un point M de l’espace, le potentiel prenne une valeur maximale. Les
lignes de champ étant orientées dans le sens des potentiels décroissants, elles divergent a
partir de ce point.

Soit une surface fermée ¥, telle que M lui soit intérieur : les lignes de champ divergeant a
partir de M, le flux du champ électrique tend nécessairement vers une valeur strictement
positive si I’on fait tendre ¥ vers M. D’aprés le théoréme de Gauss, il existe nécessairement
une charge positive ponctuelle en M.

On montrerait de la méme fagon qu’en un point ol le potentiel prend une valeur minimale,
il existe une charge ponctuelle négative.

Il n’y a pas d’extremum du potentiel électrostatique dans une région vide de charge.

exercices 8, 9, 10, 11

6.4 applications : calculs de champs et de potentiels
6.4.1 boule uniformément chargée

On considére une sphére de rayon R et de centre O, a I'intérieur de laquelle existe une den-
sité volumique uniforme de charge p. Cette distribution obéit évidemment & une symétrie
sphérique, donc le champ est radial et ne dépend que de la distance r du point M ot on le
calcule, & O. La surface de Gauss est donc la sphére de centre O passant par P, donc de
rayon r.

Le flux du champ & travers cette surface est donné par :

o — 7{ 7 oydS = 7{ E, .. ¢,dS = drrE,
S S

4
D’aprés le théoréme de Gauss, = §7TR3/) sir >R
4
et & = §7TT3/) sir < R.

R3
Dot | B(r) = 3{’50r2 sit > R
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pr

et |E(r) = 3o sir < R.
3 2
Vi =2 Ctesiv - Ret Vi) = -2 4 Ot sir < R.
3eor 6eg

En choisissant V= 0 a 'infini, cte=0 et le potentiel ne présentant pas de discontinuité (le
champ étant défini en tout point de I'espace, cela nécessite que le potentiel soit (au moins!)

continu),
2
— PR Ty g
Vir)= 5o (R 3 ) [sir<R
3
V(r)= PR sir>R
3€0T

&3

P e, (P)

P E(P)
dE(P)

- Une telle distribution est & la fois invariante par translation le long du fil et par rotation
autour du fil. Le champ et le potentiel en un point P quelconque ne dépendent donc que
de la distance de ce point au fil, que I’on notera p.

- Par ailleurs, les plans passant par P et respectivement perpendiculaire au fil et passant
par le fil sont tous deux plans de symétrie, le champ est donc colinéaire a leur intersection,
c’est-a-dire suivant la droite passant par P et perpendiculaire au fil. On choisit ’origine du
fil coincidant avec le projeté orthogonal de P, étant donnée 'invariance par translation.

- On choisit comme surface de Gauss le cylindre d’axe Oz, de hauteur h et passant par P.

o = jl{ ﬁ.ﬁemds = 2wphE(p) +0
S

A et| V(P) = — A

h
D’aprés le théoreme de Gauss, ® = — donc | E,(P) = lnﬁ
€0 2megp 2mey  po

ol pg est une distance particuliére pour laquelle on choisit arbitrairement de prendre le
potentiel nul.
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- Remarques : dans ce cas, on ne pourrait pas calculer le potentiel par intégration di-
recte, car la distribution n’est pas d’extension finie. par ailleurs, le potentiel et le champ
électrostatique ne sont pas définis sur le fil.

6.4.3 plan infini uniformément chargé

¢

Soit le plan (Oxy) uniformément chargé, de charge surfacique o. Calculons le champ créé
par ce plan en un point M(x,y,z > 0).

- Tous les plans contenant I’axe (Mz) sont des plans de symétrie pour la distribution.

Le champ électrostatique est donc dirigé suivant 1’axe (Oz).

- Par ailleurs, la distribution étant invariante par translation suivant (Ox) et (Oy), E.(x,y,2)=E.(z).
- La distribution est aussi symétrique par rapport & (Oxy) donc E,(-z)=-E.(z).

Appliquons le théoréme de Gauss & un cylindre d’axe (Oz), de hauteur 2z, de rayon R,
symétrique par rapport a (Oxy) :

o = f{ B endS = nR2E.(2) — nR2E.(—2) + 0 = 27 R?E. (2)
S

R2
D’apres le théoréme de Gauss, ® = e donc E, = 7 pour z > 0.
€0 2e0
o
Ez = Sgn(Z)Tso
—— av
Comme ﬁ = —gradV, B, = ——
dz
o|z|
VIM)=—+Ct
(M) =3 o, T Cte

Remarque : on retrouve bien ’expression obtenue dans le cas du disque uniformément
chargé, en faisant tendre son rayon vers l'infini.

Remarque 2 :on retrouve la discontinuité du champ a la traversée d’une surface chargé. Le
potentiel est par contre continu.

6.4.4 récapitulatif

Pour choisir la méthode la mieux appropriée au calcul d’'un champ électrostatique, on peut
suivre l'organigramme suivant :
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Om étudie les symétries de la distribution de charges pour
déterminer la direction du champ.

Om étudie les invarianees pour déterminer de quel(s)
pammétre{s) dépendent les compozsantes du champ et le
potemtiel. Cette @ude s"accompagne du choix du systéme de
coordonnées adapté 4 la description de la distribution.

Om applique le théoréme de Gauss 4 une sphére
contrée sur le centre de symetrie de la
distribution et passant par Lz point o1 l'on
caleule le champ {on itére lopération autant de
finis que nécessaire suivam le nombre de
discontinuités de la distribution).
Connaissant alors le champ, on détermine le

potentiel par imégration de Eadl = —d ¥

Ladistibution posséde une
symétne sphénque (e ole est
entiérement définie par la
donnée de la distance 4 un

point).

Onappligue le théoréme de Gauss 4 un cylindre
d'axe celui de la distribution et passamt par le
pointon U'on calcule le champ {on itén
l'opémtion autant de fois que nétessaire suivant
le momibre de discontimuités de la distribution).
Connaissant alors le champ, on déterming le
notentiel par intégration de Edl = -

La distribution posséde une
symétrie eylindrque (e, ole
est entiérement définie par la
dommée de la distance 4 un
ane).

Om applique le théoréme de Gauss 4 un prisme
droit symétrique par mpport a plan de symétrie
de la distribution et passant par le point i 'on
caleule le champ (on itére 'opération autant de
fois que nécessaire suivant le nombre de
discontimuités de la distribution),
Connaissant alors le champ, on détermine le
potentiel par intégration de E.dl = —dV

Ladistributiom posséde une
symetrie plane (ie. elle est
entiérement définie par la
donnge de la distance 4 un
plan].

La distribution est d'extension
finie {i.e. dews poims
quelcongues de cette

distnbution sont a4 distance

fimie [un de avtre).

Ohui Omn caleule directement le potentiel.
— Connaissam alors le potentiel, on détermine
l2 champ par E = —grad

Omn caleule directement le champ.
Connaissam alors le champ, on détermine le potentiel
par intégration de Edl = —d ¥
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7 analogie avec le champ de gravitation

7.1 DPinteraction gravitationnelle

Nous avons déja vu la loi de Newton en mécanique :
Une masse ponctuelle my en M exerce sur une masse mo en Ms une force gravitationnelle

—
m1m23 My Mo
My M

?1/2 =-G

On peut donc facilement obtenir des résultats similaires a ceux du champ électrostatique,

1
en remplagant yr—— par — G et la charge q par la masse m.
TEQ

7.2 champ gravitationnel

Le champ gravitationnel créé au point P par une masse ponctuelle m située au point M

est donné par : 8
m
P)=— 7M?’
u(P) = ~957ps

Avec le théoréme de superposition, on montre que le champ gravitationnel créé par une
distribution de n masses ponctuelles m; est :

De méme, le champ gravitationnel créé par une distribution continue de masses contenue

dans un volume V est
BM(P)z—/// ¢ M) 5B
MeV

MP3

7.3 symétries

Le champ gravitationnel posséde les mémes éléments de symétrie que la distribution de
masses qui le crée.

7.4 potentiel, énergie potentielle de pesanteur

Le champ gravitationnel est & circulation conservative. Il dérive donc d’un potentiel de
pesanteur :
- pour une masse ponctuelle,

m

- pour une distribution continue de masses,

7.5 théoréme de Gauss

Par analogie avec le théoréme de Gauss pour le champ électrostatique,
Le flux du champ gravitationnel sortant d’une surface fermée S est égal a la
masse totale m;,; enfermée dans cette surface multipliée par 47G

o — 7{ C 7 ydS = —AnGrm,
S
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7.6 exemple : champ de gravitation créé par une distribution sphérique
de masse

Soit une sphére de centre O de masse uniformément répartie en volume, de densité p, et de

rayon R. Calculons le champ gravitationnel créé en un point M(r,0,p) par cette distribution.

- La distribution présente une symeétrie sphérique donc 8 ne dépend que de r.

- Tout plan contenant (OM) est un plan de symétrie pour la distribution done G = G(r) €.

Appliquons le théoréme de Gauss a la sphére de rayon r et de centre O :

b = f 8.W€xtd5‘ = —47Tgmz‘nt
S

-sir >R,
4
4mriG(r) = 47rg§R3p

4T R3p
372

G(r)=-g

Tout se passe a l'extérieur de la distribution comme si toute la masse était concentrée au
centre de la distribution.
-sir <R,
4
4G (r) = 47rg§7“3p

4mrp
3

G(r)=-G

7.7 résultats non transposables

- La gravitation est toujours attractive - Il n’y a pas d’équivalent au concept de conduc-
teur/isolant. - Il n’y a pas de concept analogue a celui de dipole électrostatique.

8 le dipdle électrostatique

8.1 définitions

On appelle dipole électrostatique un ensemble de deux charges opposées +q et —q dispo-
sées en deux points (resp.) P et N de l'espace et examiné & une distance grande devant ses
dimensions.

Les dipdles sont souvent rencontrés en chimie : certaines molécules se comportent comme
des dipoles du fait de la différence d’électronégativité des atomes qui les constituent,

d’autres se polarisent sous 'action d’un champ électrostatique.

On appelle moment dipolaire du dipdle, exprimé en C.m, le vecteur

7 = NP

1
En chimie, on exprime souvent le moment dipolaire en Debye : 1D :5.10_29C.m.

Nous admettrons que les résultats qui suivent se généralisent a toute distribution dipo-
laire, c’et-a-dire telle que :
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- La charge globale de la distribution est nulle ; on appelle q la somme des charges positives.
- Les barycentres N et P respectivement des charges négatives et positives sont disjoints;
on définit alors le moment dipolaire de la distribution par ? =qgNP.

- L’étude est faite & une distance grande par rapport & celle du dipdle.

exercice 13

8.2 potentiel électrostatique créé par un dipoéle

M
o
0
-
A 3 AN, —— ot
N £ B a p
2 2

q 1 1
M) = —
VM) 4deq (PM NM>

YV 2 2
PM2_0Mf0§2_r2 racosf - & 2 (1 acosf a
4 42

T T

1 1 acosf a? —1/2 1 acosf
—=—(1- TR ~= (14
PM r r 4r2 r 2r
1 N 1 1 acosf
NM r 2r

q acos 1 ?.?r
2

de méme,

M) =
V(M) dmeg T

 dweg 12

Remarque : La distribution est invariante par rotation autour de Oz. Donc, le potentiel
en M ne doit pas dépendre de ¢. L’expression que 'on vient d’établir permet bien de le
vérifier.

8.3 champ électrostatique créé par un dipdle

ﬁ = —gradV
done ov 10V 1 oV
E . =—— Ey=——— E,=— —
or o r 00 ® rsin € dy
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ce qui donne

1 2pcosf 1 psiné
E, = Ey)= E. =0
" Aweyg 13 0 dmey 13 v
On pourra vérifier ?
1 3p.r
E 7
degr3 ( 72 v

8.4 lignes de champ ; surfaces équipotentielles

1 7.,

Teg T2

- L’équation d’une surface équipotentielle est

Le champ n’ayant pas de composante suivant ?w les lignes de champ sont contenues
dans des plans d’équation ¢ = cte.
- L’équation d’une ligne de champ est

dr_rdd
ET‘ B E@
20089_@
sinf  r

Les lignes de champ sont normales aux équipotentielles. Les apparentes contradictions du
diagramme obtenu se manifestent toutes au voisinage du point ot se trouve le dipdle : les
expressions qui ont conduit au tracé ne sont alors plus valables car elles ne le sont qu’a
grande distance de ce point.

Vs>V, _v, v Vo<V,
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8.5 action d’un champ électrique sur un dipodle
8.5.1 champ uniforme

Dans ce qui suit, ﬁext désigne un champ extérieur uniforme dans lequel est plongé le dipole.

Le dipoéle subit alors les actions
%
? = qﬁe:pt - qﬁe:vt =0
Le moment en O des forces extérieures est

-A—/l>O = O? A qﬁezt + O—]>V A _qﬁewt = qﬁ A Be:mt = ? A ﬁewt

Le dipo6le ne peut étre a I’équilibre que s’il s’aligne avec le champ extérieur.

8.5.2 champ non uniforme

Le calcul précédent du moment résultant en O reste valable :
_>
Mo = OPAGE i+ ONN—q(E ot +dE est) = GNPAE ot +ONA—q(dE et) ~ T A Eear

car dEext est un infiniment petit du méme ordre que NP donc que de ON ; le second terme
est donc un infiniment petit du second ordre alors que le premier en est un du premier
ordre, il est donc prépondérant.

Le dipdle aura donc tendance & s’orienter comme précédemment dans le sens du champ
électrique. La résultante des forces extérieures n’étant pas nulle, il sera ensuite attiré dans
la direction dans laquelle I'intensité du champ est la plus forte.

Ce comportement fait penser a celui d’un aimant en présence d’un champ magnétique, par
exemple une boussole dans le champ magnétique terrestre.
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