Planche n° 12. Trigonométrie circulaire : corrigé

Exercice n°1

1) sinx =0 & x € nZ. De plus, So,2 = {0, 7, 271}

2)sinx=1&x¢€ g +2nZ. De plus, S 27 = {g}

3)sinx=—1&x¢€ —g + 27nZ. De plus, S 2 = {377-[}

4) cosx =1 & x € 2nZ. De plus, So, 2. =10, 271}
5) cosx = —1 & x € m+ 2nZ. De plus, Sp 27 = {7}

2’2
7) tanx = 0 & x € nZ. De plus, Lo, 2~ =1{0,m, 27}

3
6) cosx=0&x € g—l—ﬂZ. De plus, A0,2m = {E _7t}

5
8) tanx=1&x € ;—t + ZZ. De plus, o, 2m = {;—I,Tﬂ}

Exercice n° 2

1) sinx = % S x e (g +27‘[Z) U (5% +27‘[Z>. De plus, 0,24 = {g,%}

. 1 T 3 57 7m
2) sSinx = _ﬁ S X E (—Z +27‘[Z) U <—T +27’[Z) De plus, y[o‘zn] = {T, T}

3) tanx=—1&x € I + nZ. De plus, Lo~ = 3—7T et So.2m = 3—7-[, 7—7T .
4 ’ 4 ’ 47 4
4) tanx = % Exe— +7'[Z De plus, Ho,m = {%} et Ao, 2m = {%’%}
5) cosx = v3 &ExeE (—— +27TZ) (E +27TZ) De plus, .7 _frm 1m
- 2 6 6 . plus, [0,2t] = 5’ 6 .
1 3m 37 3 5m
6) cosx = _ﬁ Ex e <_T +27TZ) U (T +27IZ>. De plus, S0,2m = {T’ T}

Exercice n° 3

) 1 s 57 s 51
1) sin(2x) = 3 &S 2x € (E +27TZ)U( +27IZ) ESx e (ﬁ +7IZ) (— +7IZ) De plus, 0,2 = {ﬁ’ IR AR

6 12
X 1 X 57t Vas 571 7T 5t 7m

o 91 131 177

+ ZDeplus 5’[07{:{%1%2—0 20}

m 5m 13w 1771}

s
3) tan(Sx)—1(:)5x€Z+7tZ(:)x620

u—

4) cos(2x) = cos? x & cos(2x) = = (1 +cos(2x)) & cos(2x) = 1 & 2x € 2n7Z & x € nZ. De plus, 0,27 = {0, 7, 271}

2
2 1 T T
5) 2cos*x—3cosx+1=0& (2cosx—1)(cosx—1) =0 & cosx = 5 ou cosx=1&x € (—§ +27TZ)U(§ +27TZ) U2nZ.

5
De plus, A0,21 = O,E,—ﬂ,ZT[ .
’ 33
6)cos(nx)zO(z)anE—&-nZ(:)xeE—I-EZ.
2 2Zn n
7)|cos(nx)|:1<:>nxe7tZ<:>x€§Z.
8) sin(nx)zO(:)nxenZ(:)xegZ.

9) |sin(nx)| =1 <:>T1X€E+7TZ<:>X€1+EZ.
2 2Zn n

—1
10) sinx = tanx & sinx S2X 1 0 & sinx =0ou cosx =1 & x € Z. De plus, o2 = {0, 7, 271}
cos
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11) 1ére solution.

sin(2x) +sinx = 0 & sin(2x) =sin(x + 1) & (Fk € Z/ 2x = x + 71+ 2k7n) ou (Fk € Z/ 2x = 7w — (x + 7) + 2k7)

2k
& (Fk € Z/ x = m+ 2km) ou (EkGZ/x:TT[)
2n 4m
De plus, 0,24 = {O, ?,n, ?,Zn}.

2éme solution.

sin(2x) + sinx = 0 & 2sin(x) cos(x) + sin(x) = 0 & sin(x)(2cos(x) + 1) =0 & sin(x) = 0 ou cos(x) = —%

& (Fk e/ x=kn) ou(EkEZ/x:—§+an)ou(EkEZ/x:g—i—Zkﬂ)

12)
12cos? x — 8sin’ x = 2 & 6cos® x — 4(1 — cos? x) :1(:>cos2x=1(:)cosx=L ou cos=—L
2 V2 V2
s T T T
& X E (—Z+7TZ)U(Z+7TZ) & X E Z+EZ

3n mw w3
De plus, 5/[—71,71] = {—T»—Zs 3 T}

Exercice n° 4

oxe =T u 5]

N —

1) Pour x € [—m, 7, cosx <

1 T 51
2) Pour x e R, sinx > ——= & x € ———|—2k7'[—+2k71}
) ¥ U[ T 2k,

3) Pour x € [0, 27,

X 2 X X X X X X
cosx>cosz(:)2cos2 cos 5 1>0(:>(Zcosz+1)(cos2 1)>0(:)2c0s2+1<0et00527é1
X 1 X 27 47t
<:>C082<—Z<:>E€U:|?+2k7'[,?+2k7'[|:
kez
47t 8m 47
<:>xelgz}?+4kn,?+4kn{<:>xe}?,2n].

1
4) Pour x € [—m, 7, cos? x > cos(2x) & 2(1 + cos(2x)) > cos(2x) & cos(2x) < 1 & x € [—m, 7.

1 1
5) Pour x € [0,27], cos’x < = & ———
: 2 V2

m 3| |5 7
44 44

1
<cosx < —= & xeE
V2 [

6) Pour x € [0, 27,

X X .X
cos— <sin=- & —sin - — — cos < m+ 2k

X

357370273 2 3
3m

<

3 3
@erZ/TTHekn x<3n+§+6kn<:>T<x<zn

20(:)sin(§—;—t)20(:)3k62/2k7t<§ ;

Exercice n° 5

2 _ 1 Yy L[ Y2) 22 . n
cos 8—2(1+cos(2x8))—2<1+ > | =2 etdonc,pulsquecosg>0,
V242
cos o = 2 .

PROF: ATMANI NAJIB



2—+2
De méme, sin g == (1 — cos (2 X g)) = V2 et donc, puisque sing >0,

Exercice n° 6

COSE—COS(E—E)—COSECOSE-FSinESinE—M
12 3 4) 3 4 3 4 4 )
De méme,
7% —sin (T =) —sin Fcos ¥ — sin T m_Ve—v2
sm12 =sin 377 51n3cos4 s1n3s1n4 = 7 .

V63
ez

Exercice n° 7
Pour n entier naturel non nul, on pose S;;, = Z etlFart..kan)

oS =el% 4 e a1 =2cosay
e Soit m > 1. Supposons que S;; = 2™ cos aj... cos a,, et montrons que S, 11 = 27T cos Ay ... COS Ay COS Anil-

Sn—H — Z ei(ia1i...ian+1) — eia“+| Z ei(imi...ian) + e—ian+1 Z ei(iali...ia“)

=2c08Sani1Sn

=21 cosay...cos any1 (par hypothése de récurrence).

On a montré par récurrence que : Yn > 1, §;, = 2" cosay...cos an.
Ensuite, pour n > 1, Z cos(+aj ... £ an) = Re(Sn) = 2" cos aj...cos an, (on obtient aussi Zsin(:l:m +..ta,) =

Im(S,) =0).
Exercice n° 8

1) Si a est dans ]0, 27t[ alors, pour tout entier naturel non nul k, est dans ]0, 7t[ et donc 5111 ;é 0. De plus, puisque

sin (sz) 2s1n(zcll<) cos (Zk) ona:

a
2%

oyl )
HCOS(Z_k) :]!_[1 Zsm(zclt) :2nk 1 2s1n(zcll<)

sin a
= ————— (produit télescopique).

2" sin (2%)

2) Yk € N*, cos (2k) > 0 car 2% est dans }O,g[.

£ o) ([l () -0 (g ) -0 ) o (7

21’1.
. a
sin — .
. . n . sinx
Maintenant, lim ¢ — = lim =1 et donc,
n—+oo x—0 X
pAL
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= a sina sin 5o sin @
lim In (cos (—)) = lim In —1In =1In .
n—+oo 2k n—-+oo a i a
k=1 m

Exercice n° 9

Soit x € R.

24coszx+1 +16 x 24sin2x—3 =20 <:>24coszx+1 +16 x 2]—4C052x =20 <:>24coszx —104+16 x 2—4C052x =0

16
(:}24COSZX—1O+ 24CO52X :0<:> (24coszx)2_-|0 % 24cos2x+ 16 =0

& 24 c0s” X ost solution de I'équation X? — 10X + 16 =0
AN 24cos?x 9 gy 24eostx _ g & 4cos’x =1oudcos®x =3

& cosx = 1 OU COSX = —= OU COSX = —— O CO‘X*—Q
-2 -2 T neREETy
T T T T
S I GR)
& xe (6 + > U 3 + 3
Exercice n° 10
1) Tout d’abord, d’aprés la formule de MOIVRE,
cos(30) 4 1sin(30) = (cos 0 +isin0)3 = (cos® 8 — 3 cos 0 sin? 0) + (3 cos? O sin 6 — sin> 0),

et par identification des parties réelles et imaginaires,

VO € R, cos(30) = cos® 0 — 3 cosOsin? 0 et sin(30) = 3 cos? Osin 0 — sin> 0.

Ensuite, tan(30) et tan 8 existent < 30 ¢ ; Y7 et O ¢ ; L7 &30 ¢ %‘ Y70 ¢ g+ gz.

7T 7T
Soit donc 0 ¢ = + =Z.
oit donc §E6+3
sin(30)  3cos?@sin® —sin’®  3tan0 — tan’ 0

tan(30) = = =
an(30) cos(30)  cos30 —3cosOsin? 0 1—3tan?0 ’

aprés division du numérateur et du dénominateur par le réel non nul cos> 0.

3tan0 — tan> 0

VGER\( + Z) tan(38) = 1—3tan?0

3

1
2) Soit a # +——.
) Sott a7 V3

lére méthode. a est bien str racine de ’équation proposée, ce qui permet d’écrire :

—x3 —ad

?X_ 3:2 _ :’;a_ 322 (3x x3) (1-3a ) (11— 3x2) (3a— a3) (car + % ne sont pas solution de ’équation)
( )x3 =3 (a®—3a)x* =3 (3a®? 1) x+a*—~3a=0

(

3a? — )x + 8ax — a2+3):O.

—1
(x—a)(
Le discriminant réduit du trinéme (3a2 ) x% 4+ 8ax — aZ + 3 vaut :

A’ =16a2 — (3a% — 1)(—a? +3) =3a* + 6a? +3 = (V3(a? +1))2 > 0.

L’équation proposée a donc trois racines réelles :

{ 4a—3(a2+1) 4a+\/§(a2+1)}
S =<a, .
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T
2éme méthode. Il existe un unique réel « € }—z 'S {\ { 3 6} tel que a = tan o et de méme, si x est un réel distinct

1
de iﬁ’ il existe un unique réel 0 € }—g, g [ \ { 76t 6} tel que x = tan B (& savoir « = Arctana et 6 = arctanx).

1
Comme +—= ne sont pas solution de I’équation proposée, on a :

V3

3x—x> 3a—a3 <:>3tz&m@—tam39 3tanoc—tan3‘oc<:>ta (30) = tan(3a)
= = 1 = 11
1—-3x2  1—3a? 1—3tan?0 1 —3tan? o
<:>3963oc+nZ<:>9€oc+§Z.

Ceci refournit les solutions x = tan x = a, puis

tanoc+tan(§) a+v3  (a+v3)(1+v3a) 4a+V3(a2+1)

X_tan(“+§)_1—tanoctan(§)_1_\/§a_ 1-3a2 N 1—3a? )

4a—+/3(a?+1)
1—3a2

et x = tan(x 7r)
= 11 —_ =
3

Exercice n° 11

Pour x € [0, 7], posons f(x) = tanx + tan(2x) + tan(3x) + tan(4x).

f(x) existe & tanx, tan(2x), tan(3x) et tan(4x) existent
7 7
<:>(x§éz+7rZ), (2x¢ +7TZ) (3X€§+7TZ) et (4x§éz+7rZ)

@(X%%—}—ﬂZ),(x% + HZ) (x%%—l—gZ) et (xgég—}—;—rZ)
o 3n w5t 3n 5n /m
{g*m*?z’??*??}

f est définie et continue sur

[OW[U}WW[U}WW[U m 37 g 3 m U 7T 571 g 5 3m U 31 57 g 5t 7m g 77t7t

'8 8’6 6’4 4> 8 8’2 2’ 8 8’ 4 4’ 6 6’8 8"

Sur chacun des dix intervalles précédents, f est définie, continue et strictement croissante en tant que somme de fonctions
strictement croissantes. La restriction de f a chacun de ces dix intervalles est donc bijective de 'intervalle considéré sur

Iintervalle image, ce qui montre déja que I’équation proposée, que 'on note dorénavant (E), a au plus une solution par
intervalle et donc au plus dix solutions dans [0, 7t].

7
Sur I = [O, g [ oul= } ?T[, 7'[} , puisque (0) = f(7r) =0, (E) a exactement une solution dans I. Ensuite, dans I’expression

de somme f, une et une seule des quatre fonctions est un infiniment grand en chacun des nombres considérés ci-dessus, a
. T . . . ..
I’exception de 3 En chacun de ses nombres, f est un infiniment grand. L’image par f de chacun des six intervalles ouverts

T
n’ayant pas = pour borne est donc | — oo, +oo[ et (E) admet exactement une solution dans chacun de ces intervalles. Ceci

porte le total & 6 + 2 = 8 solutions.

T s
En 5 tan x et tan(3x) tendent vers +oo tandis que tan(2x) et tan(4x) tendent vers 0. f tend donc vers +oo en 5 et de

T+ . . . .
meéme f tend vers —oco en — . L’image par f de chacun des deux derniers intervalles est donc encore une fois | — 0o, +00[

2
et finalement,

L’équation (E) admet exactement dix solutions dans [0, 7.

Exercice n° 12
1 1 1
1) cos?x = 2(1 + cos(2x)) et une primitive de x — cos? x sur R est x — 5 (X + 7 sin(Zx)).

2) D’apreés les formules ’EULER
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4
1x+e—1x ) _ 1]_6(641'0( +4eZix +6+4e—21x +e—4iX)

N |

cos* (
1

= —(2cos(4x) + 8cos(2x) + 6) =

g (cos(4x) 4+ 4 cos(2x) 4 3)

—_
Ool—‘

1/1
Donc, une primitive de x — cos? x sur R est x — 3 (é_l sin(4x) + 2sin(2x) + 3x).

3) D’apreés les formules d’EULER,

—_

4
sin4x — <l (eix _ e—ix)> _ l6( 4ix 4621x +6— 4e—ZLX + e—4iX)

—_

= 1]_6(2 cos(4x) — 8 cos(2x) + 6) = g(cos(4x) — 4 cos(2x) + 3)
Donc, une primitive de x — sin® x sur R est x — % (% sin(4x) — 2sin(2x) + 3x>.

1
4) cos? xsin? x = 7 sin?(2x) =

—(1 —cos(4x)) et une primitive de x — cos?

8

5) D’aprés les formules d’EULER,

xsin? x sur R est x — % (x— Ll‘sin(4x)>.

6
SinGX _ (% (eix _ e—ix)) _ _é ( 6ix 6e4lx + ]5621.)( 20 + ]se—Zix _ 66—41)( + e—Gix)

l(—cos(6x) + 6cos(4x) — 15cos(2x) + 10)

= —l(Z cos(6x) — 12 cos(4x) + 30 cos(2x) — 20) = £y

64

Donc, une primitive de x — sin® x sur R est x — 3]2 (_]E sin(6x) + %sin(4x) — %5 sin(2x) + 10x).

6) cosxsin®x = sin’ xsin® x et une primitive de x +— cosxsin® x sur R est x + = sin’ x.

7) cos® xsin? x = cosx(1 — sin? x)2 sin? x = sin’ x sin? x — 2sin’ x sin® x + sin’ xsin® x et une primitive de x — cos® xsin’ x
1. 2, 1.

sur R est x — = sin® x — = sin® x + = sin’ x.
3 5 7

8) cos> x = sin’ x —sin’ x sin® x et une primitive de x — cos® x est x = sinx — = sin’ x.

3

Exercice n° 13

1) Pour x réel , on a :

1

4 6, 1 ix —ix * ix _ ,—ix °
cos’ X sin x—<z(e +e )> Z_i(e e )

= — (€7 4+ 47 6+ Ao e (e — 6t 41567 — 20 + 15¢ 2% — Ge ¥ 4 e6)

_ _;_0(61Oix _ 2681)( _ 3661x + 8e4ix + 2eZix — 124+ ze—Zix + 86—4ix _ 3e—Gix _ ze—Six + e—]OiXJ

= —2]—9(cos10x—Zcos8x—3cos6x—|—8cos4x+2(:0s2x—6)
= —51—2(COS]OX—20058X—3COS6X+8COS4X+20052X—6)

(Remarque. La fonction proposée était paire et I’absence de sinus était donc prévisible. Cette remarque guidait aussi les

calculs intermédiaires : les coefficients de e =21, =41 . étaient les mémes que ceux de e?*, e** ) Par suite,

1 sin10x  sin8x  siné6x . . /3 T T
I__S]_z <|: ]O — 4 — 2 +ZSIH4X+SIHZX:|T[/6—6(§—g)>
9v3 +4n
__51_2 (“fﬂ —V3) - >_ 2043
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2) Pour x réel, on a

cos? x sin” x = cos* x sin® x sin x = cos® x(1 — cos? x)3 sinx

= cos? x sinx — 3 cos® x sin x + 3 cos® x sin x — cos'® x sin x.

Par suite,
= _cos5x+3cos7x_cos9x+cos”x /3
5 7 3 11 n/6
s d Lo wve s b Lassiva 4 L« - 43v3)
5732 7 128 3 512 11 2048
1

= (—14784(1 — 9v/3) + 7920(1 — 27v/3) — 1540(1 — 81+/3) + 105(1 — 243+/3))
21T x 3 x5x7x11

1
= g5 aag 8B4+ 18441/3).

Exercice n° 14
x . . . 1 —cosx . . .
1) tan 3 existe si et seulement si x ¢ 7+ 2nZ et ———— existe si et seulement si x ¢ Z. Pour x ¢ nZ,
sin x

I —cosx 2sin® (;)

. = = tan
S x 2sin (g) cos (%)

x
5

2) Pour tout réel x,

2 2 1 3
sin(x — ?ﬂ) + sinx + sin(x + ?) =3 sinx — TCOSX-I-SiHX— Zsinx—l— %cosx =0,

ou, bien mieux,

27

2 2 . n : : .
sin (x— g) + sinx + sin <x+ g) =1Im (el("’%) +e™ 4+ el("+T)) =Im (e (j+1+j)) =0.

3) t (” )t (”+)t 2 istent si et seulement si = — x, - + x et 2 t pas dans = + 7iZ i
an|——x an | — X ] et ———— existent s1 et seulement s1 — — X, — X € X e son as dans — ce qui
gD 1 cos(2x) T P 2 »ced
7T 7T 7T 7T
équivaut a x ¢ 7 + ZZ' Donc, pour x ¢ 7 + EZ’

T 1 1—tanx 14+tanx cosx—sinx cosx-+sinx
tan(——x)—l—tan(——l—x) =

4 4 ~ 14+tanx 1 —tanx cosx+sinx  cosx —sinx
_ (cosx — sinx)? + (cosx + sinx)? _ 2(cos? x + sin? x) 2
B cos? x — sin® x B cos(2x) ~ cos(2x)’
T
4) Pour x ¢ ZZ,
1 cosx sinx  cos?x —sin®x  2cos(2x) 2
—tanx = — — = _ = — )
tan x sinx  cosx sin x cos x sin(2x) tan(2x)

Exercice n° 15

1) Pour tout réel x, 1 — 2k cosx + k? = (k — cosx)? + sin? x > 0. De plus,

1—2kcosx +k?=0=k—cosx =sinx =0= x € tZ et k = cosx = k € {—1,1},

ce qui est exclu. Donc,

Vk € R\ {-1,1}, ¥x € R, 1 —2kcosx + k? > 0.

f est donc définie sur R, dérivable sur R en vertu de théorémes généraux, impaire et 27-périodique. On I’étudie dorénavant
sur [0,7t]. Pour x € [0,7t], on a :
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f(x) = cosx(1 — 2kcosx + k?)~1/2 — %sinx(zksinx)(l — 2kcosx + k?)73/2
(1 = 2k cosx + k%) 73/?(cos x(1 — 2k cos x + k?) — k sin? x)

(1 —2kcosx + k?)73/%(—k cos® x + (1 + k?) cos x — k)

(1 —2kcosx + k)32 (kcosx — 1)(k — cosx)

(kcosx —T)(k — cosx)
Vx € R, fi(x) = (1 —2kcosx +k2)3/2 "

ler cas : [k| < 1 et k # 0 (fo(x) = sinx). Pour tout réel x, (1 — 2kcosx + k?)73/?(kcosx — 1) < 0 (car [kcosx| < 1) et
fr.(x) est du signe de cosx — k.

X 0 Arccosk T

V1 —k?
car fy (Arccosk) = ————=1).
V1 —2k? +k?
2éme cas : k > 1. Pour tout réel x, (1 — 2kcosx + k?)3/2(k — cosx) > 0 et 1. (x) est du signe de kcosx — 1.
X 0 Arccosl T
k
f'(x) + 0 -
1
/k\
f
0 0
1
car f (A cCo 1> k2 ]
ar Ir S — = — = —
« k) VI-2+Kk Kk

3éme cas : k < —1. Pour tout réel x, (1 — 2k cosx + k?)3/2(k — cosx) < 0 et fy.(x) est du signe de T — kcosx.

X 0 Arccos % T

1

(et} - LB
car I'CCOS — = = — .
b k) Vi—2+tk2 Kk

7T
2) Pour k € R\ {—1,1}, posons I} = J fr(x) dx.
0
7T

Sik=0, Ix = J sinx dx = 2. Sinon,
0

L

1 JT[ 2k sinx

ko 2v/1—2kcosx + K2
1 1

= E(\/1 +2k+k2 —V1—2k+k2) = 1] = e — 1.

dx = % {\/1 —chosx—l—kz};T
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Plus précisément, si k €] — 1, 1[\{0}, Ix = —((1 +k)— (1 —k)) = 2, ce qui reste vrai pour k = 0. Si k > 1, I}, =

1 2 . —2 o
E(“ +k)—(k—1)) = o et enfin, si k < —1, [ = R En résumé,

=~

Sikel -1 [y =2etsik € —

Exercice n° 16

n n
1) Soient n € N et x € R. Posons S, = Z cos(kx) et S/ = Z sin(kx).

k=0
1lére solution.
n n n
Sn +1S, = Z(cos(kx) + isin(kx)) Z = Z (etX)k,
k=0 k=0 k=0

Maintenant, et* = 1 & x € 2nZ. Donc,
ler cas. Si x € 2nZ, on a immédiatement S, =n+1et S, =0.

2éme cas. Si x¢ 2nZ, alors e # 1 et

s . 1— ei(n+1)x ei(n+1)x/2 e—i(n+1)x/2 _ ei(n+1)x/2 inx/2 —2isin (nz])x
N = T T T T T 2 et 2 et 2 € “Zisin X
o (n)x
— einx/2 )
sin 5

Par identification des parties réelles et imaginaires, on obtient

(nX) o ((n+T1)x ( . TlX) o ((n+T1)x
cos ([ — ) sin | ——=—— sin — ) sin [ ————
n 2 2 . n 2 2 .
Z cos(kx) = X Six ¢ 2nZ g Z sin(kx) = —x six ¢ 2nZ
sin ( = sin (=
k=0 (2) k=0 (2)
n+1six € 2nZ 0six e 2nZ

2éme solution.

2§ et =5 2wt 5 s (10 2) ) o (- 2) )
_ g <sm (( k1) — ‘) ) ésin ((k— %) x))
— sin ((n + %) x) ~sin (_TX) (somme télescopique)

O

zsinM +Sin§ zzsinwcosﬁ
2 2 2 2
et donc, si x ¢ 2nZ,...
n n
2) Soient n € N et x € R. Posons S, = Z cos? (kx) et Sl = Z sin?(kx). On a :
k=0 k=0
n n
Sn+Sn =) (cos’(kx) +sin’(kx)) = ) 1=
k=0 k=0
et
n n
Sn—S/ = Z(cosz(kx) — sin?(kx)) = Z cos(2kx).
k=0 k

PROF: ATMANI NAJIB
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D’aprés 1), si x € Z, on trouve immédiatement,

Z cos?(kx) =n +1 et Z sin?(kx) = 0,

k=0 k=0
et si x ¢ nZ,

cos(nx)sin(n + 1)x

Sn+S,=n+TletS,—S/ = x )

de sorte que

Sn = ! (n+1 + cos(nx) sin(n + ”X> et S/ =

. (n—H _ cos(nx)sin(n + 1)x> .
2 sinx

sinx

N —

3) Soient n € N et x € R. D’aprés la formule du binéme de NEWTON

<Z Ck cos(kx)) + iZ ck sin(kx)) = Z Ckelkx = Z ck (eix)k ok
k=0 k=0

k=0 k=0

- . - no. X nx nx
= (1 + e”‘)n = (e”‘/z + e_”‘/z) e/ — M cogh 7 (cos > +1isin 7) .

Par identification des parties réelles et imaginaires, on obtient alors

nx

n n
vn € N, Vx € R, ];) CK cos(kx) = 2™ cos™ % cos % et ];) CK sin(kx) = 2™ cos™ % sin —.

2

Exercice n° 17

{ cosa+cosb +cosc =0 & (cosa+cosb+cosc) +i(sina+sinb +sinc) =0 & et 4+ e i€ =0

sina+sinb +sinc =20

N |eia i eib‘ —|—eif| =1 & |ela/2eivr2 (ei(a—b)/z T e—i(a—b)/z)’ —1
& cosa_b —l
T2
—b 2 2
& aT S (g—HIZ) U (—g—HIZ) Sa—be (g—FZﬂZ) U <—§+27'[Z>

21
& JkeZ, 356{—1,1}/b:a+£?+2k71.
. . . ib _ :,ia ib _ 2 ia Rac - b _ ioia 27
Par suite, nécessairement, e'” =je'® ou e'®* = j<e'“. Réciproquement, si e'® =je'® ou encore b = a + ?-szT[,
ia ib ic ic ia ib S oia _ s2 ia / 2n /
eh+eP+e=08e“=—(e"+e’)=—(14+j)e'* =j%e'"* & Tk eZ/c:a—?—&-zkﬂ,
. Lib _:2 ia 27
et si e'® =j“e ouencorebza—?—l—Zkﬂ,

et et e =0se =—(el+e?)=—(1+j2)e* =jei* &I €Z/c=a+ ?T[ + 2K/t

2 2
y_{(a,aﬂg +2kﬂ,a—s?ﬂ +2k’7t), QER, ¢ €11}, (kK eZz}.

Exercice n° 18

PROF: ATMANI NAJIB
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s
cos4 — + cos4

8 8 8 8 8 8 8 8

_ 27 2™V oo T2 T — o (1o L2 ©
—2<(cos 8+s1n ) 2 cos sin 8>—2<1 sin )

3n 5n 7Tt T 3n T T
Z tcost == tcost = =2 <cos4 ~ +cost —) =2 (cos4 ~ +sin? —)

8 8 2 4

Exercice n° 19

1) Soit x € R.

cos(3x) = sin(2x) & cos(3x) = cos (g — Zx) & (Hk €7/ 3x = g —2x + 2k7't) ou (Ek €7/ 3x = —g +2x + 2k7't)

T 2kt T
& (akeZ/x_ﬁ T) ou (akeZ/x:—zukn).

.

2 3 2

2) cos(3x) = Re(e3™) = Re((cosx + isinx)3) = cos® x — 3 cosx sin® x = cos® x — 3cosx(1 — cos? x) = 4 cos> x — 3 cosx.

Vx € R, cos(3x) = 4cos® x — 3 cosx.
Par suite,

cos(3x) = sin(2x) & 4 cos® x — 3 cosx = 2sinx cosx & cosx(4cos? x —3 — 2sinx) =0

& cosx(—4sin?x —2sinx +1) =0 & (cosx = 0) ou (4sin®x + 2sinx — 1 = 0).

s 131t
D’apreés 1), équation 4sin® x + 2sinx — 1 = 0 admet entre autres pour solutions 10 et 0 (car, dans chacun des deux
U
cas, cosx # 0), ou encore, I’équation 4X2 4+ 2X — 1 = 0 admet pour solutions les deux nombres distincts X; = sin 0 et

131t
X2 = sin ——, qui sont donc les deux solutions de cette équation. Puisque X; > 0 et que X, < 0, on obtient

10

145 1-V5
X1:%\/_etX2:7\/—.

4

137 37
Done, (puisque sin —— = —sin — ),

10 10

Ensuit 3 (m 3w Tod
nsuite, sin 75 = cos | 3 — 75 | = cos =, et donc

Enfin, cos% =4/1 —sinz% = ;‘\/104—2\/5 et de méme sing = ;‘\/10—2\/52005?—7;.

Exercice n° 20
1) La fonction fy est définie sur R, 27-périodique et paire. On 1’étudie sur [0, 7t].
La fonction fq est dérivable sur [0,7t] et pour tout x de [0, 7]

PROF: ATMANI NAJIB
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f1(x) = —2sin(x) — 2sin(2x) = —2sin(x) — 4sin(x) cos(x) = —2sin(x)(1 + 2cos(x)).

La fonction sinus s’annule en 0 et 7t et est strictement positive sur ]0, 7t[. Donc la fonction f] est du signe de —1 — 2 cos(x)
sur ]0, 7t[. Ensuite, pour x €]0, 7,

—1—2cos(x) =0 & cos(x) = _% & x = 2?7-[’

et

1 2
—1—2cos(x) >0& cos(x) < —= & x > il (par stricte décroissance de la fonction cos sur [0, 71].)

2 3

- e . o 27 : " 27 , 27
Ainsi, la fonction f; est strictement négative sur |0, 3| strictement positive sur 3 7| et s’annule en 0, 3 et 7.

On en déduit le tableau de variations de la fonction fy :

Graphe de fy.

2) Pour tout réel x, 2—cos(x) # 0 et donc, la fonction f; est définie sur R, 27-périodique et impaire. On I’étudie sur [0, 7).

La fonction f, est dérivable sur [0,7t] et pour tout x de [0, 7]

cos(x)(2 — cos(x)) — sin(x)(sin(x)) 2cos(x) —1

fa(x) = (2 — cos(x))? ~ (2 —cos(x))?’

La fonction f5 est du signe de 2cos(x) — 1 sur [0, 7]. Ensuite, pour x € [0, 7],

2cos(x) —1=0&cos(x) =z &x = g)

1
2
et

1
2cos(x)—1>0& cos(x) > 7 Ex< g (par stricte décroissance de la fonction cos sur [0, 7t].)

. . , . i s . L. Tt , s
Ainsi, la fonction f} est strictement positive sur [O, = [, strictement négative sur } 3 7'[} et s’annule en —. On note que

3 3

PROF: ATMANI NAJIB
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&

™ _ 2 V3 _
fz(s)—z_ ~ =5 =057...
2
On en déduit le tableau de variations de la fonction f; :
2
X 0 ?ﬂ T
1(x) + 0 —
V3
3
T
0 0
Graphe de f;.
'I .
| | | | | | | | | | £
/ T T T T T T T 1 T T T
-6 -5 -4 -3 = = 1 2 3 6
-1 4

T
3) f3 est définie sur D = R\ (— + 7TZ), paire et 2m-périodique. f3 est continue sur D en vertu de théorémes généraux.

On étudie f3 sur [O, g [ U } T

2,7‘[}. Six e [0,%[, f3(x) = tanx + cosx et si x E}g,n}, f3(x) = —tanx + cosx.

T
Etude en —. lim |tanx|=+ocoet lim cosx =0. Donc, lim f(x) = +o0. La courbe représentative de la fonction f3
2 x—m/2 x—7/2 x—7/2

T
admet la droite d’équation x = > pour droite asymptote.

T T T
Dérivabilité et dérivée. f3 est dérivable sur [O, 5 [ U } E,N] en vertu de théorémes généraux et pour x € [0, 3 {,

fi(x) = —sinx et pourxe}z,n},fg(x):— —sinx.
cosZ x 2 cosZ x
f3 est dérivable a droite en 0 et (f3)4(0) = 1. Par symétrie, f3 est dérivable a gauche en 0 et (f3)q(0) = —1. f3 n’est pas
dérivable en 0.
De méme, f, est dérivable & gauche et & droite en 7t avec (fg)é(ﬂ) = —1 et (f3)}(m) =1, et n’est donc pas dérivable en .

Variations. f3 est strictement décroissante sur ]z, 7] en tant que somme de deux fonctions strictement décroissantes sur

];,ﬂ]. Puis, pour x élément de ]0, g[,

f3(x) —sinx>1—-1=0.

= cosZx
. / . " T . . T
La fonction f} est strictement positive sur 10, E[ et donc f3 est strictement croissante sur [0, E['

Graphe.
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| | | | | |
T T T T [T T

7 -6 -5 -\ L3 -2 5
I
I
4) La fonction f4 est 27m-périodique. On 'étudie sur [—7, 7t]. Pour x € [—m, 7],
1 2 2
2cos(x) +1=0& cos(x) = —3 S x = _?n oux = ?n

2 2 2
Pour x € [—m, 7, f4(x) existe si et seulement si x # —?T[ et x # ?T[ On étudie la fonction f4 sur D = {—7‘[,——7-[ [ U
_271 21 U 21 o
3’3 3’1

27 21
Etude en —. Quand x tend vers — par valeurs inférieures, 2 cos(x) + 1 tend vers 0 par valeurs supérieures et quand x

3 3
27 27
tend vers 3 par valeurs supérieures, 2 cos(x) 4+ 1 tend vers 0 par valeurs inférieures. D’autre part, quand x tend vers 3
2sin(x) + 1 tend vers v/3 4+ 1 qui est strictement positif. On en déduit que
lim f4(x) =+occet lim f4(x)=—o0.
X*)ZTni X*)ZTT(

21 27

Etude en -3 Quand x tend vers -3 par valeurs inférieures, 2 cos(x) + 1 tend vers 0 par valeurs inférieures et quand
T

x tend vers 3 par valeurs supérieures, 2 cos(x) + 1 tend vers 0 par valeurs supérieures. D’autre part, quand x tend vers

21
—Z—, 2sin(x) + 1 tend vers —v/3 + 1 qui est strictement négatif. On en déduit que

3
lim f4(x) =4ocoet lim f4(x)=—o0.
_— _—

Dérivée. La fonction f4 est dérivable sur D et pour tout x de D,

(2cos(x))(2cos(x) + 1) — (2sin(x) + 1)(—2sin(x)) _ 4 + 2 cos(x) + 2sin(x)

falx) = (2cos(x) + 1)2 (2cos(x) + 1)2
1 1
- 4422 <ﬁ cos(x) + 7 sin(x)> - 4 +2v/2sin (x + %)
B (2cos(x) + 1)2  (2cos(x) +1)2

7
Pour tout x de D, 4+ 2v/2sin (x + —) > 4—2v/2 > 0 et donc la fonction f} est strictement positive sur D. La fonction f4

td trict t crol ; 7127tt 27t27rt 27‘[7_[(. 7T27TU 27‘[27IU
es onc strictement croissante sur y 3 et sur 3 y 3 et sur 3 y mals pas sur s 3 3 y 3
27
?,7'[ )
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Graphe.
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