
Planche no 12. Trigonométrie circulaire : corrigé

Exercice no 1

1) sin x = 0 ⇔ x ∈ πZ. De plus, S[0,2π] = {0, π, 2π}.

2) sin x = 1 ⇔ x ∈ π

2
+ 2πZ. De plus, S[0,2π] =

{π

2

}
.

3) sin x = −1 ⇔ x ∈ −
π

2
+ 2πZ. De plus, S[0,2π] =

{
3π

2

}
.

4) cos x = 1 ⇔ x ∈ 2πZ. De plus, S[0,2π] = {0, 2π}.

5) cos x = −1 ⇔ x ∈ π+ 2πZ. De plus, S[0,2π] = {π}.

6) cos x = 0 ⇔ x ∈ π

2
+ πZ. De plus, S[0,2π] =

{
π

2
,
3π

2

}
.

7) tan x = 0 ⇔ x ∈ πZ. De plus, S[0,2π] = {0, π, 2π}.

8) tan x = 1 ⇔ x ∈ π

4
+ πZ. De plus, S[0,2π] =

{
π

4
,
5π

4

}
.

Exercice no 2

1) sin x =
1

2
⇔ x ∈

(π

6
+ 2πZ

)

∪
(

5π

6
+ 2πZ

)

. De plus, S[0,2π] =

{
π

6
,
5π

6

}
.

2) sin x = −
1√
2
⇔ x ∈

(

−
π

4
+ 2πZ

)

∪
(

−
3π

4
+ 2πZ

)

. De plus, S[0,2π] =

{
5π

4
,
7π

4

}
.

3) tan x = −1 ⇔ x ∈ −
π

4
+ πZ. De plus, S[0,π] =

{
3π

4

}
et S[0,2π] =

{
3π

4
,
7π

4

}
.

4) tan x =
1√
3
⇔ x ∈ π

6
+ πZ. De plus, S[0,π] =

{π

6

}
et S[0,2π] =

{
π

6
,
7π

6

}
.

5) cos x =

√
3

2
⇔ x ∈

(

−
π

6
+ 2πZ

)

∪
(π

6
+ 2πZ

)

. De plus, S[0,2π] =

{
π

6
,
11π

6

}
.

6) cos x = −
1√
2
⇔ x ∈

(

−
3π

4
+ 2πZ

)

∪
(

3π

4
+ 2πZ

)

. De plus, S[0,2π] =

{
3π

4
,
5π

4

}
.

Exercice no 3

1) sin(2x) =
1

2
⇔ 2x ∈

(π

6
+ 2πZ

)

∪
(

5π

6
+ 2πZ

)

⇔ x ∈
( π

12
+ πZ

)

∪
(

5π

12
+ πZ

)

. De plus, S[0,2π] =

{
π

12
,
5π

12
,
13π

12
,
17π

12

}
.

2) sin
x

2
= −

1√
2
⇔

x

2
∈
(

5π

4
+ 2πZ

)

∪
(

7π

4
+ 2πZ

)

⇔ x ∈
(

5π

2
+ 4πZ

)

∪
(

7π

2
+ 4πZ

)

. De plus, S[0,4π] =

{
5π

2
,
7π

2

}
.

3) tan(5x) = 1 ⇔ 5x ∈ π

4
+ πZ ⇔ x ∈ π

20
+

π

5
Z. De plus, S[0,π] =

{
π

20
,
π

4
,
9π

20
,
13π

20
,
17π

20

}
.

4) cos(2x) = cos2 x ⇔ cos(2x) =
1

2
(1+ cos(2x)) ⇔ cos(2x) = 1 ⇔ 2x ∈ 2πZ ⇔ x ∈ πZ. De plus, S[0,2π] = {0, π, 2π}.

5) 2 cos2 x−3 cosx+1 = 0 ⇔ (2 cos x−1)(cos x−1) = 0 ⇔ cos x =
1

2
ou cos x = 1 ⇔ x ∈

(

−
π

3
+ 2πZ

)

∪
(π

3
+ 2πZ

)

∪2πZ.

De plus, S[0,2π] =

{
0,

π

3
,
5π

3
, 2π

}
.

6) cos(nx) = 0 ⇔ nx ∈ π

2
+ πZ ⇔ x ∈ π

2n
+

π

n
Z.

7) | cos(nx)| = 1 ⇔ nx ∈ πZ ⇔ x ∈ π

n
Z.

8) sin(nx) = 0 ⇔ nx ∈ πZ ⇔ x ∈ π

n
Z.

9) | sin(nx)| = 1 ⇔ nx ∈ π

2
+ πZ ⇔ x ∈ π

2n
+

π

n
Z.

10) sinx = tan x ⇔ sin x
cos x− 1

cos x
= 0 ⇔ sin x = 0 ou cosx = 1 ⇔ x ∈ πZ. De plus, S[0,2π] = {0, π, 2π}.
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11) 1ère solution.

sin(2x) + sinx = 0 ⇔ sin(2x) = sin(x+ π) ⇔ (∃k ∈ Z/ 2x = x+ π+ 2kπ) ou (∃k ∈ Z/ 2x = π− (x+ π) + 2kπ)

⇔ (∃k ∈ Z/ x = π+ 2kπ) ou (∃k ∈ Z/ x =
2kπ

3
)

De plus, S[0,2π] =

{
0,

2π

3
, π,

4π

3
, 2π

}
.

2ème solution.

sin(2x) + sin x = 0 ⇔ 2 sin(x) cos(x) + sin(x) = 0 ⇔ sin(x)(2 cos(x) + 1) = 0 ⇔ sin(x) = 0 ou cos(x) = −
1

2

⇔ (∃k ∈ Z/ x = kπ) ou (∃k ∈ Z/ x = −
π

3
+ 2kπ) ou (∃k ∈ Z/ x =

π

3
+ 2kπ)

12)

12 cos2 x− 8 sin2 x = 2 ⇔ 6 cos2 x− 4(1 − cos2 x) = 1 ⇔ cos2 x =
1

2
⇔ cos x =

1√
2

ou cos = −
1√
2

⇔ x ∈
(

−
π

4
+ πZ

)

∪
(π

4
+ πZ

)

⇔ x ∈ π

4
+

π

2
Z.

De plus, S[−π,π] =

{
−
3π

4
,−

π

4
,
π

4
,
3π

4

}
.

Exercice no 4

1) Pour x ∈ [−π, π], cos x 6
1

2
⇔ x ∈

[

−π,−
π

3

]

∪
[π

3
, π
]

.

2) Pour x ∈ R, sinx > −
1√
2
⇔ x ∈

⋃

k∈Z

[

−
π

4
+ 2kπ,

5π

4
+ 2kπ

]

.

3) Pour x ∈ [0, 2π],

cos x > cos
x

2
⇔ 2 cos2

x

2
− cos

x

2
− 1 > 0 ⇔

(

2 cos
x

2
+ 1
)(

cos
x

2
− 1
)

> 0 ⇔ 2 cos
x

2
+ 1 < 0 et cos

x

2
6= 1

⇔ cos
x

2
< −

1

2
⇔

x

2
∈
⋃

k∈Z

]

2π

3
+ 2kπ,

4π

3
+ 2kπ

[

⇔ x ∈
⋃

k∈Z

]

4π

3
+ 4kπ,

8π

3
+ 4kπ

[

⇔ x ∈
]

4π

3
, 2π

]

.

4) Pour x ∈ [−π, π], cos2 x > cos(2x) ⇔
1

2
(1+ cos(2x)) > cos(2x) ⇔ cos(2x) 6 1 ⇔ x ∈ [−π, π].

5) Pour x ∈ [0, 2π], cos2 x 6
1

2
⇔ −

1√
2
6 cos x 6

1√
2
⇔ x ∈

[

π

4
,
3π

4

]

∪
[

5π

4
,
7π

4

]

.

6) Pour x ∈ [0, 2π],

cos
x

3
6 sin

x

3
⇔

1√
2

sin
x

3
−

1√
2

cos
x

3
> 0 ⇔ sin

(x

3
−

π

4

)

> 0 ⇔ ∃k ∈ Z/ 2kπ 6
x

3
−

π

4
6 π+ 2kπ

⇔ ∃k ∈ Z/
3π

4
+ 6kπ 6 x 6 3π+

3π

4
+ 6kπ ⇔

3π

4
6 x 6 2π

Exercice no 5

cos2
π

8
=

1

2

(

1+ cos
(

2× π

8

))

=
1

2

(

1+

√
2

2

)

=
2+

√
2

4
et donc, puisque cos

π

8
> 0,

cos
π

8
=

√

2+
√
2

2
.
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De même, sin2 π

8
=

1

2

(

1− cos
(

2× π

8

))

=
2−

√
2

4
et donc, puisque sin

π

8
> 0,

sin
π

8
=

√

2−
√
2

2
.

Exercice no 6

cos
π

12
= cos

(π

3
−

π

4

)

= cos
π

3
cos

π

4
+ sin

π

3
sin

π

4
=

√
6+

√
2

4
.

De même,

sin
π

12
= sin

(π

3
−

π

4

)

= sin
π

3
cos

π

4
− sin

π

3
sin

π

4
=

√
6−

√
2

4
.

cos
π

12
=

√
6+

√
2

4
et sin

π

12
=

√
6−

√
2

4
.

Exercice no 7

Pour n entier naturel non nul, on pose Sn =
∑

ei(±a1±...±an).

• S1 = eia1 + e−ia1 = 2 cosa1

• Soit n > 1. Supposons que Sn = 2n cosa1... cosan et montrons que Sn+1 = 2n+1 cosa1... cosan cosan+1.

Sn+1 =
∑

ei(±a1±...±an+1) = eian+1

∑
ei(±a1±...±an) + e−ian+1

∑
ei(±a1±...±an)

= 2 cosan+1Sn

= 2n+1 cosa1... cosan+1 (par hypothèse de récurrence).

On a montré par récurrence que : ∀n > 1, Sn = 2n cosa1... cosan.

Ensuite, pour n > 1,
∑

cos(±a1 ± ... ± an) = Re(Sn) = 2n cosa1... cosan (on obtient aussi
∑

sin(±a1 ± ... ± an) =

Im(Sn) = 0).

Exercice no 8

1) Si a est dans ]0, 2π[ alors, pour tout entier naturel non nul k,
a

2k
est dans ]0, π[ et donc sin

a

2k
6= 0. De plus, puisque

sin
(

2
a

2k

)

= 2 sin
( a

2k

)

cos
( a

2k

)

, on a :

n∏

k=1

cos
( a

2k

)

=

n∏

k=1

sin
( a

2k−1

)

2 sin
( a

2k

) =
1

2n

n∏

k=1

sin
( a

2k−1

)

2 sin
( a

2k

)

=
sina

2n sin
( a

2n

) (produit télescopique).

2) ∀k ∈ N
∗, cos

( a

2k

)

> 0 car
a

2k
est dans

]

0,
π

2

[

.

n∑

k=1

ln
(

cos
( a

2k

))

= ln

(

n∏

k=1

cos
( a

2k

)

)

= ln





sina

2n sin
( a

2n

)



 = ln

(

sina

a

)

− ln





sin
( a

2n

)

a

2n



 .

Maintenant, lim
n→+∞

sin
a

2n
a

2n

= lim
x→0

sinx

x
= 1 et donc,
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lim
n→+∞

n∑

k=1

ln
(

cos
( a

2k

))

= lim
n→+∞



ln

(

sina

a

)

− ln





sin
a

2n
a

2n







 = ln

(

sina

a

)

.

Exercice no 9

Soit x ∈ R.

24 cos
2 x+1 + 16 × 24 sin

2 x−3 = 20 ⇔ 24 cos
2 x+1 + 16 × 21−4 cos

2 x = 20 ⇔ 24 cos
2 x − 10 + 16× 2−4 cos

2 x = 0

⇔ 24 cos
2 x − 10+

16

24 cos2 x
= 0 ⇔ (24 cos

2 x)2 − 10 × 24 cos
2 x + 16 = 0

⇔ 24 cos
2 x est solution de l’équation X2 − 10X+ 16 = 0

⇔ 24 cos
2 x = 2 ou 24 cos

2 x = 8 ⇔ 4 cos2 x = 1 ou 4 cos2 x = 3

⇔ cos x =
1

2
ou cos x = −

1

2
ou cosx =

√
3

2
ou cos x = −

√
3

2

⇔ x ∈
(π

6
+

π

2
Z

)

∪
(π

3
+

π

2
Z

)

.

Exercice no 10

1) Tout d’abord, d’après la formule de Moivre,

cos(3θ) + i sin(3θ) = (cosθ + i sinθ)3 = (cos3 θ− 3 cos θ sin2 θ) + i(3 cos2 θ sinθ − sin3 θ),

et par identification des parties réelles et imaginaires,

∀θ ∈ R, cos(3θ) = cos3 θ − 3 cosθ sin2 θ et sin(3θ) = 3 cos2 θ sin θ− sin3 θ.

Ensuite, tan(3θ) et tan θ existent ⇔ 3θ /∈ π

2
+ πZ et θ /∈ π

2
+ πZ ⇔ 3θ /∈ π

2
+ πZ ⇔ θ /∈ π

6
+

π

3
Z.

Soit donc θ /∈ π

6
+

π

3
Z.

tan(3θ) =
sin(3θ)

cos(3θ)
=

3 cos2 θ sinθ − sin3 θ

cos3 θ− 3 cos θ sin2 θ
=

3 tan θ− tan3 θ

1− 3 tan2 θ
,

après division du numérateur et du dénominateur par le réel non nul cos3 θ.

∀θ ∈ R \
(π

6
+

π

3
Z

)

, tan(3θ) =
3 tan θ − tan3 θ

1− 3 tan2 θ
.

2) Soit a 6= ± 1√
3
.

1ère méthode. a est bien sûr racine de l’équation proposée, ce qui permet d’écrire :

3x− x3

1− 3x2
=

3a− a3

1− 3a2
⇔
(

3x− x3
) (

1− 3a2
)

=
(

1− 3x2
) (

3a − a3
)

(car ± 1√
3

ne sont pas solution de l’équation)

⇔
(

3a2 − 1
)

x3 − 3
(

a3 − 3a
)

x2 − 3
(

3a2 − 1
)

x+ a3 − 3a = 0

⇔ (x− a)
((

3a2 − 1
)

x2 + 8ax − a2 + 3
)

= 0.

Le discriminant réduit du trinôme
(

3a2 − 1
)

x2 + 8ax− a2 + 3 vaut :

∆ ′ = 16a2 − (3a2 − 1)(−a2 + 3) = 3a4 + 6a2 + 3 = (
√
3(a2 + 1))2 > 0.

L’équation proposée a donc trois racines réelles :

S =

{

a,
4a−

√
3(a2 + 1)

1− 3a2
,
4a+

√
3(a2 + 1)

1− 3a2

}

.
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2ème méthode. Il existe un unique réel α ∈
]

−
π

2
,
π

2

[

\
{
−
π

6
,
π

6

}
tel que a = tanα et de même, si x est un réel distinct

de ± 1√
3
, il existe un unique réel θ ∈

]

−
π

2
,
π

2

[

\
{
−
π

6
,
π

6

}
tel que x = tan θ (à savoir α = Arctana et θ = arctanx).

Comme ± 1√
3

ne sont pas solution de l’équation proposée, on a :

3x− x3

1− 3x2
=

3a− a3

1− 3a2
⇔

3 tan θ− tan3 θ

1− 3 tan2 θ
=

3 tanα − tan3 α

1− 3 tan2 α
⇔ tan(3θ) = tan(3α)

⇔ 3θ ∈ 3α+ πZ ⇔ θ ∈ α+
π

3
Z.

Ceci refournit les solutions x = tanα = a, puis

x = tan
(

α+
π

3

)

=
tanα+ tan

(π

3

)

1− tanα tan
(π

3

) =
a+

√
3

1−
√
3a

=
(a +

√
3)(1 +

√
3a)

1− 3a2
=

4a+
√
3(a2 + 1)

1− 3a2
,

et x = tan(α −
π

3
) =

4a −
√
3(a2 + 1)

1− 3a2
.

Exercice no 11

Pour x ∈ [0, π], posons f(x) = tan x+ tan(2x) + tan(3x) + tan(4x).

f(x) existe ⇔ tan x, tan(2x), tan(3x) et tan(4x) existent

⇔
(

x /∈ π

2
+ πZ

)

,
(

2x /∈ π

2
+ πZ

)

,
(

3x /∈ π

2
+ πZ

)

et
(

4x /∈ π

2
+ πZ

)

⇔
(

x /∈ π

2
+ πZ

)

,
(

x /∈ π

4
+

π

2
πZ
)

,
(

x /∈ π

6
+

π

3
Z

)

et
(

x /∈ π

8
+

π

4
Z

)

⇔ x /∈
{
π

8
,
π

6
,
π

4
,
3π

8
,
π

2
,
5π

8
,
3π

4
,
5π

6
,
7π

8

}
.

f est définie et continue sur

[

0,
π

8

[

∪
]π

8
,
π

6

[

∪
]π

6
,
π

4

[

∪
]

π

4
,
3π

8

[

∪
]

3π

8
,
π

2

[

∪
]

π

2
,
5π

8

[

∪
]

5π

8
,
3π

4

[

∪
]

3π

4
,
5π

6

[

∪
]

5π

6
,
7π

8

[

∪
]

7π

8
, π

]

.

Sur chacun des dix intervalles précédents, f est définie, continue et strictement croissante en tant que somme de fonctions
strictement croissantes. La restriction de f à chacun de ces dix intervalles est donc bijective de l’intervalle considéré sur
l’intervalle image, ce qui montre déjà que l’équation proposée, que l’on note dorénavant (E), a au plus une solution par
intervalle et donc au plus dix solutions dans [0, π].

Sur I =
[

0,
π

8

[

ou I =

]

7π

8
, π

]

, puisque f(0) = f(π) = 0, (E) a exactement une solution dans I. Ensuite, dans l’expression

de somme f, une et une seule des quatre fonctions est un infiniment grand en chacun des nombres considérés ci-dessus, à

l’exception de
π

2
. En chacun de ses nombres, f est un infiniment grand. L’image par f de chacun des six intervalles ouverts

n’ayant pas
π

2
pour borne est donc ] −∞,+∞[ et (E) admet exactement une solution dans chacun de ces intervalles. Ceci

porte le total à 6+ 2 = 8 solutions.

En
π

2

−

, tan x et tan(3x) tendent vers +∞ tandis que tan(2x) et tan(4x) tendent vers 0. f tend donc vers +∞ en
π

2

−

, et de

même f tend vers −∞ en
π

2

+

. L’image par f de chacun des deux derniers intervalles est donc encore une fois ] −∞,+∞[

et finalement,

L’équation (E) admet exactement dix solutions dans [0, π].

Exercice no 12

1) cos2 x =
1

2
(1 + cos(2x)) et une primitive de x 7→ cos2 x sur R est x 7→ 1

2

(

x+
1

2
sin(2x)

)

.

2) D’après les formules d’Euler
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cos4 x =

(

1

2

(

eix + e−ix
)

)4

=
1

16
(e4ix + 4e2ix + 6+ 4e−2ix + e−4ix)

=
1

16
(2 cos(4x) + 8 cos(2x) + 6) =

1

8
(cos(4x) + 4 cos(2x) + 3)

Donc, une primitive de x 7→ cos4 x sur R est x 7→ 1

8

(

1

4
sin(4x) + 2 sin(2x) + 3x

)

.

3) D’après les formules d’Euler,

sin4 x =

(

1

2i

(

eix − e−ix
)

)4

=
1

16
(e4ix − 4e2ix + 6− 4e−2ix + e−4ix)

=
1

16
(2 cos(4x) − 8 cos(2x) + 6) =

1

8
(cos(4x) − 4 cos(2x) + 3)

Donc, une primitive de x 7→ sin4 x sur R est x 7→ 1

8

(

1

4
sin(4x) − 2 sin(2x) + 3x

)

.

4) cos2 x sin2 x =
1

4
sin2(2x) =

1

8
(1 − cos(4x)) et une primitive de x 7→ cos2 x sin2 x sur R est x 7→ 1

8

(

x−
1

4
sin(4x)

)

.

5) D’après les formules d’Euler,

sin6 x =

(

1

2i

(

eix − e−ix
)

)6

= −
1

64

(

e6ix − 6e4ix + 15e2ix − 20+ 15e−2ix − 6e−4ix + e−6ix
)

= −
1

64
(2 cos(6x) − 12 cos(4x) + 30 cos(2x) − 20) =

1

32
(− cos(6x) + 6 cos(4x) − 15 cos(2x) + 10)

Donc, une primitive de x 7→ sin6 x sur R est x 7→ 1

32

(

−
1

6
sin(6x) +

3

2
sin(4x) −

15

2
sin(2x) + 10x

)

.

6) cos x sin6 x = sin ′ x sin6 x et une primitive de x 7→ cos x sin6 x sur R est x 7→ 1

7
sin7 x.

7) cos5 x sin2 x = cos x(1− sin2 x)2 sin2 x = sin ′ x sin2 x − 2 sin ′ x sin4 x + sin ′ x sin6 x et une primitive de x 7→ cos5 x sin2 x

sur R est x 7→ 1

3
sin3 x−

2

5
sin5 x+

1

7
sin7 x.

8) cos3 x = sin ′ x− sin ′ x sin2 x et une primitive de x 7→ cos3 x est x 7→ sin x−
1

3
sin3 x.

Exercice no 13

1) Pour x réel , on a :

cos4 x sin6 x =

(

1

2

(

eix + e−ix
)

)4(
1

2i

(

eix − e−ix
)

)6

= −
1

210
(e4ix + 4e2ix + 6+ 4e−2ix + e−4ix)(e6ix − 6e4ix + 15e2ix − 20+ 15e−2ix − 6e−4ix + e−6ix)

= −
1

210
(e10ix − 2e8ix − 3e6ix + 8e4ix + 2e2ix − 12+ 2e−2ix + 8e−4ix − 3e−6ix − 2e−8ix + e−10ix)

= −
1

29
(cos 10x − 2 cos 8x − 3 cos 6x + 8 cos 4x + 2 cos 2x− 6)

= −
1

512
(cos 10x − 2 cos 8x− 3 cos 6x+ 8 cos 4x+ 2 cos 2x − 6).

(Remarque. La fonction proposée était paire et l’absence de sinus était donc prévisible. Cette remarque guidait aussi les
calculs intermédiaires : les coefficients de e−2ix, e−4ix,... étaient les mêmes que ceux de e2ix, e4ix,...) Par suite,

I = −
1

512

(

[

sin 10x

10
−

sin 8x

4
−

sin 6x

2
+ 2 sin 4x+ sin 2x

]π/3

π/6

− 6
(π

3
−

π

6

)

)

= −
1

512

(

−
1

4

√
3+ 2(−

√
3) − π

)

=
9
√
3+ 4π

2048
.
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2) Pour x réel, on a

cos4 x sin7 x = cos4 x sin6 x sinx = cos4 x(1− cos2 x)3 sin x

= cos4 x sinx− 3 cos6 x sin x+ 3 cos8 x sinx− cos10 x sin x.

Par suite,

J =

[

−
cos5 x

5
+

3 cos7 x

7
−

cos9 x

3
+

cos11 x

11

]π/3

π/6

= −
1

5
× 1

32
(1− 9

√
3) +

3

7
× 1

128
(1− 27

√
3) −

1

3
× 1

512
(1− 81

√
3) +

1

11
× 1

2048
(1 − 243

√
3)

=
1

211 × 3× 5× 7× 11
(−14784(1 − 9

√
3) + 7920(1 − 27

√
3) − 1540(1 − 81

√
3) + 105(1 − 243

√
3))

=
1

365 440
(−8284 + 18441

√
3).

Exercice no 14

1) tan
x

2
existe si et seulement si x /∈ π+ 2πZ et

1− cos x

sin x
existe si et seulement si x /∈ πZ. Pour x /∈ πZ,

1− cos x

sinx
=

2 sin2
(x

2

)

2 sin
(x

2

)

cos
(x

2

) = tan
x

2
.

2) Pour tout réel x,

sin(x −
2π

3
) + sin x+ sin(x+

2π

3
) = −

1

2
sinx −

√
3

2
cos x+ sinx−

1

2
sin x+

√
3

2
cos x = 0,

ou, bien mieux,

sin

(

x −
2π

3

)

+ sinx+ sin

(

x+
2π

3

)

= Im
(

ei(x−
2π

3
) + eix + ei(x+

2π

3
)
)

= Im
(

eix
(

j2 + 1+ j
))

= 0.

3) tan
(π

4
− x
)

, tan
(π

4
+ x
)

et
2

cos(2x)
existent si et seulement si

π

4
− x,

π

4
+ x et 2x ne sont pas dans

π

2
+ πZ, ce qui

équivaut à x /∈ π

4
+

π

2
Z. Donc, pour x /∈ π

4
+

π

2
Z,

tan
(π

4
− x
)

+ tan
(π

4
+ x
)

=
1− tan x

1+ tan x
+

1+ tanx

1− tanx
=

cos x− sin x

cos x+ sin x
+

cos x+ sinx

cos x− sinx

=
(cos x − sin x)2 + (cos x+ sin x)2

cos2 x− sin2 x
=

2(cos2 x+ sin2 x)

cos(2x)
=

2

cos(2x)
.

4) Pour x /∈ π

4
Z,

1

tan x
− tan x =

cos x

sin x
−

sin x

cos x
=

cos2 x − sin2 x

sin x cos x
=

2 cos(2x)

sin(2x)
=

2

tan(2x)
.

Exercice no 15

1) Pour tout réel x, 1− 2k cos x+ k2 = (k− cos x)2 + sin2 x ≥ 0. De plus,

1− 2k cos x+ k2 = 0 ⇒ k− cos x = sin x = 0 ⇒ x ∈ πZ et k = cos x ⇒ k ∈ {−1, 1},

ce qui est exclu. Donc,

∀k ∈ R \ {−1, 1}, ∀x ∈ R, 1− 2k cos x+ k2 > 0.

fk est donc définie sur R, dérivable sur R en vertu de théorèmes généraux, impaire et 2π-périodique. On l’étudie dorénavant
sur [0, π]. Pour x ∈ [0, π], on a :
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f ′k(x) = cos x(1− 2k cos x+ k2)−1/2 −
1

2
sin x(2k sin x)(1− 2k cos x+ k2)−3/2

= (1 − 2k cos x+ k2)−3/2(cos x(1− 2k cos x+ k2) − k sin2 x)

= (1 − 2k cos x+ k2)−3/2(−k cos2 x + (1+ k2) cos x− k)

= (1 − 2k cos x+ k2)−3/2(k cos x− 1)(k − cos x)

∀x ∈ R, f ′k(x) =
(k cos x− 1)(k − cos x)

(1− 2k cos x+ k2)3/2
.

1er cas : |k| < 1 et k 6= 0 (f0(x) = sin x). Pour tout réel x, (1 − 2k cos x + k2)−3/2(k cos x − 1) < 0 (car |k cos x| < 1) et
f ′k(x) est du signe de cos x− k.

x 0 Arccosk π

f ′(x) + 0 −

1

f

0 0

car fk (Arccosk) =

√
1− k2√

1− 2k2 + k2
= 1).

2ème cas : k > 1. Pour tout réel x, (1− 2k cos x+ k2)−3/2(k − cos x) > 0 et f ′k(x) est du signe de k cos x− 1.

x 0 Arccos
1

k
π

f ′(x) + 0 −

1

k
f

0 0

car fk

(

Arccos
1

k

)

=

√

1−
1

k2√
1− 2+ k2

=
1

k
.

3ème cas : k < −1. Pour tout réel x, (1− 2k cos x+ k2)−3/2(k − cos x) < 0 et f ′k(x) est du signe de 1− k cos x.

x 0 Arccos
1

k
π

f ′(x) + 0 −

−
1

k
f

0 0

car fk

(

Arccos
1

k

)

=

√

1−
1

k2√
1− 2+ k2

= −
1

k
.

2) Pour k ∈ R \ {−1, 1}, posons Ik =

∫π

0

fk(x) dx.

Si k = 0, Ik =

∫π

0

sin x dx = 2. Sinon,

Ik =
1

k

∫π

0

2k sin x

2
√
1− 2k cos x+ k2

dx =
1

k

[
√

1− 2k cos x+ k2
]π

0

=
1

k
(
√

1+ 2k + k2 −
√

1− 2k + k2) =
1

k
(|k + 1| − |k− 1|).
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Plus précisément, si k ∈] − 1, 1[\{0}, Ik =
1

k
((1 + k) − (1 − k)) = 2, ce qui reste vrai pour k = 0. Si k > 1, Ik =

1

k
((1 + k) − (k − 1)) =

2

k
, et enfin, si k < −1, Ik =

−2

k
. En résumé,

Si k ∈] − 1, 1[, Ik = 2 et si k ∈] −∞,−1[∪]1,+∞[, Ik =
2

|k|
.

Exercice no 16

1) Soient n ∈ N et x ∈ R. Posons Sn =

n∑

k=0

cos(kx) et S ′
n =

n∑

k=0

sin(kx).

1ère solution.

Sn + iS ′
n =

n∑

k=0

(cos(kx) + i sin(kx)) =

n∑

k=0

eikx =

n∑

k=0

(eix)k.

Maintenant, eix = 1 ⇔ x ∈ 2πZ. Donc,

1er cas. Si x ∈ 2πZ, on a immédiatement Sn = n + 1 et S ′
n = 0.

2ème cas. Si x/∈ 2πZ, alors eix 6= 1 et

Sn + iS ′
n =

1− ei(n+1)x

1− eix
=

ei(n+1)x/2

eix/2
e−i(n+1)x/2 − ei(n+1)x/2

e−i(n+1)x/2 + ei(n+1)x/2
= einx/2−2i sin (n+1)x

2

−2i sin x
2

= einx/2 sin (n+1)x
2

sin x
2

Par identification des parties réelles et imaginaires, on obtient

n∑

k=0

cos(kx) =






cos
(nx

2

)

sin

(

(n + 1)x

2

)

sin
(x

2

) si x /∈ 2πZ

n + 1 si x ∈ 2πZ

et

n∑

k=0

sin(kx) =






(

sin
nx

2

)

sin

(

(n + 1)x

2

)

sin
(x

2

) si x /∈ 2πZ

0 si x ∈ 2πZ

2ème solution.

2 sin
x

2

n∑

k=0

cos(kx) =

n∑

k=0

2 sin
x

2
cos(kx) =

n∑

k=0

(

sin

((

k+
1

2

)

x

)

− sin

((

k −
1

2

)

x

))

=

n∑

k=0

(

sin

((

(k + 1) −
1

2

)

x

)

−

n∑

k=0

sin

((

k−
1

2

)

x

)

)

= sin

((

n +
1

2

)

x

)

− sin

(

−x

2

)

(somme télescopique)

= sin
(2n + 1)x

2
+ sin

x

2
= 2 sin

(n + 1)x

2
cos

nx

2

et donc, si x /∈ 2πZ,...

2) Soient n ∈ N et x ∈ R. Posons Sn =

n∑

k=0

cos2(kx) et S ′
n =

n∑

k=0

sin2(kx). On a :

Sn + S ′
n =

n∑

k=0

(cos2(kx) + sin2(kx)) =

n∑

k=0

1 = n+ 1,

et

Sn − S ′
n =

n∑

k=0

(cos2(kx) − sin2(kx)) =

n∑

k=0

cos(2kx).
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D’après 1), si x ∈ πZ, on trouve immédiatement,

n∑

k=0

cos2(kx) = n+ 1 et

n∑

k=0

sin2(kx) = 0,

et si x /∈ πZ,

Sn + S ′
n = n + 1 et Sn − S ′

n =
cos(nx) sin(n + 1)x

sin x
,

de sorte que

Sn =
1

2

(

n + 1+
cos(nx) sin(n + 1)x

sin x

)

et S ′
n =

1

2

(

n + 1−
cos(nx) sin(n + 1)x

sinx

)

.

3) Soient n ∈ N et x ∈ R. D’après la formule du binôme de Newton

(

n∑

k=0

Ck
n cos(kx)) + i

n∑

k=0

Ck
n sin(kx)

)

=

n∑

k=0

Ck
ne

ikx =

n∑

k=0

Ck
n

(

eix
)k

1n−k

=
(

1+ eix
)n

=
(

eix/2 + e−ix/2
)n

einx/2 = 2n cosn
x

2

(

cos
nx

2
+ i sin

nx

2

)

.

Par identification des parties réelles et imaginaires, on obtient alors

∀n ∈ N, ∀x ∈ R,
n∑

k=0

Ck
n cos(kx) = 2n cosn

x

2
cos

nx

2
et

n∑

k=0

Ck
n sin(kx) = 2n cosn

x

2
sin

nx

2
.

Exercice no 17

{
cosa+ cosb+ cos c = 0

sina+ sinb + sin c = 0
⇔ (cosa+ cosb + cos c) + i(sina+ sinb+ sin c) = 0 ⇔ eia + eib + eic = 0

⇒
∣

∣eia + eib
∣

∣ = |− eic | = 1 ⇔
∣

∣

∣eia/2eib/2
(

ei(a−b)/2 + e−i(a−b)/2
)∣

∣

∣ = 1

⇔
∣

∣

∣

∣

cos
a− b

2

∣

∣

∣

∣

=
1

2

⇔
a− b

2
∈
(π

3
+ πZ

)

∪
(

−
π

3
+ πZ

)

⇔ a− b ∈
(

2π

3
+ 2πZ

)

∪
(

−
2π

3
+ 2πZ

)

⇔ ∃k ∈ Z, ∃ε ∈ {−1, 1}/ b = a+ ε
2π

3
+ 2kπ.

Par suite, nécessairement, eib = jeia ou eib = j2eia. Réciproquement, si eib = jeia ou encore b = a+
2π

3
+ 2kπ,

eia + eib + eic = 0 ⇔ eic = −(eia + eib) = −(1+ j)eia = j2eia ⇔ ∃k ′ ∈ Z/ c = a−
2π

3
+ 2k ′π,

et si eib = j2eia ou encore b = a−
2π

3
+ 2kπ,

eia + eib + eic = 0 ⇔ eic = −(eia + eib) = −(1+ j2)eia = jeia ⇔ ∃k ′ ∈ Z/ c = a+
2π

3
+ 2k ′π.

S =

{(
a, a+ ε

2π

3
+ 2kπ, a − ε

2π

3
+ 2k ′π

)

, a ∈ R, ε ∈ {−1, 1}, (k, k ′) ∈ Z
2

}
.

Exercice no 18
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cos4
π

8
+ cos4

3π

8
+ cos4

5π

8
+ cos4

7π

8
= 2

(

cos4
π

8
+ cos4

3π

8

)

= 2
(

cos4
π

8
+ sin4 π

8

)

= 2

(

(

cos2
π

8
+ sin2 π

8

)2

− 2 cos2
π

8
sin2 π

8

)

= 2

(

1−
1

2
sin2 π

4

)

= 2

(

1−
1

4

)

=
3

2
.

Exercice no 19

1) Soit x ∈ R.

cos(3x) = sin(2x) ⇔ cos(3x) = cos
(π

2
− 2x

)

⇔
(

∃k ∈ Z/ 3x =
π

2
− 2x+ 2kπ

)

ou
(

∃k ∈ Z/ 3x = −
π

2
+ 2x + 2kπ

)

⇔
(

∃k ∈ Z/ x =
π

10
+

2kπ

5

)

ou
(

∃k ∈ Z/ x = −
π

2
+ 2kπ

)

.

S[0,2π] =

{
π

10
,
π

2
,
9π

10
,
13π

10
,
3π

2
,
17π

10

}
.

2) cos(3x) = Re(e3ix) = Re((cos x+ i sin x)3) = cos3 x− 3 cos x sin2 x = cos3 x− 3 cos x(1− cos2 x) = 4 cos3 x− 3 cos x.

∀x ∈ R, cos(3x) = 4 cos3 x− 3 cos x.

Par suite,

cos(3x) = sin(2x) ⇔ 4 cos3 x− 3 cos x = 2 sin x cos x ⇔ cos x(4 cos2 x− 3− 2 sin x) = 0

⇔ cos x(−4 sin2 x− 2 sin x+ 1) = 0 ⇔ (cos x = 0) ou (4 sin2 x + 2 sin x− 1 = 0).

D’après 1), l’équation 4 sin2 x + 2 sin x − 1 = 0 admet entre autres pour solutions
π

10
et

13π

10
(car, dans chacun des deux

cas, cos x 6= 0), ou encore, l’équation 4X2 + 2X − 1 = 0 admet pour solutions les deux nombres distincts X1 = sin
π

10
et

X2 = sin
13π

10
, qui sont donc les deux solutions de cette équation. Puisque X1 > 0 et que X2 < 0, on obtient

X1 =
−1+

√
5

4
et X2 =

−1−
√
5

4
.

Donc, (puisque sin
13π

10
= − sin

3π

10
),

sin
π

10
=

−1+
√
5

4
et sin

3π

10
=

1+
√
5

4
.

Ensuite, sin
3π

10
= cos

(

π

2
−

3π

10

)

= cos
π

5
, et donc

cos
π

5
=

1+
√
5

4
.

Enfin, cos
π

10
=

√

1− sin2 π

10
=

1

4

√

10 + 2
√
5 et de même sin

π

5
=

1

4

√

10− 2
√
5 = cos

3π

10
.

Exercice no 20

1) La fonction f1 est définie sur R, 2π-périodique et paire. On l’étudie sur [0, π].

La fonction f1 est dérivable sur [0, π] et pour tout x de [0, π]
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f ′1(x) = −2 sin(x) − 2 sin(2x) = −2 sin(x) − 4 sin(x) cos(x) = −2 sin(x)(1+ 2cos(x)).

La fonction sinus s’annule en 0 et π et est strictement positive sur ]0, π[. Donc la fonction f ′1 est du signe de −1− 2 cos(x)
sur ]0, π[. Ensuite, pour x ∈]0, π[,

−1− 2 cos(x) = 0 ⇔ cos(x) = −
1

2
⇔ x =

2π

3
,

et

−1− 2 cos(x) > 0 ⇔ cos(x) < −
1

2
⇔ x >

2π

3
(par stricte décroissance de la fonction cos sur [0, π].)

Ainsi, la fonction f ′1 est strictement négative sur

]

0,
2π

3

[

, strictement positive sur

]

2π

3
, π

[

et s’annule en 0,
2π

3
et π.

On en déduit le tableau de variations de la fonction f1 :

x 0
2π

3
π

f ′1(x) 0 − 0 + 0

3 −1

f1

−
3

2

Graphe de f1.

1

2

3

−1

−2

−3

1 2 3 4 5 6−1−2−3−4−5−6

2) Pour tout réel x, 2− cos(x) 6= 0 et donc, la fonction f2 est définie sur R, 2π-périodique et impaire. On l’étudie sur [0, π].

La fonction f2 est dérivable sur [0, π] et pour tout x de [0, π]

f ′2(x) =
cos(x)(2 − cos(x)) − sin(x)(sin(x))

(2− cos(x))2
=

2 cos(x) − 1

(2− cos(x))2
.

La fonction f ′2 est du signe de 2 cos(x) − 1 sur [0, π]. Ensuite, pour x ∈ [0, π],

2 cos(x) − 1 = 0 ⇔ cos(x) =
1

2
⇔ x =

π

3
,

et

2 cos(x) − 1 > 0 ⇔ cos(x) >
1

2
⇔ x <

π

3
(par stricte décroissance de la fonction cos sur [0, π].)

Ainsi, la fonction f ′2 est strictement positive sur
[

0,
π

3

[

, strictement négative sur
]π

3
, π
]

et s’annule en
π

3
. On note que
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f2

(π

3

)

=

√
3

2

2−

(

1

2

) =

√
3

3
= 0, 57 . . .

On en déduit le tableau de variations de la fonction f2 :

x 0
2π

3
π

f ′1(x) + 0 −√
3

3
f1

0 0

Graphe de f2.

1

−1

1 2 3 4 5 6−1−2−3−4−5−6

3) f3 est définie sur D = R \
(π

2
+ πZ

)

, paire et 2π-périodique. f3 est continue sur D en vertu de théorèmes généraux.

On étudie f3 sur
[

0,
π

2

[

∪
]π

2
, π
]

. Si x ∈
[

0,
π

2

[

, f3(x) = tan x+ cos x et si x ∈
]π

2
, π
]

, f3(x) = − tan x+ cos x.

Etude en
π

2
. lim
x→π/2

| tanx| = +∞ et lim
x→π/2

cos x = 0. Donc, lim
x→π/2

f(x) = +∞. La courbe représentative de la fonction f3

admet la droite d’équation x =
π

2
pour droite asymptote.

Dérivabilité et dérivée. f3 est dérivable sur
[

0,
π

2

[

∪
]π

2
, π
]

en vertu de théorèmes généraux et pour x ∈
[

0,
π

2

[

,

f ′3(x) =
1

cos2 x
− sinx et pour x ∈

]π

2
, π
]

, f ′3(x) = −
1

cos2 x
− sin x.

f3 est dérivable à droite en 0 et (f3)
′
d(0) = 1. Par symétrie, f3 est dérivable à gauche en 0 et (f3)

′
g(0) = −1. f3 n’est pas

dérivable en 0.
De même, f2 est dérivable à gauche et à droite en π avec (f3)

′
g(π) = −1 et (f3)

′
d(π) = 1, et n’est donc pas dérivable en π.

Variations. f3 est strictement décroissante sur ]
π

2
, π] en tant que somme de deux fonctions strictement décroissantes sur

]
π

2
, π]. Puis, pour x élément de ]0,

π

2
[,

f ′3(x) =
1

cos2 x
− sin x > 1− 1 = 0.

La fonction f ′3 est strictement positive sur ]0,
π

2
[ et donc f3 est strictement croissante sur [0,

π

2
[.

Graphe.
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1

2

3

4

5

6

−1

1 2 3 4 5−1−2−3−4−5−6−7

y = f3(x)

π−π

4) La fonction f4 est 2π-périodique. On l’étudie sur [−π, π]. Pour x ∈ [−π, π],

2 cos(x) + 1 = 0 ⇔ cos(x) = −
1

2
⇔ x = −

2π

3
ou x =

2π

3
.

Pour x ∈ [−π, π], f4(x) existe si et seulement si x 6= −
2π

3
et x 6= 2π

3
. On étudie la fonction f4 sur D =

[

−π,−
2π

3

[

∪
]

−
2π

3
,
2π

3

[

∪
]

2π

3
, π

]

.

Etude en
2π

3
. Quand x tend vers

2π

3
par valeurs inférieures, 2 cos(x) + 1 tend vers 0 par valeurs supérieures et quand x

tend vers
2π

3
par valeurs supérieures, 2 cos(x) + 1 tend vers 0 par valeurs inférieures. D’autre part, quand x tend vers

2π

3
,

2 sin(x) + 1 tend vers
√
3+ 1 qui est strictement positif. On en déduit que

lim
x→ 2π

3

−

f4(x) = +∞ et lim
x→2π

3

+

f4(x) = −∞.

Etude en −
2π

3
. Quand x tend vers −

2π

3
par valeurs inférieures, 2 cos(x) + 1 tend vers 0 par valeurs inférieures et quand

x tend vers
2π

3
par valeurs supérieures, 2 cos(x) + 1 tend vers 0 par valeurs supérieures. D’autre part, quand x tend vers

−
2π

3
, 2 sin(x) + 1 tend vers −

√
3+ 1 qui est strictement négatif. On en déduit que

lim
x→− 2π

3

−

f4(x) = +∞ et lim
x→− 2π

3

+

f4(x) = −∞.

Dérivée. La fonction f4 est dérivable sur D et pour tout x de D,

f ′4(x) =
(2 cos(x))(2 cos(x) + 1) − (2 sin(x) + 1)(−2 sin(x))

(2 cos(x) + 1)2
=

4+ 2 cos(x) + 2 sin(x)

(2 cos(x) + 1)2

=

4+ 2
√
2

(

1√
2

cos(x) +
1√
2

sin(x)

)

(2 cos(x) + 1)2
=

4+ 2
√
2 sin

(

x +
π

4

)

(2 cos(x) + 1)2
.

Pour tout x de D, 4+ 2
√
2 sin

(

x+
π

4

)

> 4− 2
√
2 > 0 et donc la fonction f ′4 est strictement positive sur D. La fonction f4

est donc strictement croissante sur

[

−π,−
2π

3

[

et sur

]

−
2π

3
,
2π

3

[

et sur

]

2π

3
, π

]

(mais pas sur

[

−π,−
2π

3

[

∪
]

−
2π

3
,
2π

3

[

∪
]

2π

3
, π

]

).
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Graphe.
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−1

−2

−3

−4

1 2 3 4 5 6 7−1−2−3−4−5−6−7

y = f4(x)

π−π
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